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Abstract This paper aims to accurately identify parame-

ters of the natural charging behavior characteristic (NCBC)

for plug-in electric vehicles (PEVs) without measuring any

data regarding charging request information of PEVs. To

this end, a data-mining method is first proposed to extract

the data of natural aggregated charging load (ACL) from

the big data of aggregated residential load. Then, a theo-

retical model of ACL is derived based on the linear con-

volution theory. The NCBC-parameters are identified by

using the mined ACL data and theoretical ACL model via

the derived identification model. The proposed methodol-

ogy is cost-effective and will not expose the privacy of

PEVs as it does not need to install sub-metering systems to

gather charging request information of each PEV. It is

promising in designing unidirectional smart charging

schemes which are attractive to power utilities. Case

studies verify the feasibility and effectiveness of the pro-

posed methodology.

Keywords Plug-in electric vehicle, Natural charging

behavior characteristic, Data-mining, Aggregated charging

load, Theoretical model, Parameter identification,

Heterogeneous

1 Introduction

Plug-in electric vehicles (PEVs) are becoming increas-

ingly popular due to their potential to enhance energy

security as well as to address environmental issues [1, 2].

However, uncoordinated charging behaviors will not only

impose negative influences on power grids as they may

produce peak load strike but also degrade the eco-friendly

advantages of PEVs as most of the uncoordinated charging

energy is drained from traditional fossil plants [3, 4].

Therefore, shifting the aggregated charging load (ACL)

from peak periods to off-peak periods will greatly mitigate

the peak load strike on power systems and facilitate the

integration of wind energy [5]. To this end, the smart

charging schemes should be deployed to coordinate the

charging behaviors of large-scale aggregated PEVs,which

is defined as a PEV-fleet in this paper.

Designing the smart charging schemes needs to evaluate

the demand response flexibility of the ACL [6], which first

requires to identify two parameters for the natural charging

behavior characteristic (NCBC) [7]. The first one is the

charging probability (CP), i.e., the probability that a PEV is

to be charged when it is parked. And the second one is the

probability distribution function of the charging duration

(CDPDF) when a PEV is charged. Note that the NCBC-

parameters signify the statistical characteristics of natural

charging behaviors. Thus, the effects of multiple charging

factors (e.g., holidays) on natural charging behaviors can

be inherently reflected in these two parameters. And

NCBC-parameters under different charging factors will

differ from each other. Consequently, the NCBC-parame-

ters should stand out in comparison with other charging

factors.

To date, the common methods to identify the NCBC-

parameters generally fall into two categories, i.e., the
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stochastic simulating methods [8–13] and the sub-metering

methods [14–17]. For the stochastic simulating methods,

travel patterns of internal combustion engine vehicles are

used to simulate PEV charging behaviors and then to cal-

culate NCBC-parameters [13]. For the sub-metering

methods, a central authority or coordinator is required to

gather and process the data regarding the charge request

information of each PEV, such as the time when the PEV is

plugged in, the duration of charging and the charging rate,

etc. [14].

Most of the existing stochastic simulating methods, by

and large, suffer from lack of accuracy. In practice, a PEV-

fleet consists of heterogeneous vehicles and the charging

parameters of them such as battery capacities, charging

rates and the amounts of energy consumed per mile, etc.

differ significantly [18]. Besides, the charging habits and

usages (commuting or non-commuting) are also different

among PEVs [4, 18]. Thus, the charging behaviours vary

significantly among the vehicles in a PEV-fleet [18]. Most

of the existing simulation methods may not accurately

simulate charging behaviours of the PEV-fleet.

The sub-metering methods need to build expensive sub-

metering systems to gather the data with regard to the

charging request information of PEVs [6, 14]. These

methods usually aim at designing demand management

paradigms that are based on the real time pricing mecha-

nisms. For many power utilities, the main impediment for

such paradigms is that their residential customers may not

be receptive to the true dynamic pricing schemes [3, 19].

For the power utilities whose residential customers prefer

time-of-use price schemes, sub-metering systems are not

necessities for the customers and the utilities are also

unwilling to improve their measurement systems due to the

high cost of investment, operation as well as maintenance

[20]. Thus, the sub-metering methods are not suitable for

these kinds of power utilities since the charging request

information of PEVs are not available.

This paper aims to accurately identify the NCBC-pa-

rameters without measuring data regarding the charging

request information of PEVs. If PEVs are popularized, the

aggregated residential load will consist of three compo-

nents, i.e., climate-sensitive load (CSL) [21], base load and

ACL. The CSL is due to the utilization of air-conditioners

and electric heaters during summer and winter, and the

base load is owing to the daily usage of basic household

appliances such as TVs, computers, water heaters, lighting

lamps, washing machines, etc. For a large-scale PEV-fleet,

the charging patterns of PEVs tend to be statistically steady

and therefore, the ACLs during a specific time window will

fall into a narrow band. The statistically steady charging

patterns imply the predictability of NCBC-parameters

which can be used to calculate ACL, leading to a

remarkable regularity and predictability of time-varying

ACL. Our study is originally motivated by two basic ideas:

� The data of natural ACL can be mined from the big data

of aggregated residential load of large-scale households. `

NCBC-parameters can be identified via the mined ACL

data based on theories of linear convolution and parameter

identification.

This paper proposes a novel methodology to identify the

NCBC-parameters of the large-scale heterogeneous PEV-

fleet. The contributions of this paper are summarized as

follows:

1) A data mining method is originally proposed. By using

the proposedmethod, the natural ACL data can bemined

out from the available big data of the aggregated

residential load. The mined ACL data includes the

integrated charging characteristic information of a large-

scale heterogeneous PEV-fleet. Thus, the proposed data

mining method will help understand the integrated

features of ACL from the system level’s perspective.

2) A theoretical ACL model for the large-scale hetero-

geneous PEV-fleet is originally derived. Compared to

existing models [22–25], the derived ACL model is

able to calculate the actual ACL in an integrated way

by using the actual NCBC-parameters. Thus, it does

not need to divide the heterogeneous PEV-fleet into

several homogenous sub-PEV-fleet and calculate the

ACL for each homogeneous sub-PEV-cluster

separately.

3) A mathematic model is originally build to identify the

NCBC-parameters via the mined ACL data and the

derived theoretical model. The identification model is

formulated as a non-linear programming model that

can be solved by the commonly applied interior point

algorithm. The identified NCBC-parameters will help

evaluate the demand response flexibility of natural

ACL. Thus, the identification model is promising in

designing unidirectional smart charging programs that

rely heavily on the integrated information of ACL but

slightly on individual information of each PEV, such

as wind-to-vehicle pricing programs, etc.

