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Abstract This paper applies double-uncertainty optimiza-

tion theory to the operation of AC/DC hybrid microgrids to

deal with uncertainties caused by a high proportion of

intermittent energy sources. A fuzzy stochastic expectation

economic model for day-ahead scheduling based on

uncertain optimization theory is proposed to minimize the

operational costs of hybrid AC/DC microgrids. The fuzzy

stochastic alternating direction multiplier method is pro-

posed to solve the double-uncertainty optimization prob-

lem. A real-time intra-day unbalanced power adjustment

model is established to minimize real-time adjustment

costs. Through comparative analysis of deterministic

optimization, stochastic optimization and fuzzy stochastic

optimization of day-ahead scheduling and real-time

adjustment, the validity of fuzzy stochastic optimization

based on a fuzzy stochastic expectation model is proved.

Keywords Double-uncertainty optimization, Fuzzy

stochastic ADMM, Fuzzy stochastic expected value model,

High proportion of intermittent energy sources, Hybrid

AC/DC microgrid

1 Introduction

Compared with the traditional power grid, microgrids have

the potential advantages of high reliability and environmental

friendliness, which can effectively compensate the shortcom-

ings of centralized power generation and high voltage power

transmission. Microgrids will be the main grid access for

future loads and distributed generation, as an important part of

smart distribution grids [1–6]. Microgrids can be divided into

AC microgrids, DC microgrids and hybrid AC/DC microgrids

[7]. Hybrid AC/DC microgrids are one of the most promising

microgrid structures combining the advantages of AC and DC

microgrids, which is convenient for integrating various forms

of distributed generation and load [8, 9].

As the use of microgrids has increased rapidly, those

with intermittent energy sources as the main energy supply

have gradually become the most common kind. If the

utility grid is used as an ideal power source to maintain a

microgrid’s internal real-time power balance, a high pro-

portion of intermittent generation will cause too much

disturbance to the utility grid, affecting its safety and

stable operation. Necessarily, microgrids should develop an

accurate day-ahead generation schedule and report it to the

utility grid operator, and also minimize unbalanced power

internally caused by intermittent energy output fluctua-

tions. In hybrid AC/DC microgrids, due to their compli-

cated internal structure, it is necessary to coordinate a

mixture of AC and DC electrical equipment, which brings

challenges to achieving optimized operation.
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At present, research on hybrid AC/DC microgrids is

mainly focused on their control strategy, whereas there is

relatively little research on their optimal operation [10]. In

[11], a multi-time-scale optimization model, which adjusts

the power distribution by considering the impact of real-time

electricity prices and unbalanced power, is proposed to

maximize the revenue of hybrid AC/DC microgrids. How-

ever, the cost model does not take into account the energy

storage charge and discharge costs due to round-trip losses.

In [5] a two-layer optimization control model is proposed,

which includes the system layer and the equipment layer.

The system layer model optimizes the unit combination to

realize the power balance, and the equipment layer is

designed to stabilize the AC and DC voltages. However,

neither paper discusses the negative effects of uncertainty

from intermittent energy on the operation of hybrid AC/DC

microgrids. The output power of widely used intermittent

energy sources, such as wind power and photovoltaic power,

often deviate from the predicted value.

This paper applies the double uncertainty optimization

theory to the operation of hybrid AC/DC microgrids, to pro-

vide decision support to microgrid operators, and to enhance

the ability of microgrids to cope with the uncertainty of power

generation. It is assumed that microgrids are operated inde-

pendently of the utility grid, though connected to it, based on a

dispatch cycle and scheduling method similar to those used

for the utility grid. Microgrid dispatch can be automated or,

for large microgrids, supervised by a human operator.

Hybrid AC/DC microgrids are assumed to include wind

turbines (WT), solar photovoltaic (PV) generators, energy

storage (ES) and other distributed energy (DE) resources. A

fuzzy stochastic optimization model for the operating cost

and a real-time unbalanced power adjustment cost model are

established, accounting for the characteristics of microgrid

structure and the fluctuations of output power caused by

intermittent generation. In response to the characteristics of

the model, the alternating direction multiplier method

(ADMM) is used to solve this problem. Finally, three models

including deterministic optimal scheduling, optimal

scheduling considering the randomness of intermittent gen-

eration, and optimal scheduling that considers double

uncertainty are compared to verify the validity of the double-

uncertainty optimization model and the algorithm.

2 Double-uncertainty optimal model

2.1 Overview of fuzzy stochastic optimization

theory

In the theory of uncertainty, fuzziness and randomness

are the two major uncertainties in complex decision-mak-

ing, as shown in Fig. 1. Fuzziness reflects the lack of

sufficient information about the system, described by the

fuzzy variable, while randomness is derived from the nat-

ural uncertainty in the system, characterized by stochastic

variable. Since fuzziness and randomness exist simultane-

ously in complex decision-making, it is inadequate to

consider only one or the other. Therefore, Kwakernaak [12]

proposed fuzzy stochastic optimization theory to deal with

such complex decision problems.

