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Abstract With the increasing quantity of DC electrical

equipment, DC microgrids have been paid more and more

attention. This paper proposes an approach to multi-ob-

jective optimisation of an energy management system

(EMS) for a DC microgrid that includes a hybrid energy

storage system (HESS). The operating and maintenance

cost and the loss of power supply probability (LPSP) of the

system are used as optimisation targets. The power flows of

all distributed generators (DGs) in the DC microgrid during

operating period are optimized. Based on the improved

differential evolution (DE) algorithm, and by using the

multi-objective non-dominated sorting method and the

maximum membership degree principle (MMDP) of fuzzy

control, the overall satisfaction degree of Pareto solutions

to power flow optimization can be obtained. Simulation

results verify the effectiveness of the proposed EMS opti-

mization scheme, which is able to achieve an effective

trade-off between the economy and the reliability of

microgrid operation.

Keywords DC microgrids, Energy management system,

Multi-objective optimization, Differential evolution

algorithm, Maximum membership degree

1 Introduction

In recent years, with the continuous evolution of the

energy system, renewable energy and distributed genera-

tion (DG) have been applied widely, and this has promoted

rapid development of microgrid technology. Microgrids are

micro power networks, which can organize the scattered

DGs in a certain region, and provide heat, cold and electric

energy for local users [1]. Microgrids can not only achieve

a bi-directional exchange of energy with the main grid in a

grid-connected operating mode, providing mutual support,

but also disconnect with the main grid if there is an

external malfunction or when needed for another reason,

operating in an islanded mode [2]. Microgrids are con-

ducive to making full use of renewable energy, solving the

problems caused by large amounts of scattered DGs

accessing the main grid [3]. They can also improve the

flexibility and reliability of power system [4]. Microgrids

show great advantages in terms of achieving the safety,

stability, efficiency and cleanliness of energy supplies

[5].

Autonomous and hierarchical control, optimal sizing

and operating, storage technology, and energy management

systems (EMS) for DC microgrids have been proposed in

existing research. Detailed control strategies of each unit in

microgrids are proposed in [6], and factors such as ambient

temperature, irradiance, state of charge (SOC) of batteries,

and load demand are taken into account. In [7], a control

method for enhancing the stable operation of DG units is

described, and the passivity-based control technique is
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considered to analyze their dynamic and steady-state

behaviors in microgrids. In [8], a three-level neutral point

clamped converter is employed to dispatch the power flow

between a HESS and a microgrid. The EMS for microgrids

is a crucial component discussed in the following

paragraphs.

With the continuous establishment and rapid develop-

ment of microgrid projects, the corresponding EMS [9],

[10] has gradually become a prominent research area. The

electric energy generated by photovoltaic (PV) and wind

turbine (WT) possesses variability due to the impact of

natural conditions [11]. Meanwhile, due to the complexity

of the combined cooling, heating and power dispatch of

micro gas turbines, the variety of operating modes of

microgrids, and other factors, the difference between

microgrids and traditional power systems brings special

challenges to optimized dispatch within microgrids [12].

Some EMS schemes based on hierarchical and decen-

tralized control are proposed in the literature for bothAC and

DC microgrids. In [13], a dynamic optimization model is

proposed to minimize operating costs and CO2 emissions,

and is applied to the University of Genova Savona Campus

test-bed facilities. A robust optimization approach for opti-

mal microgrid management considering wind power uncer-

tainty is presented in [14], in which a time-series based

autoregressive integrated moving average model is used to

characterize the wind power uncertainty through interval

forecasting. A decentralized EMS for microgrids is descri-

bed in [15], based on amulti-agent system, and a, centralized

EMS is compared with the proposed decentralized EMS.

When the system operates in grid-connected mode, it is

necessary to consider factors like characteristics of partic-

ipating DG units, power quality constraints, power supply

balance, the exchange of energy between the microgrid and

the main grid, the price of energy and grid services the

power market, and so on. Thus, when a microgrid is grid-

connected its EMS should maximize the benefits during the

operation period in the context of all the above factors. In

islanded operating mode, all benefits produced by micro-

grids should be pursued while ensuring the sustainable and

stable operation of the isolated system.