The proposed methodology will acquire comparable

results with the sub-metering methods, yet does not need to

observe the individual information of each PEV. As a

result, it does not need to build expensive sub-metering

systems and will not expose the privacy of PEVs.

The rest of this paper is organized as follows. In Sect. 2,

an overview of the proposed methodology is provided. In

Sect. 3, a method of mining the natural ACL data is pro-

posed. Section 4 derives a theoretical model for ACL

calculation. Section 5 introduces the identification of

NCBC-parameters based on the mined ACL data and the

derived ACL model. Section 6 presents the case studies

and Sect. 7 concludes this paper.
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2 Overview of proposed methodology

The block diagram of the proposed methodology is

shown in Fig. 1. The identification of NCBC-parameters

consist of two modules. The first one is responsible for

mining the big data of aggregated residential load to obtain

the natural ACL data, and the second one is responsible for

identifying the NCBC-parameters via the mined ACL data

based on the derived ACL model. The procedures to

identify the NCBC-parameters are summarized as follows:

1) Mine the big data of the aggregated residential load to

obtain the data of the natural ACL. In this step, the

natural ACL data are mined out from the aggregated

residential load by using the proposed data-mining

method.

2) Derive a theoretical ACL model for the large-scale

heterogeneous PEV-fleet. In this step, a theoretical

ACL model for the PEV-cluster with homogenous

charging rate is first derived based on the linear

convolution theory. Then, an improved model is

proposed to calculate the ACL of the realistic

(heterogeneous) PEV-fleet.

3) Estimate NCBC-parameters based on the mined ACL

data and derived theoretical ACL model. In this step,

the NCBC-parameters are identified by using the

derived identification model.

These steps will be discussed sequentially. Since most

PEV owners prefer to charge their vehicles at home [4],

only the charging behaviors occurring at home are studied

in this paper. Moreover, each day is divided into 48 time-

periods with each time-period lasting 0.5 h. The 48 time-

periods are numbered from 1 to 48 with the index of

0:00–0:30 being 1 and 23:30–24:00 being 48.

Note that both the ACL and the NCBC-parameters are

continuous variables that vary with time. To reduce the

order of identification, we discretize these variables with

each time-period (0.5 h). That is to say, the value of ACL

in a time-period is actually the average value during that

time-period. And the NCBC-parameters in a time-period

are counted by using all of the PEVs that are plugged into

the grid during that time-period. According to the law of

large number, the ACL and NCBC-parameters of large-

scale PEV-fleet during a time-period tend to be statistically

steady.

3 Data-mining method

Travel patterns of a PEV during weeks seldom repeat,

yet the integrated trip behaviors of large-scale PEVs tend to

follow a repeatable pattern during weeks. Statistical dis-

tributions of variables used to describe the trip behaviors

such as the time when a PEV arrives home, the daily trip

distance, etc., repeat in different weeks [26]. Thus, the

ACL and NCBC-parameters of a large-scale PEV-fleet

will, by and large, recur in different weeks. Hence, a time

window of 168 h (i.e., a week) will include all possible

charging behaviors of PEVs’ owners [27]. Hence, the data

of weekly ACLs should be used to identify the NCBC-

parameters.

To demonstrate the proposed ACL data-mining method,

the data of actual aggregated residential load of 6 9 105

households in a city of north China during the recent

8 years (2008–2015) are selected to form the original

datasets. And the actual residential load data in 2008–2014

are gathered to form a dataset that is denoted as NRL. It is

assumed that the load in NRL do not include ACL since the

charging load of PEVs during these years can be neglected.

As PEVs are not popularized to date, the data of weekly

ACLs are generated by using the actual distributions of trip

data via stochastically simulating the natural charging

behaviors of 1 9 105 heterogeneous PEVs.

The distributions of trip data are obtained from the

Beijing Transportation Research Centre [28]. The PEVs in

the simulation include PHEVs, Mini EVs, Compact EVs

and Medium EVs. PEVs of each type contain both com-

muting vehicles and non-commuting vehicles depending

on their usages. A PEV-owner’s charging habit is quanti-

fied by his/her psychological buffer of the battery which is

defined as a specific amount of battery energy [4], below

which he/she will suffer the range anxiety. A parked PEV

will be charged if the remaining battery energy is less than

the sum of its owner’s psychological buffer and the battery

energy to cover the next trip [4].

The required trip data and charging parameters are

summarized in [18]. Noted that the trip data reflect the

actual trip behaviors of the private cars in Beijing. The

charging parameters are obtained by survey on the internet

and thereby they are relatively accurate. Therefore, the

generated ACL is reasonable. These ACL data are then

added to the residential load data of 2015 to form another

residential load dataset from which the ACL data should be

mined out. This dataset is denoted as RL. The constructed

dataset RL can be treated as a reasonable dataset that

includes ACL. An overview of the stochastic simulation

can be found in the Sect. 6. The details of the simulation

method can be found in [18].

 ACL 
data-mining

Convolution ACL model

Parameter identification

Inputs OutputsACL profile

Module 1 Module 2

Residential 
loads

NCBC 
parameters

Fig. 1 Procedures for the identification of NCBC-parameter
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It should be noted that, the generated load data in RL are

not the actual load data and they are only used for the

demonstration of the data-mining method in this Section.

After the PEVs are popularized, one can just use the load

data of a year to form this dataset. In this section, we

demonstrate that the ACL component of the residential

load in RL can be obtained by using the residential load in

NRL.

The weekly ACL curve can be easily obtained by

sequentially connecting the daily ACL curves according to

their days in the week. As a result, the core of the data-

mining method is to extract all the daily ACLs from the

residential loads in RL. The residential loads in RL on a

regular day are shown in Fig. 2a. The green and red areas

denote the base load component and CSL component

respectively. And the blue area denotes the ACL compo-

nent. Noted that, each load component shown in Fig. 2a is

a time-sequence that consists of 48 load values in all time-

periods of the day. For the residential loads on any given

regular day in RL (see Fig. 2a), the procedures to mine the

ACL component are shown in Fig. 3. They are summarized

as 4 steps.

1) Generate two template pools for the per-unit base load

profile and the per-unit CSL profile via the dataset

NRL.

2) Identify per-unit load profiles for the components of

base load (green area in Fig. 2a) and CSL (red area in

Fig. 2a) by using the two template pools.

3) Identify actual load values in a specific time-period for

the components of base load and CSL.

4) Calculate the base load and CSL components by using

the identified per-unit load profiles and the actual load

values in a specific time-period, and then subtract

these two components from the daily residential loads

to obtain the ACL component (blue area in Fig. 2a).

These 4 steps will be discussed in detail from Sects. 3.1 to

3.4.