2.1.1 Fuzzy stochastic variable

The essence of a fuzzy stochastic variable is a random

variable with a fuzzy value, and it can be formally defined as

follows. Consider a probability space (X, A, Pr) with domain

X and probability Pr() that an element of X is within the set

A. Assuming that n is a function from the probability space

(X, A, Pr) to the fuzzy set, if for any Borel set B on real

number field R, and any x in X, Pos{n(x) 2 B} is a mea-

surable function of x, then n is a fuzzy stochastic variable.

2.1.2 Fuzzy stochastic optimization model

According to Fig. 1, fuzzy stochastic optimization

models include the expected value model, the opportunistic

constraint planning model and the related opportunistic

constraint planning model [13]. The expected value model

is widely used in power system optimization under

uncertainty due to its intuitive appeal and simple solution,

making it suitable for engineering optimization in a double-

uncertainty environment [14, 15]. It is formulated as:

min E f x; nð Þ½ �
s.t.

E gj x; nð Þ
� �

� 0 j ¼ 1; 2; . . .; p

8
<

:
ð1Þ

E f x; nð Þ½ � ¼
Z

f x; nð Þ/ nð Þdn ð2Þ

where x is the decision vector; n denotes fuzzy stochastic

vector; E(�) is the expected value operator; gj denotes the j-

th constraint.

Stochastic
Fuzzy

Fuzzy stochastic
Rough

Rough stochastic

Uncertainty
classification

Expected
value model

Modeling
mechanism

Opportunistic
constraint

planning model

Related opportunistic
constraint planning model

Fig. 1 Uncertainty classification and its modeling mechanism
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Equation (1) gives the typical form of fuzzy stochastic

planning expected value model. For the continuous fuzzy

stochastic vector, as shown in (2), the expected value

operator is the integral of the uncertain variable.

Compared with the utility grid, microgrids have the

characteristics of relatively small scale and high levels of

intermittent energy sources. If the microgrid operators

ignore the uncertainty caused by the high proportion of

intermittent energy, the scheduling of controllable micro-

grid resources will deviate greatly an optimal scheme.

Stochastic optimization can adjust the prediction of inter-

mittent energy output according to the probability distri-

bution of uncertain variables. However, it is difficult to

estimate the prediction deviation for stochastic optimiza-

tion. Fuzzy stochastic variables can address this difficulty

and can compensate for the shortcomings of stochastic

variables in modeling typical probability distributions.

2.2 Fuzzy stochastic model of intermittent energy

In microgrid optimal scheduling, understanding the

uncertainty of WT and PV output can be effective in

reducing output prediction errors [16]. In the existing

methods for optimal operation under uncertainty, the WT

and PV outputs are treated as stochastic variables that

follow specific probability distributions. It is still difficult

to avoid obvious errors between the actual and predicted

output, which leads to sub-optimal day-ahead scheduling.

Since the prediction error does not follow a specific

probability distribution, fuzzy set theory can be applied to

analyze the prediction bias [17]. In this paper, PV and WT

outputs in AC/DC hybrid microgrids are represented by

fuzzy stochastic models. The predicted outputs are

stochastic variables based on wind speed and light intensity

predictions, and the error between the stochastic variables

and the actual output is treated as a fuzzy variable. As

shown in (3), the sum of the stochastic variable and the

fuzzy variable is the fuzzy stochastic variable [13], where

P‘:random and P‘:fuzzy represent the stochastic and fuzzy

portions of the output power, respectively.

P‘ ¼ P‘:random þ P‘:fuzzy ‘ 2 PV; WTf g ð3Þ

Assuming that light intensity is a stochastic variable that

obeys the b distribution, then (4) is the probability density

function of PV output based on b distribution. Assuming

that wind speed is a stochastic variable that obeys two-

parameter Weibull distribution [18–20], then (5) is the

probability density function of the wind speed based on two-

parameter Weibull electrical. In these equations, a and b
denote the shape parameters of b distribution, PPV(PPV;max)

is the (maximum) output of the PV generator, v represents

the wind speed, k and c are the shape parameter and scale

parameter for two-parameter Weibull distribution,

respectively, c ¼ �v= 1 þ 1=kð Þ, and �v is the average wind

speed for the time period being modeled.

f PPVð Þ ¼ C aþbð Þ
PPV;maxC að ÞC bð Þ

PPV

PPV;max

� �a�1

1� PPV

PPV;max

� �b�1

ð4Þ

f vð Þ ¼ k

c

v

c

� �k�1

e�
v
cð Þ

k

ð5Þ

The errors between the predicted and actual WT and PV

outputs are treated as a fuzzy variables. The relative error

calculated according to (6) is used in the fuzzy variable

membership function [21] shown in (7):

Dj ¼ jactual � jforecast

jforecast

j 2 G; vf g ð6Þ

lj ¼
1 þ gj

Dj
jþ

� �2
" #�1

Dj� 0

1 þ gj
Dj
j�

� �2
" #�1

Dj\0

8
>>>>><

>>>>>:

ð7Þ

where G indicates the light intensity; j? is the average

error percentage when the wind speed or light intensity is

greater than the predicted value; j- is the average error

percentage when it is less; gj is the weight factor.