The EMS in microgrids includes the following func-

tions. Firstly, it collects and summarizes information about

renewable energy and DGs, the load demand for heating,

cooling and electrical energy, the real-time price of elec-

tricity from the main grid, and the energy markets at the

places where microgrids are installed. Secondly, it con-

ducts reasonable predictions regarding the energy that

micro-sources generate and the energy that loads consume

in microgrids [16]. Thirdly, by comprehensively consid-

ering local load demand, electricity prices, power quality

standards, and special needs from the main grid side if grid

connected, it optimizes the power allocation of each DG

and the power exchanged with the main grid. Reliable

power supplies for important loads should be ensured to the

required standard. Finally, the optimized power allocations

are dispatched to the controllable DGs, eventually

achieving the effective and economic operation of the

microgrid. Fig. 1 shows the workflow and system archi-

tecture of a microgrid EMS.

Early research on microgrids mainly focused on AC

microgrids. However, with the heavy use of DC loads (such

as computers, network devices, mobile phone and laptop

chargers and LED lighting equipment), DC microgrids [17]

have great advantages. The main advantages are that sub-

stantial DC-AC inverters and AC-DC rectifiers can be

abandoned, which can reduce cost and failure rate of sys-

tem [18], and that it is not necessary to consider frequen-

cies, phases, reactive circulating currents, complicated

grid-connection algorithms and other issues existing in AC

microgrids. Thus, controlling DC microgrids is relatively

easy, especially regarding frequency security, which AC

microgrids must guarantee strictly, while this kind of issue

does not exist in DC microgrids. In addition, DC micro-

grids also show advantages of improving power quality and

reducing line loss [19], [20]. An optimal EMS in a DC

microgrid with multi-layer supervision control is presented

in [21], and the optimization gives consideration to forecast

PV power production and load power demand, while sat-

isfying some constraints.

Artificial intelligence optimization algorithms are often

adopted for microgrids. Common optimization algorithms

include clonal selection [22], particle swarm optimization

[23], differential evolution (DE) [24], [25] and fuzzy

advanced quantum evolution [26]. Since the EMS model of

microgrids is complicated, optimization algorithms are

likely to be trapped into local convergence during the

process of iterations. Consequently, to arrive at the best

solution, it is necessary to make improvements to these

basic optimization algorithms according to specific

knowledge. Furthermore, if more than one objective exists
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Fig. 1 Diagram of architecture of EMS in DC microgrids
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at the same time, then multi-objective processing of the

coordination and trade-off between objectives is another

important issue to research.

This paper proposes a multi-objective optimization

approach for EMS in DCmicrogrids equipped with a HESS.

It develops optimization modeling of DC microgrids which

can be operated in both grid-connected mode and islanded

mode. By taking operating and maintenance cost and LPSP

as system optimization targets, the improved DE algorithm

andmulti-objective non-dominated sorting are used to obtain

multiple Pareto solutions of microgrid operation. Then, the

maximum membership degree principle (MMDP) of fuzzy

control is adopted to obtain a more optimal solution. As a

result, a unique solution with maximum overall satisfaction

degree in economy and reliability ofmicrogrid operation can

be achieved.

The rest of this paper is organized as follows. Section 2

developsmulti-objectivemodeling of anEMScontaining the

operating and maintenance cost and LPSP of the system, the

energy dispatching method of the HESS, and several con-

straints of DC microgrids. The modeling takes into account

economic objectives and reliability objectives simultane-

ously. Section 3 introduces the principle of the proposed

MMDP based multi-objective optimization approach, and

the flowchart of optimal processing is presented. Section 4

shows the detailed results of case studies and corresponding

analysis. Finally, Section 5 concludes this paper.

2 Multi-objective EMS modeling of DC
microgrids

2.1 Establishing objective functions

Objective functions representing the cost and reliability

of the system should be established first. In consideration

of the operating and maintenance cost of renewable energy

units and energy storage system, outage losses, and the cost

of electricity bought from and sold to the main AC grid, the

economic objective function can be expressed as:

minfoc ¼
XT

t¼1

COM�REN þ COM�HESS þ Closs þ Cgrid

� �
ð1Þ

where min foc denotes minimum operating and mainte-

nance cost of DC microgrid; COM-REN is the operating and

maintenance cost of renewable energy units; COM-HESS is

the operating and maintenance cost of energy storage

system; Closs is the cost assigned to outage losses; Cgrid is

the cost of exchanging power with the main grid, with plus

sign meaning electricity is purchased, and minus sign

meaning electricity is sold. Each cost function in (1) is

further explained as follows.