3.1 Template pool generation

The generation of template pools for the per-unit base

load profile and the per-unit CSL profile requires large

amounts of base loads and CSL loads. The CSL heavily

relies upon the temperature factors [29–33]. By using the

dataset NRL, the linear correlation coefficients between the

daily residential peak loads and the temperature factors are

calculated. The results are shown in Table 1. In this table,

Tmaxis the daily maximum temperature; Tminis the daily

minimum temperature; T2, T8, T14 and T20are temperatures

at 2:00, 8:00, 14:00 and 20:00.

Table 1 shows that, there is no strong correlation

between the temperature factors and the daily residential

peak load on days in spring and autumn. As a result, res-

idential loads during spring and autumn can usually be

treated as base loads which are rarely influenced by tem-

perature factors [29–32]. Table 1 also shows that, the res-

idential peak loads are most correlated with the daily

maximum temperature on days in summer and winter. This

indicates that the daily maximum temperature has the

heaviest influence on the CSL among the temperature

Fig. 2 Residential load curves on two regular days

CSL acquisition

Dataset NRL

Load data normalization

Per-unit CSL 
pool

Dataset not 
including CSL 

Dataset 
including CSL 

Per-unit base 
load pool

CSL components
in NRL 

1 2

Start

Generate
template pools 

Identify per-unit 
load profile 

Identify an actual 
load in a period

Calculate ACL 
component

End

Details
Step 1

Step 2

Step 3

Step 4

Fig. 3 Work flow of data mining method

Table 1 Linear correlation coefficients between daily peak load and

temperature factors

Temperature Linear correlation coefficients

Spring Summer Autumn Winter

Tmax 0.21 0.92 0.13 -0.91

Tmin 0.12 0.68 0.22 -0.35

T2 0.16 0.78 0.16 -0.34

T8 0.23 0.61 0.18 -0.36

T14 0.18 0.81 0.21 -0.69

T20 0.22 0.79 0.19 -0.59
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factors shown in Table 1. Therefore, the daily maximum

temperature is more suitable than the other temperature

factors to signify whether there is CSL or not on days in

summer and winter [29–33].

For further demonstration, the temperature sensitivity of

the daily residential peak load is analyzed by using the

dataset NRL. Figure 4 shows the analyzing results. For

easy understanding, the daily peak load in a year is nor-

malized to the average peak load at 20 �C within the same

year. Due to the operation of air conditioners and electric

heaters, the daily peak load starts to increase once the

maximum temperature is above 27 �C or below 14 �C.
Figure 4 indicates that air-conditioners and electric heaters

barely work on days with the maximum temperature

between 14 �C and 27 �C. Thus, residential loads in the

dataset NRL (for the case in the paper) can be treated as

base loads on days with maximum temperatures between

14 �C and 27 �C. And most of the CSLs exist on days with

the maximum temperature being above 27 �C or below

14 �C.
For the used dataset NRL in this paper, we only select

the residential loads on days with the maximum tempera-

ture being in [14, 27 �C] as the actual base loads. This will
exclude the effects of CSLs and obtain the relatively

accurate base loads. It is worthy to point out that the range

of temperature ([14, 27 �C] for the case in the paper) varies
among cities [33]. Even though, similar results are also

obtained in the studies [29–31]. Once the dataset NRL of a

city is obtained, one can easily identify this temperature

range.

The template pools can be generated via the dataset

NRL. The generation procedures can be found Fig. 3. The

dataset NRL is first divided into 2 sub-datasets. The resi-

dential load data on days with the maximum temperature

being in [14, 27 �C] are gathered to form the 1st sub-dataset

and the other load data in NRL are collected to form the 2nd

sub-dataset. As indicated in Fig. 4, the load in the 1st sub-

dataset can be treated as the base load. And the load in the

2nd sub-dataset is the summation of base load and CSL.

Then, the 48 load values of each day in the 1st sub-dataset

are normalized to their maximum load value to obtain the

corresponding per-unit base load profile. Per-unit load

profiles of all days are then gathered to form the per-unit

base load pool.

To generate the per-unit CSL pool, the CSL components

of the daily residential loads in the 2nd sub-dataset are first

obtained. The residential loads on a regular day in the 2nd

sub-dataset are shown in Fig. 2b. The CSL component

shown in Fig. 2b (red area) can be obtained by subtracting

the base load component (green area) from the overall

residential loads.

Note that the base load is owing to the daily usage of

basic household appliances such as TVs, computers, water

heaters, washing machines, etc. The number of major basic

appliances per 100 urban households is shown in Fig. 5

(see [34]). It can be seen that, the basic household appli-

ances have become saturated for developed cities such that

the number of them increases slightly in successive years

[35]. Accordingly, the basic load increases slightly in

successive years with the increment in one year being little.

It is true that some particular factors (e.g., sudden outage,

etc.) may results in the variation of base loads. Yet, the

base loads for large-scale households on most regular days

possess of remarkable and steady regularity at the system-

level [36]. That is to say, the base loads on regular days

within a year differ little from each other. As a result, the

average (typical) base load curve is approximately treated

as the actual base load curve in this paper. Figure 6a, b

show the average (typical) base load curve of each year

which are obtained by using the base loads in 2008–2014

(i.e., the loads in the 1st sub-dataset).

Based on the above analysis, the base load component of

the residential loads on a regular day during the nth year in

the 2nd sub-dataset (shown in Fig. 2b) can be represented

by the average base loads in the same year shown in

Fig. 6a or b. Then, the corresponding CSL component can

be easily calculated by subtracting the base load compo-

nent from the residential loads. Once all the CSL compo-

nents of the residential loads in the 2nd sub-dataset are

obtained, one can generate the per-unit CSL profiles by

normalizing the 48 load values of each component to their

maximum load value. These per-unit load profiles are then

collected to form the per-unit CSL pool.

Fig. 4 Influence of maximum temperature of the day on daily

residential peak load Fig. 5 Number of major basic appliances per 100 urban households
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3.2 Per-unit load profiles identification for the base

load and CSL components

The generated template pools can be used to obtain the

per-unit load profiles for the base load and CSL compo-

nents of the residential loads in RL.

Note that the integrated usage patterns of basic appli-

ances for large-scale households in developed cities pos-

sess steady regularity with little randomness on regular

days [36]. Thus, the per-unit load profile for the base load

component on a regular weekday (weekend) in RL can be

picked out from the per-unit base load pool. Typical per-

unit base load curves, chosen from the base load template

pool, are shown in Fig. 7a, b.