Figure 2 is the membership function curve of the wind

speed and light intensity relative prediction error.

2.3 Distributed generation operating cost model

2.3.1 Energy storage operating cost model

Energy storage plays an important role in stabilizing the

power fluctuations and reducing peak loads in a microgrid.

With current technologies, battery energy storage capital

costs are high, and energy storage costs account for a large

proportion of capital costs of microgrids with large energy

storage capacity [22]. Scheduling energy storage so that

operating costs are reduced while ensuring the full benefit
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Fig. 2 Membership functions of wind speed and solar radiation

forecast error
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of energy storage is achieved, can effectively reduce the

overall operating costs of microgrids.

The operating cost of energy storage include two main

components: battery depreciation cost and energy loss

during a charging and discharging cycle. The cost of

energy storage depreciation has been estimated in [23]. The

cost of energy lost during charging and discharging is

estimated using the electricity price that is applicable in the

microgrid, which will be a combination of the utility grid

power price and the local price based on generation

resources in the microgrid; the utility price is used in this

paper. Using these, the integrated operating cost of energy

storage CES Pð Þ charging or discharging at a power P is

given by (8).

CES Pð Þ ¼ PDT
I
�vPDT þ 2Q vSOCinit þ lð Þ

2QAtotal

þ 1 � gð Þ2
ct0

2

4

3

5 ð8Þ

where c0
t is the TOU (time of use) price of utility grid

power during the t-th scheduled period; DT is the

scheduling time interval, taken as 15 min in this paper; g is

the energy storage charge and discharge efficiency; Q is the

storage capacity; l and v are the two empirical parameters

to linearize effective electricity consumption [24], which

are given values of 2.05 and - 1.5 respectively in this

paper; Atotal is the total discharge capacity that the battery

can sustain during its effective life, which is assumed to be

390Q in this paper; I is the initial investment in energy

storage; and SOCinit is the initial state of charge.

2.3.2 Controllable distributed generation

In order to ensure stable operation in a variety of situ-

ations, controllable distributed generation is essential in

microgrids alongside intermittent energy sources. Diesel

generation is assumed in this paper and the fuel cost model

is shown in (9), where CFuel is the cost of diesel fuel and

Pt
DE is the output of the diesel generator during the t-th

period. a2, a1 and a0 are polynomial coefficients of the

consumption characteristic function of DE respectively,

whose value are shown in Table A1 of Appendix A.

CFuel ¼ DT
XT

t¼1

a2P
t2
DE þ a1P

t
DE þ a0

� 	
ð9Þ

2.4 Fuzzy stochastic expectation optimization model

for hybrid AC/DC microgrids

2.4.1 Objective function and constraints

The goal of an independent microgrid operator is to

maximize operating profit while ensuring reliable micro-

grid operation. Reducing operating costs is the most

effective way to increase revenue when load and electricity

price are relatively stable. The operating cost of grid-con-

nected hybrid AC/DC microgrids includes the purchase

cost of utility grid power, diesel (and other) fuel costs,

transmission loss costs, energy storage costs and equipment

maintenance costs.

A hybrid AC/DC microgrid consists of AC and DC

zones, which are connected by one or more power flow

controllers to achieve power balance. Comprehensive costs

Cc are divided into the costs of the AC area Cc;AC and the

costs of the DC area Cc;DC. The optimization model pro-

posed in this paper is based on a typical hybrid AC/DC

microgrid structure as shown in Fig. 3, where the AC side

and the DC side both have loads and generators (including

battery energy storage), and the utility grid connection is to

the AC side. The cost components are summarized in (10).

Cc ¼ Cc;AC þ Cc;DC

Cc;AC ¼ CGrid þ CFuel þ CACloss þ CACom

Cc;DC ¼ CES þ CDCloss þ CDCom

8
><

>:
ð10Þ

where CES is the operating cost of energy storage

calculated by (8); CFuel is the cost of diesel fuel

calculated by (9); CGrid is the purchase cost for utility

grid power, defined by (11).

CGrid ¼ DT
XT

t¼1

Pt
Gc

t
0

� 	
ð11Þ

where c0
t is the TOU price of utility grid power during the t-

th scheduled period as used in (8); Pt
G is the power

imported from the utility grid.

Closs is the cost of power transmission and conversion

losses. As microgrids require only short transmission dis-

tances, the losses caused by line impedance are very small

compared to total losses [25]. Therefore, only the losses

caused by converters, transformers and power flow con-

trollers are taken into account in this model. The trans-

mission and conversion costs of the AC area can be

expressed by (12).