1) Operating and maintenance cost of renewable energy

units

The operating and maintenance cost of renewable energy

units are in direct proportion to the energy they generate:

COM�REN ¼ NpvP
t
pvKpv þ NwtP

t
wtKwt ð2Þ

where Npv and Nwt are the sizing results of photo-

voltaic (PV) arrays and wind turbines (WTs) in the DC

microgrid; Pt
pv and Pt

wt are the output powers of PV

arrays and WTs during time period t, calculated

according to weather forecast data on typical days; Kpv

and Kwt are the operating and maintenance coefficients

of PV arrays and WTs.

2) Operating and maintenance cost of the energy storage

system

The HESS is assumed to comprise batteries and ultra-

capacitors, so its operating and maintenance cost

includes components due to both, and is given as:

COM�HESS ¼ abs Pt
bat

� �
� Kbat þ abs Pt

uc

� �
� Kuc ð3Þ

where Pt
bat and Pt

uc are the charging or discharging

powers of batteries and ultra-capacitors during time

period t;Kbat andKuc are the operating and maintenance

coefficients of batteries and ultra-capacitors respec-

tively; Pt
bat and Pt

uc are signed like generators, that is,

positive while discharging and negative while charging.

3) Outage losses

An insufficient power supply not only impacts the

reliability of a DC microgrid, but also brings direct

economic losses to users, which can be expressed as:

Closs ¼ Pt
lpsKloss ð4Þ

where Pt
lps is the shortage of available power supply

during time period t; Kloss is the outage losses of per-

unit electricity.

4) Cost of exchanging power with the main AC grid

Because energy can flow bi-directionally during grid-

connected operation between a DC microgrid and the

main grid, the cost of power exchanged should be

added to the total cost calculated by the EMS. This

paper adopts a time-of-use pricing mechanism, that

means the electricity prices at which DC microgrid

purchases from and sells to the main grid are different

at different periods of a day. The cost of exchanging

power with the main grid can be expressed as follows:
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Ct
grid ¼

Pt
conC

t
purc Pt

con � 0

Pt
conC

t
sale Pt

con\0

�
ð5Þ

where Pt
con is the power exchanged through the grid-

connected converter (GCC); Ct
purc and Ct

sale are the

prices of electricity bought and sold. The selected

Ct
purc and Ct

salein different time of a day are listed in

Table 1.

2.2 Reliability objective

During the operation of a DC microgrid, economic

operation and power supply reliability both need to be

considered. Power supply reliability takes the LPSP as an

evaluation factor, and the LPSP on typical days can be

estimated as follows:

flpsp ¼
P24

t¼1 P
t
lpsP24

t¼1 P
t
load

ð6Þ

2.3 Constraints

The constraints which need to be considered in the

process of EMS in DC microgrid are as follows.

1) Power balance constraint

At any time of DC microgrid operation, power balance

must be satisfied:

Pt
load ¼ Pt

pv þ Pt
wt þ Pt

con þ Pt
bat þ Pt

uc ð7Þ

where Pt
load is the load power demand at time t; Pt

con

is the power exchanged with the main grid at time t;

Pt
bat and Pt

uc are the charging and discharging pow-

ers of batteries and ultra-capacitors during time

period t.