The per-unit CSL profile on a summer (winter) day can

signify the integrated usage pattern of air-conditioners

(electric heaters) that is majorly impacted by the maximum

temperature of the day [29–33]. For large-scale households,

the integrated usage patterns of air-conditioners (electric

heaters) keep relatively steady on regular days with iden-

tical maximum temperature [29–31, 33]. Thus, the per-unit

CSL load profile for the CSL component on a regular

weekday (or weekend) in RL can be picked out from the

per-unit CSL pool according to the maximum temperature

of that day. Typical per-unit CSL profiles, chosen from the

per-unit CSL template pool, under various maximum

temperatures during summer are shown in Fig. 8.

3.3 Actual load values identification in a specific

time-period for the base load and CSL

components

The per-unit load profile only determines the shape of

the load pattern. One of the actual load values in a specific

time-period is still required to obtain the complete load

component.

If charging behaviors are natural (uncoordinated), it is

likely that PEVs will be fully charged during evening and

early night [8–13, 18]. Thus, the ratio of ACL to residential

load in time-period 13 (6:00–6:30 on the day) is quite close

to zero (which can also be verified in Fig. 2a) [15]. Thus,

residential loads in RL in time-period 13 only contain base

loads (and CSLs). Accordingly, these load values can be

used to obtain the actual base load and CSL that are

included in the residential load in RL during time-period

13.

Note that residential loads in RL during time-period 13

on regular weekdays (weekends) with their maximum

temperatures being in [14, 27 �C] can be treated as base

loads as there barely exist CSL and ACL. The average of

them can be used as the actual base load that is included in

the residential load in RL during time-period 13, as the

base loads in the same time-period on regular weekdays

(weekends) within a year are almost identical (which is

discussed in Sect. 3.1). For the residential load in time-

period 13 on a regular day with the maximum temperature

being above 27 �C or below 14 �C (see Fig. 2a), it can be

treated as the summation of the CSL and base load. Sub-

tract the identified (average) base load from this residential

load, then one can obtain the CSL included in the resi-

dential load in RL during time-period 13.

Fig. 6 Typical base load curves in 2008–2014

Fig. 7 Typical per-unit base load profiles

Fig. 8 Typical per-unit CSL profiles during summer
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3.4 ACL component identification

For the base load and CSL components that are included

in the daily residential loads in RL, if the per-unit load

profile and the actual load value in time-period i0 (here,

i0 ¼ 13) are denoted as Lpu ið Þf gði ¼ 1; 2; . . . ; 48Þ and

Lði0Þ respectively, then the actual load in a given time-

period i ði ¼ 1; 2; . . .; 48Þ can be calculated as:

LðiÞ ¼ LpuðiÞLði0Þ=Lpuði0Þ ð1Þ

Once the base load and CSL components of the daily

residential loads in RL are identified, one can easily cal-

culate the corresponding ACL component. Note that the

residential loads in RL on days with their maximum tem-

perature between 14 and 27 �C only consist of base loads

and ACLs. To mine these ACLs, only base load compo-

nents need to be identified. Once all ACL components are

obtained, the weekly ACL curve of each season can be

acquired conveniently.

4 Theoretical ACL model

In this section, the theoretical ACL model for a PEV-

cluster with identical charging rate is first proposed based

on the linear convolution theory. Then, this model is

improved to calculate the ACL of realistic PEV-fleet with

heterogeneous charging rates.

The instantaneous charging rate of a PEV-cluster can be

considered to be constant during the entire charging pro-

cess [6–18]. Assume there are S types of charging rates in

the realistic PEV-fleet, and then the PEV-fleet can be cat-

egorized into S PEV-clusters according to their corre-

sponding charging rates. For the cluster s (s = 1, 2,…,S),

its charging rate is denoted as Ps
ch.

4.1 Theoretical ACL model for the PEV-cluster s

For the PEVs that are plugged into the grid in a time-

period, the charging loads posed by these vehicles can be

analogous to the responses that are excited by them. Also,

the ACLs of the PEV-cluster s can be analogous to the

responses excited by this PEV-cluster. Here, the number of

time-periods required to charge batteries from fully dis-

charged to fully charged with the charging rate of Ps
ch is

denoted as Ts. According to the linear convolution theory,

the ACL in time-period j is the linear superposition of

charging loads enforced in time-period j by PEVs that are

plugged into the grid from time-period j� Ts þ 1 to j. If

the number of PEVs plugged into the grid during time-

period i is denoted as Ns
i , and the charging load of these

PEVs in time-period j is denoted as Ps
i;j, then the ACL of

the PEV-cluster s in time-period j can be expressed as:

Ps
j ¼

Xj

i¼j�Tsþ1

Ps
i;j ð2Þ

Calculating Ps
j with the NCBC-parameters (i.e. CPs and

CDPDFs) of PEV-cluster s needs a model to describe the

quantitative relationship between the charging load Ps
i;j and

the NCBC-parameters in time-period i. This in turn needs

to analyze the evolution of charging process for the Ns
i

PEVs that are plugged into the grid in time-period i. Noted

that, these PEVs will be gradually disconnected from the

grid during the following time-periods. Accordingly, the

ACL of these PEVs will gradually decrease in a specific

pattern from the initial pulse (the ACL excited by these

PEVs in time-period i). The decreasing pattern depends on

the CDPDF of these Ns
i PEVs.

The CDPDF for the Ns
i PEVs that are plugged into the

grid during time-period i is denoted as

Hs
i ¼ hsi;t

n o
ðt ¼ 1; 2; . . .; TsÞ. hsi;t is the probability that a

PEV will be charged for t time-periods. Obviously,

PTs

t¼1

hsi;t ¼ 1. As r - 1 time-periods elapsed, the number of

PEVs that have left the grid is Ns
i

Pr�1

t¼1

hsi;t. Hence, the

number of PEVs still being connected with the grid in time-

period i ? r - 1 is Ns
i 1�

Pr�1

t¼1

hsi;t

� �
. Multiplying the

number of remaining PEVs in each following time-period

by Ps
ch, one can obtain the ACL-time-sequence of these Ns

i

PEVs.