AC area DC area

ACBi

DCB1

DCBn

AC and DC
cross section

ACL1 DCL1

Utility
grid

PFC

ACLn DCLnPFC

ACB1

Fig. 3 Typical structure of hybrid AC/DC microgrid
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CACloss ¼ diag PDEV1;1; . . .;PDEV1;N1
;PDEV1;N1þ1; . . .PDEV1;N1þM1










h i

� diag 1 � g1;1

� 	
; 1 � g1;2

� 	
; . . .; 1 � g1;N1

� 	
; 0; . . .; 0|fflfflffl{zfflfflffl}

M1

2

4

3

5

� diag c0; . . .; c0|fflfflfflfflffl{zfflfflfflfflffl}
N1þM1�H1

; 0; . . .; 0|fflfflffl{zfflfflffl}
H1

2

4

3

5� DT

ð12Þ

where subscript 1 indicates the AC area; PDEV1;i represents

the output power of the i-th power plant in the AC area

during the modelling period; c0 is the TOU price vector for

utility grid power during the modelling period; PDEV1;i and

c0 are T-dimensional vectors. In the AC area there are N1

devices connected to the AC bus through transformers with

efficiency g1,i; M1 devices are connected directly to the AC

bus; there are H1 controllable devices and N1 ? M1 - H1

uncontrollable devices in the AC area.

The cost of power transmission and conversion losses in

the DC area can be expressed in a similar form. Losses in

the power flow controllers can be included in either the AC

or the DC area losses. If they are assigned to the DC area,

the cost of DC area power transmission and conversion

losses can be calculated using (13).

CDCloss ¼

diag PDEV2;1; . . .;PDEV2;N2
; . . .PDEV2;N2þM2










h i
�

diag 1 � g2;1

� 	
; 1 � g2;2

� 	
; . . .; 1 � g2;N2

� 	
; 0; . . .; 0|fflfflffl{zfflfflffl}

M2

2

4

3

5�

diag c0; . . .; c0|fflfflfflfflffl{zfflfflfflfflffl}
N2þM2�H2

; 0; . . .; 0|fflfflffl{zfflfflffl}
H2

2

4

3

5þ
PN2þM2

i¼1

PDEV2;i








 1 � g0ð Þ � cT

0

� �

8
>>>>>>>>>><

>>>>>>>>>>:

9
>>>>>>>>>>=

>>>>>>>>>>;

DT

ð13Þ

where subscript 2 indicates the DC area; cT
0 is the transpose

of the TOU price vector; g0 is the transmission efficiency

of the power flow controller(s); M2 devices are connected

directly to the DC bus; there are H2 controllable devices

and N2 ? M2 - H2 uncontrollable devices in the DC

area.

Com is the cost of equipment operation and maintenance,

calculated by (14), where Ki is the operation and mainte-

nance cost of the i-th item of equipment.

Com ¼ DT
XT

t¼1

XNþM

i¼1

KiPDEV;i

� �
ð14Þ

where N = N1 ? N2; there are N2 devices connected to the

DC bus through DC/DC converters; M = M1 ? M2.

A variety of equality and inequality constraints should

be applied. For hybrid AC/DC microgrids it is necessary to

satisfy the internal power balance constraint (15) and the

point of common coupling transmission capacity constraint

(16). For energy storage, it is necessary to satisfy the

charge and discharge power capacity constraint (17), the

energy capacity constraint (18), and the conservation of

energy constraint (19). For diesel generators, it is necessary

to satisfy the minimum start or stop time constraint (20),

the power constraint (21), and the ramping constraint (22).

Pt
DE þ Pt

G þ Pt
WT þ Pt

PV ¼ Pt
ACL þ Pt

ES þ Pt
DCL ð15Þ

jPt
Gj �PG;max ð16Þ

jPt
ESj �Pt

ES;max ð17Þ

SOCmin � SOCt � SOCmax ð18Þ

SOCtþ1 ¼ SOCt þ lchgch þ ldis=gdisð ÞPt
ESDT=Q ð19Þ

soff
DE � soff;min

DE

son
DE � son;min

DE

(

ð20Þ

SðtÞPDE;min �Pt
DE � SðtÞPDE;max ð21Þ

DTPL
DE;max �Ptþ1

DE � Pt
DE �DTPU

DE;max ð22Þ

where Pt
ACL and Pt

DCL represent AC and DC area load

during the t-th period, respectively; PG;max is the point of

common coupling transmission capacity; SOCt is the state

of charge of energy storage; SOCmin and SOCmax are the

lower and upper limits of the state of charge; lch is the

energy storage charging state (1 means charging and 0

means discharging); ldis is the discharging state (1 means

discharging and 0 means charging), with lch þ ldis ¼ 1;

soff
DE and son

DE are the off and on time intervals; PDE;min and

PDE;max are the lower and upper limits of diesel generator

output power; S(t) and DPDE;max are the operating state and

maximum ramping rate of the diesel generator,

respectively.

2.4.2 Fuzzy stochastic expectation optimization model

of hybrid AC/DC microgrid

The goal is to minimize the expected value of total

operating costs min E Cc;AC þ Cc;DC

� 	
. This is a fuzzy

stochastic expectation optimization model because it

includes constraints applied to fuzzy stochastic variables.

Constraints on other variables can be expressed directly in

deterministic form. Therefore, the optimization model

proposed in this paper is given by (23).
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min E Cc;AC þ Cc;DC

� 	

s:t:

E Pt
DE þ Pt

G þ Pt
WT þ Pt

PV ¼ Pt
ACL þ Pt

ES þ Pt
DCL

� 	

Pt
G



 

�PG;max

Pt
ES



 

�Pt
ES;max

SOCmin � SOCt � SOCmax

SOCtþ1 ¼ SOCtþ lchgch þ ldis=gdisð ÞPt
ESDT=Q

PDE;min �Pt
DE �PDE;max

DTPL
DE;max �Ptþ1

DE � Pt
DE �DTPU

DE;max

soff
DE � soff;min

DE

son
DE � son;min

DE

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

ð23Þ

2.4.3 Unbalanced power real-time adjustment model

By establishing a real-time cost model for unbalanced

power, an optimal adjustment scheme for eliminating

unbalanced power can be derived. As shown in (24), the

real-time adjustment model includes two parts as for the

operating costs: AC area adjustment costs and DC area

adjustment costs. Because the cost models for fuel, power

transmission and conversion losses, and energy storage

losses are non-linear, the cost model for unbalanced power

would take too much time to calculate directly. Therefore,

the nonlinear cost model is linearized at the day-ahead

schedule operation points, as shown in (25), to reduce the

calculation time. In this equation, Pt
It is the dispatched

output of device It from the day-ahead fuzzy stochastic

optimization model, and DPt
It is the adjustment required to

achieve power balance. In order to penalize unbalanced

power, the real-time electricity price of utility grid power

purchased to correct unbalanced power is higher than the

price applying to day-ahead scheduling. In this paper the

real-time electricity price is assumed to be 1.5 times the

day-ahead electricity. This approximates a future pricing

regime that could be established to incentivize microgrids

to balance as far as possible using their internal resources

[26, 27].

DCc ¼ DCc;AC þ DCc;DC

DCc;AC ¼ DCGrid þ DCFuel þ DCACloss þ DCACom

DCc;DC ¼ DCES þ DCDCloss þ DCDCom

8
><

>:

ð24Þ

DCI ¼
PT

t¼1

dCIt

dPIt

Pt
It




� �

DPt
It

� 


It ¼ Fuel, ES, ACloss, DClossf g

8
<

:
ð25Þ

There are additional equality and inequality constraints

for power balancing within a dispatch interval: the power

balance constraint (26) and the equipment capacity

constraint (27) for the microgrid; and the state of charge

constraint (28) and the charging and discharging power

balance constraint (29) for energy storage. For adjusting

the diesel generator the unit start and stop constraints do

not apply, because it only changes its power within a

dispatch interval when it is already on.

Pt
DE þ Pt

G þ Pt
WT þ Pt

PV ¼ Pt
ACL þ Pt

ES þ Pt
DCL þ DPt

R

DPt
R ¼ DPt

ACL þ DPt
ES þ DPt

DCL � DPt
DE þ DPt

G þ DPt
WT þ DPt

PV

� 	
�

ð26Þ

Pmin
It �Pt

It þ DPt
It �Pmax

It ð27Þ

SOCmin
ES � SOCt

ES þ DSOCt
ES � SOCmax

ES ð28Þ

SOCtþ1 þ DSOCtþ1 ¼ lchgch þ ldis=gdisð Þ
� Pt

ES þ DPt
ES

� 	
DT=QES þ SOCt þ DSOCt

ð29Þ

3 Fuzzy stochastic ADMM

The development of smart grid is accompanied by two

characteristics. Firstly, the amount of data collected and

analyzed in the dispatching process is rapidly increasing, so

the required scheduling model and algorithm are more

complicated. Secondly, data collection and storage are

more decentralized to cope with the large quantity. Com-

pared with conventional microgrids, hybrid AC/DC

microgrids with a high proportion of distributed generation

have a complex structure, large uncertainty and conse-

quently are difficult to schedule. In order to reduce the

requirement for communication bandwidth to provide full

data to a centralized scheduling solution, distributed com-

puting is an effective method to reduce the computational

complexity and improve the efficiency of the calculation

process. It can decouple the AC area and DC area costs.

Therefore, it is helpful to find a distributed algorithm

suitable for the analysis of data required by the microgrid

dispatching process.