Table 2 summarizes the charging process of the Ns
i

PEVs that are plugged into the grid in time-period i. The

ACL gradually decreases from the initial value Ps
chN

s
i and

after r - 1 time-periods, it decreases to a value of

Ps
chN

s
i l

s
i;r. Noted that, lsi;r ¼ 1�

Pr�1

t¼1

hsi;t is the decreasing

coefficient, which reflects the decreasing pattern of the

ACL excited by these Ns
i PEVs. Hence, the ACL that is

posed by the Ns
i PEVs in time-period j is:

Ps
i;j ¼ Ps

chN
s
i l

s
i;j�iþ1 ðj� iÞ ð3Þ

For the PEV cluster s, the probability that a vehicle arrives

home in time-period i and does not leave again on that day

is denoted as gsi , and the CP in time-period i (i.e., the

probability that a vehicle is to be charged in time-period i

when it is parked) is denoted as f si . Let Ns denote the

number of PEVs in cluster s, then the number of PEVs that

are plugged into the grid in time-period i can be written as:

Ns
i ¼ Nsgsi f

s
i ð4Þ

Substituting (4) into (3) yields:
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Ps
i;j ¼ Ps

chN
sgsi f

s
i l

s
i;j�iþ1 ðj� iÞ ð5Þ

Then, substitute (5) into (2), one will obtain:

Ps
j ¼ Ps

chN
s
Xj

i¼j�Tsþ1

gsi f
s
i l

s
i;j�iþ1 ð6Þ

Equation (6) is the theoretical model that can only calculate

the ACL of a PEV-cluster with identical charging rate. It is

noteworthy that PEVs will arrive home with different ini-

tial values of state of charge (SOC). Therefore, the ACL is

actually produced by PEVs with different initial values of

SOC. PEVs with different initial values of SOC require

different charging times to fully charge their batteries.

Hence, the parameter CDPDF can be used to deal with the

effect of initial SOC on the calculation of ACL. Consid-

ering that the parameter CDPDF reflects the distribution of

initial SOC, the derived theoretical ACL model inherently

concerns the issues of initial SOC.

4.2 Theoretical ACL model for realistic PEV-fleet

In this part, the NCBC-parameters of each PEV-cluster

with homogenous charging rate are combined together to

obtain the equivalent NCBC-parameters of the realistic

PEV-fleet. The equivalent NCBC-parameters are thereafter

used to derive the theoretical model of the realistic ACL.

Since the realistic PEV-fleet contains S PEV-clusters

and the numbers of PEVs for the cluster s is Ns, the total

number of PEVs in the realistic fleet can be calculated as

N ¼
PS

s¼1

Ns. For the realistic PEV-fleet, let Pmin
ch denote the

minimum charging rate within the realistic PEV-fleet.

Besides, the probability that a PEV arrives home in time-

period i and does not leave again on that day is denoted as

gi. Then, the following equivalence principle is used to

obtain the equivalent NCBC-parameters for the realistic

PEV-fleet.

Equivalence principle: charging one PEV with the

charging rate Ps
ch in some time-periods is equivalent to

charging Ps
ch=P

min
ch PEVs with the charging rate Pmin

ch in the

same time-periods from the system-level’s perspective.

For the realistic PEV-fleet, the equivalent number of

PEVs plugged into the grid in time-period i is denoted as

Ni. According to the Equivalence principle, Ni can be

calculated as:

Ni ¼
XS

s¼1

ðPs
ch

�
Pmin
ch ÞNs

i ð7Þ

Substituting (4) into (7) yields:

Ni ¼
XS

s¼1

ðPs
ch

�
Pmin
ch ÞNsgsi f

s
i ð8Þ

The distribution of time when a PEV arrives home relies on

the living and working habits of PEV owners. These habits

tend to be independent of PEVs’ charging rate Ps
ch. Thus,

we have gi ¼ gsi . Since gi ¼ gsi , the equivalent CP of the

realistic PEV-fleet in time-period i, denoted as fi, can be

calculated as:

fi ¼ Ni=ðNgiÞ ¼
XS

s¼1

ðPs
ch

�
Pmin
ch ÞNsf si

�
N ð9Þ

According to the Equivalence principle, the equivalent

probability that a PEV will be charged for t time-periods

can be calculated as:

hi;t ¼
XS

s¼1

hsi;tN
s
i ðPs

ch

.
Pmin
ch Þ
.
Ni ð10Þ

Since Ni ¼ Ngifi and gi ¼ gsi , substituting (4) into (10)

yields:

Table 2 ACL sequence imposed by PEVs plugged to the grid in time-period i

Present time-period Elapsed time-period Decreasing coefficient Remaining PEV number ACL

i 0 1 Ns
i l

s
i;1 Ps

chN
s
i l

s
i;1

i ? 1 1 1� hsi;1 Ns
i l

s
i;2 Ps

chN
s
i l

s
i;2

..

. ..
. ..

. ..
. ..

.

i ? r – 1 r - 1
1�

Pr�1

t¼1

hsi;t
Ns
i l

s
i;r Ps

chN
s
i l

s
i;r

..

. ..
. ..

. ..
. ..

.

i ? Ts - 1 Ts - 1
1�

PTs�1

t¼1

hsi;t
Ns
i l

s
i;Ts Ps

chN
s
i l

s
i;Ts

i ? Ts Ts 0 0 0
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hi;t ¼
XS

s¼1

hsi;tN
sf si ðPs

ch

�
Pmin
ch Þ
.
ðNfiÞ ð11Þ

By using (9) and (11), equivalent NCBC-parameters of the

realistic PEV-fleet can be obtained. The ACLs of the

realistic PEV-fleet can be calculated by these equivalent

NCBC-parameters in an integrated way. The ACL of the

realistic PEV-fleet in time-period j, Pj, can be calculated

as:

Pj ¼ Pmin
ch N

Xj

i¼j�Tþ1

gifili;j�iþ1 ð12Þ

where li;j�iþ1 ¼ 1�
Pj�i

t¼1

hi;t is the time-decreasing coeffi-

cient of ACL and T is the maximum number of time-pe-

riods that is required to charge the PEVs in the realistic

PEV-fleet. T ¼ maxfTsg (s = 1, 2, …, S). The proof of

(12) can be found in the ‘‘Appendix A’’.

Equation (12) is the theoretical ACL model for the

realistic PEV-fleet. In (12), Pmin
ch and gi can be easily

obtained. Note that PEVs should be licensed in the traffic

departments with a unique license number. Thus, it will be

easy to get the information of PEVs’ total number (N) from

the traffic departments. In addition, PEVs tend to be reg-

istered in the power utilities for the acquisition of charging

services such as the installations and maintenances of

charging devices, the inquiries of charging tariffs as well as

the payments of charging bills, etc. As a result, the infor-

mation of PEVs’ total number (N) can also be obtained

from the power utilities. As a result, only the CPs and

CDPDFs in (12) need to be identified.

5 NCBC-parameters identification

A non-linear programing problem is formulated to

identify NCBC-parameters. For easy demonstration, the

weekly ACL data used to construct the dataset RL and the

distribution of time when vehicles arrive home in week are

shown in Fig. 9 [18, 28]. Note that one week is divided into

336 time-periods with each time-period lasting 0.5 h.