3.1 Alternating direction multiplier method

The alternating direction multiplier method (ADMM)

is a distributed solution method based on dual decom-

position and Lagrange multipliers for large-scale opti-

mization. It has significant advantages in dealing with

high-dimensional variables and big data [28]. A typical

model solved by the ADMM is shown in (30).

According to Lagrange multiplier method, the Lagrange

function of the optimization model (30) can be expressed

by (31).
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min f xð Þ þ g zð Þ½ �
s:t: Axþ Bz ¼ c

ð30Þ

Lq x; y; zð Þ ¼ f xð Þ þ g zð Þ þ yT Axþ Bz� cð Þ
þ q=2ð Þ Axþ Bz� ck k2

2

ð31Þ

where y is the Lagrange multiplier; q[ 0 is the penalty

factor.

Equations (32)–(34) describe the iterative processes of

the ADMM, and when the convergence condition (35) is

satisfied, iteration can be stopped. The solution precision e
is a small positive number.

xkþ1 :¼ arg min
x

Lq x; zk; yk
� 	

ð32Þ

zkþ1 :¼ arg min
z

Lq xkþ1; z; yk
� 	

ð33Þ

ykþ1 :¼ yk þ q Axkþ1 þ Bzkþ1 � c
� 	

ð34Þ

xkþ1 � xk


 

� e ð35Þ

3.2 Fuzzy stochastic ADMM

In the fuzzy stochastic programming model, the ADMM

can’t be used directly because of the existence of uncertain

variables. An optimization algorithm based on the fuzzy

stochastic ADMM is proposed in this paper to solve the

hybrid AC/DC microgrid scheduling problem.

The optimization model (23) developed in section 2 can

be summarized by (36), where PAC;d and PAC;fs are the

decision vector and fuzzy stochastic vector of the AC area,

and PDC;d and PDC;fs are the decision vector and fuzzy

stochastic vector of the DC area, respectively.

min E Cc;AC PAC;d;PAC;fs

� 	� 	
þ E Cc;DC PDC;d;PDC;fs

� 	� 	� �

s:t:

E
P

PAC;d þ
P

PAC;fs þ
P

PDC;d þ
P

PDC;fs

� �
¼ E

P
Pload½ �

E gAC PAC;d;PAC;fs

� 	� �
� 0

E gDC PDC;d;PDC;fs

� 	� �
� 0

8
><

>:

ð36Þ

For a continuous fuzzy stochastic variable, the expected

value is the integral of the uncertain variable. Assuming

that the WT and PV generators run at their maximum

power point, they are uncontrolled power supplies, and

therefore, the total operating costs of the AC and DC areas

does not directly include the uncertain variables of the WT

and PV output, so the expected value of the objective

function in (36) is the objective function itself. Thus, the

objective function can be expressed as:

max E Cc;AC þ Cc;DC

� 	
¼ max Cc;AC þ Cc;DC

� 	
ð37Þ

For constraints with fuzzy stochastic variables, uncertain

variables can be transformed into pure quantities by

integration of uncertain variables. However, the

probability density functions of the PV and WT output

power are obtained from the probability density functions

of light intensity and wind velocity, so if they are directly

integrated the problem will be very difficult to solve.

Therefore, stochastic and fuzzy simulation techniques are

employed to indirectly obtain the expected values of fuzzy

stochastic variables in this paper.

For the fuzzy stochastic variable Pfs, the predicted

deviation DP̂f can be generated by the fuzzy simulation

technique, and the predicted value P̂s can be generated by

the stochastic simulation technique. Using (5) we can

derive a large number of fuzzy stochastic samples P̂fs. Let

Ms be the number of stochastic and fuzzy simulations, and

then referring to (38) the fuzzy stochastic variable can be

changed into a pure variable.

E Pfs

� �
¼ lim

Ms!1

1

Ms

XMs

i¼1

P̂s 1 þ P̂f

� 	� �
ð38Þ

Drawing on the above analysis, the fuzzy stochastic

ADMM can be summarized into three main steps:

1) Fuzzy and stochastic simulation. In this step, uncertain

variables are generated according to the corresponding

stochastic and fuzzy distributions. Each summation of

a fuzzy stochastic variable over Ms simulations gives

an intermediate variable e.

2) Eliminate uncertain variables. Due to the law of large

numbers, e/Ms is the expected value of the uncertain

variable that summed to e. The double-uncertainty

optimization model can then be transformed into a

deterministic model.

3) Conventional ADMM iteration. Without uncertain

variables, the ADMM has a natural advantage in

solving this kind of optimization model, because of the

appropriate structure in (36).

The flow chart of fuzzy stochastic ADMM is shown in

Fig. 4.

4 Simulation based on engineering data

4.1 Basic data

This paper relies on data from a demonstration project to

verify the fuzzy stochastic expectation optimization model

and algorithm. Light intensity, wind speed, and TOU

power price are given in Table A2 and Table A3 of

Appendix A. The microgrid is simplified reasonably for the

purpose of this presentation. There are bus-voltage loads

and non-bus-voltage loads in the AC and DC areas, and the

load forecast data are shown in Fig. 5. There are two 350
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kW diesel generators and two 1 MW WT in the AC area.