These time-periods are further grouped into 7 time-sections

that are indexed from 1 to 7, wherein each time-section

includes 48 time-periods. The dth (d = 1, 2, …, 7) time-

section begins from the 13th time-period (6:00–6:30) of the

dth day and ends at the 12th time-period (5:30–6:00) of the

(d?1)th day. Notice that Monday is the 1st day in week.

For the dth time-section, PEVs arrive home from the 13th

time-period of the dth day to the 6th time-period

(2:30–3:00) of the (d ? 1)th day [28]. And most of these

PEVs will be fully charged in time-section d. Thus, the

ACLs of these vehicles usually have large values in time-

section d whereas they are extremely small at the beginning

of time-section (d ? 1) [13, 18]. Accordingly, ACLs in the

dth time-section can be used to identify NCBC-parameters

corresponding to this time-section. Thus, weekly NCBC-

parameters can be divided into 7 groups with the parame-

ters of each group being identified separately via ACLs in

the corresponding time-section. For easy demonstration,

the 48 time-periods of each time-section are renumbered

from 13 to 60 with the index of 6:00–6:30 being 13 and

5:30–6:00 of the next day being 60. For each time-section,

there is no need to identify the NCBC-parameters in time-

periods with the index ranging from 55 to 60 (3:00–6:00),

as there is usually few PEVs arriving home from 3:00 to

6:00 of each day [28].

Let {Pm
j } (j = 13…60) denote the ACL data mined in a

given time-section. And the period within this time-section

when the power system experiences peak ACL is denoted

as [jpb, jpe]. Then, the problem to identify the NCBC-pa-

rameters in this time-section can be formulated as a non-

linear programming problem as follows:

min Q ¼
Xjpe

j¼jpb

ð1� Pj=P
m
j Þ

2 ð13Þ

s.t.

fi [ 0

hi;t � 0
; 8i 2 f13. . .54g; 8t 2 f1. . .Tg

�
ð14Þ

fi � fiþ1j j � di8i 2 f13. . .53g ð15Þ
hi;t ¼ hiþ1;t; 8i 2 f13. . .53g ð16Þ
XT

t¼1
hi;t ¼ 1; 8i 2 f13. . .54g ð17Þ

Pj=P
m
j � 1

���
���� nj; 8j 2 f13. . .60g ð18Þ

where Pj is calculated via (12) by using the identified

NCBC-parameters, and ð1� Pj=P
m
j Þ

2
is the quadratic

function of the relative difference between the mined ACL

and the calculated ACL. The objective function is to

minimize the sum of quadratic functions of relative

Fig. 9 ACL and distribution of time when vehicles arrive home in

the week (two consecutive time-sections are separated with black dot

lines)
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differences during the peak ACL period in the given time-

section. In (15), di is the threshold of difference of CPs

between the ith and (i?1)th time-periods. In (18), nj is the
threshold of the relative difference between Pj and Pm

j .

Details about setting di and nj will be discussed later.

The constraint described in (14) ensures that the values

of NCBC-parameters are greater than zero. Equation (16)

indicates that the CDPDFs in all time-periods within the

same time-section can be considered to be identical, which

is verified through our case studies. Equation (17) guar-

antees the sum of all elements of CDPDF equals to one.

The non-linear programming problem described above can

be solved via the widely used interior point algorithm [37].

Note that the interior point algorithm has the polynomial

computation complexity when it is used to solve the non-

linear programming problems [38].

As mentioned previously, the NCBC-parameters can be

used to evaluate the demand response flexibility of ACL

[6, 7]. For most of PEVs, the times they parked at home are

much longer than the times to fully charge their batteries

and thus the ACL can be shifted to the off-peak periods. In

this paper, the demand response flexibility of ACL is

defined as the maximum amount of time that the ACL can

be shifted to later hours. By using the identified NCBC-

parameters, the number of PEVs that are plugged into the

grid in the ith time-period can be calculated as Ni ¼ Ngifi.

The number of PEVs that need to be charged for t time-

periods can be expressed as Nt
i ¼ Nihi;t ¼ Ngifihi;t. And the

ACL posed by these PEVs is Pmin
ch Nt

i ¼ Pmin
ch Ngifihi;t. Let

time-period k denote the charging deadline before which

the PEV have to be fully charged. Then, the charging of the

Nt
i PEVs can be at most delayed for k–i–t time-periods. In

other words, the demand response flexibility for the ACL

that is posed by the Nt
i PEVs is k–i–t.

6 Case studies

In this section, the methods of mining ACL data and

identifying NCBC-parameters are tested. As PEVs are not

popularized to date, this paper generates the ACLs and

NCBC-parameters by stochastically simulating charging

behaviors of 1 9 105 PEVs [18]. They are treated as the

sub-metering results (benchmarks) to verify the feasibility

of the proposed methodology. We would like to point out

that, the generated ACL and NCBC-parameters are not the

actual ACL and NCBC-parameters. They are only used to

verify the feasibility of the proposed data-mining method

and the parameter-identification model. After the PEVs are

popularized, one can just mine the data of actual ACL from

the data of residential loads and identify the actual NCBC-

parameters by using the actual ACL data.

PEVs are first divided into several subgroups according

to the vehicle types, usages and charging habits. Then, the

stochastic simulation is performed on each subgroup in

consecutive 13 weeks [18]. The average weekly ACLs of

each subgroup are summed up. And during each time-pe-

riod in week, NCBC-parameters of each subgroup are

combined together via the Equivalence Principle described

in Sect. 4. The details of the simulation method can be

found in [18].

The benchmark of the weekly ACLs are shown in Fig. 9

(blue dot line). The CDPDFs during all time-periods in

week are shown in Fig. 10 wherein the CDPDFs in the

same time-section are displayed with the same color.

Notice that the CDPDFs within the same time-section

exhibit some differences, especially for those at the

beginnings and endings of the time-section when there are

few PEVs arriving home. However, treating the CDPDFs

in the same time-section to be identical (16) will bring little

error in the calculation of ACLs, which will be verified in

Sect. 6.2.

6.1 Tests for data-mining method

The ACL data included in the residential loads of RL are

extracted to verify the feasibility of the proposed data-

mining method. The ratios of ACL to the peak load on

weekdays and weekends are 14% and 7%, respectively.

Let {Pb
j } (j = 13…60) denote the benchmark ACL data

in a given time-section. Then, the relative error (absolute

value) between the benchmark ACL data and minded ACL

data in time-period j can be calculated as Pm
j =P

b
j � 1

���
���.

Figure 11a, b show the benchmark ACL data and the rel-

ative errors of mined ACL data during the 1st and 7th time-

sections in week. Note that Fig. 11a, b do not display the

relative errors that are greater than 0.16 at the beginnings

and endings of the time-section.

It can be seen that, the relative errors of mined ACL data

are generally greater than 0.08 during [6:00, 9:30] of the

first day and [3:30, 6:00] of the following day. However, it

is worthy to point out that the relative errors are quite low

(mostly less than 0.04) during the periods when the ACLs

are notably high. This indicates that the ACL data-mining

Fig. 10 CDPDF of each time-period in the week
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method can obtain accurate data of ACLs in the period

when there are notable amount of PEVs arriving home.

Similar results can be obtained by analyzing the relative

errors in other time-sections. Since the underlying NCBC-

information mainly depends on the ACLs that are notably

high, the minded ACL data can be used to identify the

corresponding NCBC-parameters.

It should be noted that, there are some related works on

getting the accurate data of ACLs (see [15, 16, 39]). In

these works, the data of charging load for each vehicle are

submitted to a central authority by using the expensive sub-

metering system. The central authority then aggregates

charging load of each vehicle to form the ACL. Compared

with these methods, the proposed method will obtain

comparable results of ACL yet does not need to install the

expensive sub-metering systems. Unlike the studies aiming

to get the accurate ACL, the proposed method targets to

identify the NCBC-parameters which can be used to

evaluate the demand response flexibility of the ACL. As a

result, the proposed methodology will be more suitable to

help design the pricing inventive programs for charging

coordination.

6.2 Tests for identification model

In this part, the performances of the identification model

is tested. First, the feasibility of constraint (16) is verified.

Then, the NCBC-parameters are identified via the ACL

data that are mined from the load data of each season in

RL.

To verify the feasibility of (16), the 48 CDPDFs within

each time-section are first combined to obtain one CDPDF.

And then these 7 combined CDPDFs along with the CPs of

all time-periods in the week are substituted into (12) to

calculate the weekly ACLs which are denoted as {Pcom
j }

(j = 1, 2, …, 336). The relative errors (absolute values)

between the benchmark ACL and {Pcom
j } are shown in

Fig. 12. It can be seen that, the relative errors are less than

0.05 in most of the time except at the endings of each time-

section. Since the ACLs at endings of each time-section are

quite low, the relatively large errors barely affect the

identification of NCBC-parameters.

It should be noted that, commuting PEVs usually arrive

home simultaneously during [16:00, 22:00] in the first 5

time-sections [28]. For PEVs arriving home in these peri-

ods, the ratio of commuting ones to non-commuting ones in

each time-period varies considerably. As trip distances of

commuting and non-commuting PEVs are somewhat dif-

ferent, CPs in each time-period of [16:00, 22:00] vary

significantly. Thus, dis with i 2 ½33; 44� are set to 0.06.

Besides, PEVs arriving home during [6:00, 16:00][[22:00,
3:00] mainly consist of non-commuting vehicles. Consid-

ering that the distributions of trip distances vary smoothly

for non-commuting PEVs that arrive home in adjacent

time-periods, the differences of corresponding CPs of them

are small. Here, dis with i 2 ½13; 32� [ ½45; 54� are set to

0.03. For the last two time-sections, dis are set to 0.03 as

PEVs arriving home during time-periods in these two time-

sections are usually non-commuting vehicles.

The underlying NCBC-information corresponding to the

mined ACL data during [6:00, 9:30] of one day and [3:30,

6:00] of the following day are inaccurate due to the large

errors in the mined ACL data. As a result, njs with j 2
½13; 19� [ ½56; 60� are set to1. Besides, the errors in mined

ACL data during [9:30, 12:00] of one day and [0:00, 3:30]

of the following day are somewhat large due to the rela-

tively low ratios of ACL to the residential load. Thus, njs
with j 2 ½20; 24� [ ½49; 55� are set to 0.07. Here, njs in other
time-periods of each time-section are set to 0.03. Initial

values for NCBC-parameters are set to 0.5. The total PEV

number (N) and the minimum charging rate of PEVs in the

realistic PEV-fleet (Pmin
ch ) are equal to 1 9 105 and 3.5 kW

Fig. 11 Benchmark ACL and relative error of mined ACL in time-

section 1 and time-section 7

Fig. 12 Relative error between Pb
j and Pcom

j in the week (two

consecutive time-sections are separated with red dot lines)
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respectively. The maximum number of time-periods that is

needed to charge the PEVs in the realistic PEV-fleet (T) is

16 (8 h). The time distribution when PEVs arrive home in

each time-section can be found in Fig. 9. According to the

mined ACL data, the peak ACL period [jpb, jpe] is set as

[36, 45] in the first 5 time-sections and [25, 44] in the last

two time-sections.

Figure 13a, b show the CDPDFs that are identified via

the mined ACL data during the 1st and 7th time-sections.

Figure 14a shows the CPs of all time-periods in the 1st

time-section and Fig. 14b displays those in the 7th time-

section. In Figs. 13 and 14, the blue lines represent the

benchmark data with other lines being marked with

legends. Figures 13 and 14 show that the identified NCBC-

parameters are consistent with the benchmark. As the

benchmark ACL data used to construct the dataset RL is

the same among seasons, NCBC-parameters identified by

using the mined ACL data of each season are almost

identical. One can obtain same conclusions by analyzing

the corresponding results in other time-sections.

To show the identified results more clearly, the values of

expectation and standard deviation of charge durations in

each time-section are shown in Fig. 15a, b. And the RMS

(root mean square) values of relative errors between the

benchmark CPs and the identified CPs during [12:00,

24:00] of each time-section are shown in Fig. 15c.

Figure 15a shows that the mean values of charge dura-

tions calculated by using the identified CDPDFs are quite

close to those obtained by using the benchmark CDPDFs.

The maximum difference is only 0.09 h which occurs in the

7th time-section during winter when the identification value

and the benchmark value are 3.44h and 3.53h respectively.

Figure 15b shows that the standard deviations of charge

durations for the identification values and the benchmark

values are quite close. The maximum difference is only 0.1

h which happens in the 7th time-section during summer

when the identification value and the benchmark value are

1.51h and 1.41h respectively. Fig. 15c shows that the RMS

values for the relative errors between the benchmark CPs

and the identified CPs in each time-section are less than

0.04. It indicates that the values of identified CPs are

almost equal to those of benchmark CPs during [12:00,

24:00] of each time-section in the week. The results shown

in Figs. 13, 14 and 15 verify that the identification model is

feasible.

7 Conclusion and future work

This paper proposed a methodology to identify the

NCBC-parameters for large-scale heterogeneous PEV-

fleets.