The AC area is connected to the DC area through four 250

kW power flow controllers. The DC area contains four PV

generation units each with capacity of 250 kW and one

battery energy storage unit with power capacity 250 kW

and energy capacity 1 MWh. The hourly predicted wind

speed and light intensity data are shown in Fig. 6.

The operating parameters of the distributed generators

are given in Table 1. In order to reduce the computational

complexity, the loads with the same characteristics are

combined without affecting the scheduling results. The

amount of load-side power conversion equipment is

reduced after the merger, and its efficiency, capacity and

Start

Produce stochastic variables Ps with 
Pr Produce fuzzy variables Pf with μk

Set e=0, ef =0, es=0

Replace fuzzy and stochastic variables  
with pure quantit E[Pfs]=e/Ms

End

Establish membership model μk for fuzzy 
variables and PDF Pr for stochastic variables

Fuzzy and stochastic simulation

ADMM iteration

Eliminate uncertain variables

|Pk+1 Pk| ε ?

Ms times stochastic and 
fuzzy simulation compeleted?

e=e+Pfs, where Pfs= Ps(1+Pf)

Form Lagrangian function Lρ:
Lρ(PDC,d, PAC,d, y)=f(PDC,d)+g(PAC,d)+

yT(PDC,d+PAC,d PL)+(ρ/2)||PDC,d+PAC,d PL||2
2

PDC,d = arg min      Lρ(PDC,d, PAC,d, yk)
E[gAC(PAC,d, PAC,fs)] 0

E[gDC(PDC,d, PDC,fs)] 0

k+1 k+1

PAC,d = arg min    Lρ(PDC,d, PAC,d, yk)
E[gAC(PAC,d, PAC,fs)] 0 
E[gDC(PDC,d, PDC,fs)] 0

k+1 k+1

yk+1=yk+ρ(PDC+PAC PL)k+1

Y

N

N

k+1

Y

Fig. 4 Flow chart of fuzzy stochastic ADMM

Table 2 Power conversion equipment parameters

Converter

equipment type

Efficiency (b is load rate) Capacity

(kW)

Number

Transformer g ¼ 1000b
6:44b2þ1000bþ47ð Þ

500 2

DC/DC

converter
g ¼ �0:0215b3 þ 0:032b2

� 0:0495bþ 0:9844

250 5

AC/DC PFC g ¼ 0:2255b3 � 0:4784b2

þ 0:3259bþ 0:9084

250 5
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Fig. 5 Load forecast data in AC area and DC area

Time (hour)
0 5 10 15 20

So
la

rr
ad

ia
tio

n
(W

/ m
2 )

100

200

300

400

500

600

0

2

4

6

8

10

12

W
in

d
sp

ee
d

( m
/s

)

23

Solar radiation; Wind speed

Fig. 6 Wind speed and solar radiation forecast data

Table 1 Parameters of distributed generators

Distributed

generation

Min

power

(kW)

Max

power

(kW)

Number Climbing

rate (kW/

h)

Operation

costs (¥/

(kWh))

PV 0 250 4 0.0096

WT 0 1 2 0.0296

ES - 250 250 1 0.0880

DG 100 350 2 180 0.0755

Double-uncertainty optimal operation of hybrid AC/DC microgrids with high proportion of... 845

123



quantity are given in Table 2, where the efficiency function

is obtained by fitting measured data.

4.2 Simulation verification

In order to verify the advantages of the fuzzy stochastic

optimization model relative to an existing optimization

model, simulation results from fuzzy stochastic optimiza-

tion are compared with deterministic optimization and

stochastic optimization, the latter two being the most

commonly used models at present. The deterministic and

stochastic optimization models can be derived through

appropriate simplification of the fuzzy stochastic opti-

mization model.

The curves in Fig. 7 represent the actual (measured),

deterministic, considering randomness and considering

fuzzy randomness output of WT and PV generators. It can

be seen that when different models of uncertainty are used,

the corrections of WT and PV output are different. Using

these four kinds of WT and PV output curves, the day-

ahead schedule and unbalanced power adjustment are

simulated for the load curves and microgrid components

described above. The schedule comprises the power

imported from the utility grid, the combination and output

of the two diesel generators, and the charge and discharge

power of the battery energy storage.