Fig. 13 CDPDFs in time-section 1 and time-section 7

Fig. 14 CPs in time-section 1 and time-section 7

Fig. 15 Statistical results of the identified NCBC-parameters
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The proposed methodology is well suitable for the

power utilities to understand the integrated features of ACL

from the system level’s perspective. Therefore, it will help

the power utilities to solve some problems that rely heavily

on the integrated information of ACL but slightly on the

PEV’s individual information. For example, the evaluation

of demand response flexibility, the design of pricing

incentive programs, etc. Case studies show that the pro-

posed methodology will obtain comparable results with the

sub-metering methods. However, it does not need to install

the expensive sub-metering systems to gather and process

the PEV’s individual information. As a result, the proposed

methodology significantly reduces the cost of investment,

operation as well as maintenance and will not pose the

privacy of PEVs.

We would like to point out that, the extraction of ACL

data requires huge amounts of historical residential loads.

Due to lack of historical load data, the data of ACL on

statutory holidays (e.g., the Spring Festivals, the National

Day, etc.) cannot yet be accurately mined out. Thus, the

proposed methodology does not work well for the scenarios

on statutory holidays. It is desirable to improve the

methodology to identify the NCBC-parameters on statutory

holidays in the future.

This paper only studies the identification of the natural

charging behaviors. It is also desirable to analyze the

scenarios where PEVs have pricing incentives in off-peak

periods. In future work, the proposed methodology will be

extended to mine the data of coordinated ACL and identify

the parameters of coordinated charging behaviors. It will

facilitate some studies that relate with the identification of

PEVs’ actual response behaviors. For example, the varia-

tion of ACL at dimensions of both time and space (region)

can be easily analyzed by comparing the natural ACL with

the coordinated ACL. And the effect of pricing incentives

on the charging behaviors can be conveniently obtained by

analyzing the parameters of coordinated charging behav-

iors. On one hand, these studies will help the power utilities

improve the pricing incentive programs in the power

markets. On the other hand, they will also help the power

utilities use the direct load control techniques to shave the

ACLs that remain in the peak periods under emergency

operating scenarios.
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Appendix A

Proof of (12)

Let

A ¼ Pmin
ch N

Xj

i¼j�Tþ1

gifili;j�iþ1 ðA1Þ

According to the definition of Pj, one can obtain:

Pj ¼
XS

s¼1

Ps
j ðA2Þ

Hence, (12) is equivalent to:

A ¼
XS

s¼1

Ps
j ðA3Þ

Substituting Ni ¼ Ngifi and li;j�iþ1 ¼ 1�
Pj�i

t¼1

hi;t into (A1)

yields:

A ¼ Pmin
ch

Xj

i¼j�Tþ1

Ni 1�
Xj�i

t¼1

hi;t

 !
ðA4Þ

Substituting (10) into (A4) yields:

A ¼Pmin
ch

Xj

i¼j�Tþ1

Ni 1�
Xj�i

t¼1

XS

s¼1

Ns
i

Ni

Ps
ch

Pmin
ch

hsi;t

 !

¼Pmin
ch

Xj

i¼j�Tþ1

Ni 1�
XS

s¼1

Ns
i

Ni

Ps
ch

Pmin
ch

Xj�i

t¼1

hsi;t

 !

¼Pmin
ch

Xj

i¼j�Tþ1

Ni �
XS

s¼1

Ns
i

Ps
ch

Pmin
ch

Xj�i

t¼1

hsi;t

 !
ðA5Þ

Substitute (7) into (A5), we will obtain:

A ¼Pmin
ch

Xj

i¼j�Tþ1

XS

s¼1

Ps
ch

Pmin
ch

Ns
i 1�

Xj�i

t¼1

hsi;t

 !

¼
Xj

i¼j�Tþ1

XS

s¼1

Ps
chN

s
i 1�

Xj�i

t¼1

hsi;t

 ! ðA6Þ

Substitute (4) into (A6), one can get:
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A ¼
Xj

i¼j�Tþ1

XS

s¼1

Ps
chN

sgsi f
s
i 1�

Xj�i

t¼1

hsi;t

 !

¼
XS

s¼1

Ps
chN

s
Xj

i¼j�Tþ1

gsi f
s
i 1�

Xj�i

t¼1

hsi;t

 ! ðA7Þ

8s ¼ 1; 2; . . .; S, we denote:

Bs ¼ Ps
chN

s
Xj

i¼j�Tþ1

gsi f
s
i 1�

Xj�i

t¼1

hsi;t

 !
ðA8Þ

8s ¼ 1; 2; . . .; S, considering that T ¼ maxfTsg, then

Ts � T . For the PEV-clusters that satisfy Ts ¼ T ,

substituting (6) into (A8) yields:

Bs ¼ Ps
j 8s 2 STs¼T ðA9Þ

where STs¼T is the set of indexes for the PEV-clusters that

satisfy Ts ¼ T . For the PEV-clusters that satisfy

Ts � T � 1, deriving (A8) yields:

Bs ¼Ps
chN

s
Xj�Ts

i¼j�Tþ1

gsi f
s
i 1�

Xj�i

t¼1

hsi;t

 !

þPs
chN

s
Xj

i¼j�Tsþ1

gsi f
s
i 1�

Xj�i

t¼1

hsi;t

 !
8s 2 STs � T�1

ðA10Þ

where STs � T�1 is the set of indexes for the PEV-clusters

that satisfy Ts � T � 1.8s 2 STs �T�1, we denote:

Bs
1 ¼ Ps

chN
s
Xj�Ts

i¼j�Tþ1

gsi f
s
i 1�

Xj�i

t¼1

hsi;t

 !
ðA11Þ

Considering that i� j� Ts, we obtain Ts � j� i. Thereby,

8s 2 STs �T�1, B
s
1 can be written as:

Bs
1 ¼ Ps

chN
s
Xj�Ts

i¼j�Tþ1

gsi f
s
i 1�

XTs

t¼1

hsi;t �
Xj�i

t¼Tsþ1

hsi;t

 !
ðA12Þ

Remember that hsi;t is the probability that a PEV in the

PEV-cluster s will be charged for t time-periods

(t ¼ 1; 2; . . .; Ts), then one can obtain:

hsi;t ¼ 0 8t ¼ Ts þ 1. . .j� i ðA13Þ

Considering that
PTs

t¼1 h
s
i;t ¼ 1 and (A13), we can derive

(A12) as:

Bs
1 ¼ 0 8s 2 STs � T�1 ðA14Þ

Substituting (6) and (A11) into (A10) and considering

(A14) yield:

Bs ¼ Ps
j 8s 2 STs � T�1 ðA15Þ

Substituting (A8) into (A7) and considering (A9) and

(A15) yield

A ¼
XS

s¼1

Bs ¼
XS

s¼1

Ps
j ðA16Þ
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