Figure 8 shows the deviation between the actual output

and the output of the deterministic prediction, stochastic

model, and fuzzy stochastic model. The error in estimating

the WT and PV output is larger during 0:00*10:00,

12:00*13:00, and 21:00*24:00, because the renewable

energy output in these times is larger and more sensitive to

meteorological factors which are difficult to accurately

predict. The deterministic error fluctuates greatly and

reaches up to 400 kW more than once, while the absolute

value of the deviation from stochastic expectation model is

relatively small and the changes are more stable compared

with the deterministic prediction; only at 22:00 does it reach

up to 400 kW. The WT and PV output forecast by the fuzzy

stochastic model is the closest to the actual output, with the

smallest deviation, rarely more than 200 kW. The deviations

graphed in Fig. 8 are the unbalanced power to be dispatched

for real-time adjustment of the scheduled power.

Figures 9, 10 and 11 show the day-ahead schedule and

real-time adjustment of controllable power in this hybrid
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AC/DC microgrid. It can be seen from Fig. 9 that, although

the peak load of hybrid AC/DC microgrid and the installed

capacity of renewable energy are equivalent, the capacity

factors of WT and PV generation are relatively low, so the

microgrid purchases power from the utility grid at all

times. From the day-ahead schedule in Fig. 10, energy

storage discharges when the electricity price is high, and

charges when it is low, thereby reducing operating costs. In

Fig. 11(a) and (b), the diesel power output is not sensitive

to changing TOU power prices due to its output range and

ramping constraints, but at least one diesel generator is

consistently running during the period of high prices, to

reduce the amount of utility power purchased. Due to the

different fuel consumption characteristics of the two die-

sels, their output planning is different.

The unbalanced power adjustment schemes during each

dispatch interval, for the four kinds of energy source, are

obtained by the unbalanced power optimization model. It can

be seen from the real-time adjustments shown in Figs. 8, 9

and 10 that the power needing to be adjusted is largest when

using the deterministic optimization scheme, followed by the

stochastic optimization model, and it is smallest when using

the fuzzy stochastic optimization model. That is, the day-

ahead scheme based on the fuzzy stochastic optimization

model is the closest to the optimal scheme (the optimal

schedule refers to the scheme obtained by optimizing

according to the actual output instead of the prediction). It

can also be seen that, during the energy storage discharge

period (8:00*10:00, 12:00*18:00), the unbalanced power

is mainly adjusted using energy storage and imported power

from the utility grid. This is because the running diesel is

close to its lower limit of operation during these times, and

the flexibility and economy of the energy storage and power

grid is better in this circumstance.

Table 3 summarizes the operating costs associated with

the day-ahead schedule and unbalanced power adjustment

for different scheduling models. The optimal scheme in the

table is not a practical solution but is useful for comparing

costs with the other three optimization models. We can see

that although the stochastic optimization cost is less than

the fuzzy stochastic model in the day-ahead scheduling

stage, the daily adjustment cost of the stochastic model is

higher than that of the fuzzy stochastic model. The total

operating costs of the three optimization models, deter-

ministic optimization, stochastic optimization and fuzzy

stochastic optimization, are progressively reduced. In the

unbalanced power adjustment, the deterministic model

adjustment costs are negative, because the actual outputs of

WT and PV are larger than the forecast values, the

unbalanced power adjustment has reduced the amount of

utility grid power purchased. The final operating cost of the

fuzzy stochastic optimization scheme is only ¥151 more

than the optimal operating cost.

Figure 12 shows the proportion of the various compo-

nents of the total operating cost based on the fuzzy

stochastic optimization model. It can be seen that the cost

of purchasing utility grid accounts for the majority of the

total cost of operation. In order from greatest to least, the

other operating costs are the diesel operating costs, cost of

power conversion losses, operation and maintenance costs

and energy storage operating costs.
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Fig. 11 Diesel generator scheduling and real-time adjustment

Table 3 Operating costs of each scheduling model

Type of

schedule

Optimal

(¥)

Deterministic

(¥)

Stochastic

(¥)

Fuzzy

stochastic

(¥)

Day-ahead

schedule

costs

46078 47831 45870 45939

Adjustment

costs

0 - 158 559 290

Total costs 46078 47673 46429 46229

90%

2%
2%3%2%

Energy storage operating costs
Operation and maintenance costs
Diesel operating costs
Conversion costs of grid loss
Purchase costs of large power

Fig. 12 Fuzzy stochastic optimization of the operation of the cost

ratio
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5 Conclusion

Compared with deterministic optimization and stochastic

optimization, the fuzzy stochastic expectation optimal

scheduling model and the unbalanced power real-time

adjustment model proposed in this paper can effectively

improve the accuracy of microgrid scheduling when there is

a high proportion of intermittent energy. The proposed

models reduce the real-time unbalanced power, and thus

reduce the costs of the unbalanced power adjustment. By

cooperating with the fuzzy stochastic ADMM also proposed

in this paper, the models can effectively coordinate various

generators and loads in the AC and DC areas of a hybrid AC/

DC microgrid, resulting in reduced total operating costs.

The prediction error of the load is also an uncertain

factor in microgrid operation, so double-uncertainty opti-

mal operation considering the load forecasting error, as

well as the intermittent generation output forecasting error,

is recommended as a topic for further study.
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