2) System operation constraints

During the operating time of microgrids, the output of

each DG unit cannot exceed its maximum rated power:

0\Ppv\Ppv;max

0\Pt
wt\Pt

wt;max

�Pbat;max\Pt
bat\Pbat;max

�Puc;max\Pt
uc\Puc;max

�Pcon;max\Pt
con\Pcon;max

8
>>>><

>>>>:

ð8Þ

3) Capacity constraints of a HESS

During the charging and discharging of batteries and

ultra-capacitors, their states of charge (SOC) cannot

exceed the available capacities, and should stay within

a range:

SOCbat min\SOCbat\SOCbat max ð9Þ
SOCuc min\SOCuc\SOCuc max ð10Þ

2.4 Power allocation for HESS

A HESS plays an important role in DC microgrids. Its

charging and discharging powers exhibit large fluctuations

and high peaks. Moreover, since the number of times the

batteries can be cycled is limited, and overly frequent

charging and discharging may reduce the life span of bat-

teries, the power allocation to an HESS is especially

important. In view of this, ultra-capacitors have an

important role in buffering the frequent fluctuating com-

ponent of Phess, based on their high power density, fast

response and long cycle life. At the same time, batteries

handle the more slowly varying component of Phess and

avoid frequent charging and discharging operations, using

their large capacity and providing the more economical

form of energy storage.

Based on the above analysis, this paper restricts the

charging and discharging operation of batteries into 4

constant power levels in order to ensure that their charging

and discharging power is as stable as possible. The

remaining power fluctuations are allocated to ultra-capac-

itors. The charging and discharging powers of batteries are

restricted to the four constant values Pbat,max, 0.25Pbat,max,

0.5Pbat,max and 0.75Pbat,max, then the rest of the power

requirement is supplied or absorbed by ultra-capacitors.

The operating status of an HESS depends on multiple

conditions such as the power balance of the microgrid, the

SOC and time-of-use electricity prices. If the output of PV

and WT generation is greater than load, and the SOC of the

HESS is low or the electricity price is in a valley or flat

Table 1 Time-of-use electricity prices

Parameter Valley period Flat period Peak period

Purchase price (CNY/kWh) 0.17 0.49 0.83

Sale price (CNY/kWh) 0.13 0.38 0.65

Load period 0:00-8:00 8:00-9:00, 12:00-19:00, 22:00-24:00 9:00-12:00, 19:00-22:00
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period, then the HESS should be charged at a rate of

Phess_c = Ppv ? Pwt - Pload. The batteries and ultra-ca-

pacitors within the HESS are dispatched in accordance

with Table 2. If the output of PV and WT generation is less

than load, and the electricity price is in a valley or flat

periods, then electric energy should be purchased from the

main grid. If there is still not enough, the HESS will be

discharged at a rate of Phess_d = Ppv ? Pwt - Pload - -

Pcon. Similarly, the discharging process can be conduct

according to Table 2.

3 Proposed multi-objective optimization approach
for EMS

In the process of multi-objective optimization, interac-

tion and conflict may exist among the objectives, and

optimizing the performance for any one objective can often

come at the expense of reducing the performance for other

objectives. Solving this can be only handled by coordi-

nating multiple objectives, allowing balances and tradeoffs

between them. In general, there are two solution approa-

ches. One is obtaining more than one solution by using the

Pareto non-dominated solution method and then randomly

selecting an optimum solution meeting the multi-objective

requirements. However, this selection is artificial which

may lead to loss of objectivity. The other solution approach

is selecting an algebraic method, such as the weighted

coefficient method, the min-max method or the distance

function method [27], [28], which can simplify multiple

objectives into a single objective. However, in practical

application, selecting the weight coefficient for this

approach is usually troublesome, and the constraints among

objectives are hard to reconcile.

This paper obtains multi-objective solutions for an EMS

for DC microgrids by adopting the MMDP of fuzzy control

theory. On the basis of the improved DE algorithm, opti-

mization solutions are obtained using the multi-objective

non-dominated sorting and the MMDP.

3.1 Improved differential evolution (DE) algorithm

When using the DE algorithm for optimization, the

selection of the scaling factor (F) and the cross factor (CR)

is very important. In general, a larger F is helpful to

encourage global searching in the initial period of iteration,

however, at the cost of poor local searching in the later

period. Meanwhile, a larger CR can avoid local conver-

gence traps in the later iteration period, but small CR can

give enhanced local searching performance in the initial

period of iteration. Accordingly, and with reference to the

method for adjusting inertia in a particle swarm opti-

mization algorithm [34], this paper employs adaptive

adjustment for regulating F and CR to improve the DE

algorithm. Specifically, as the iterations progress, the

adjustment makes F decrease and CR increase linearly

[29]. The adjustment method can be expressed as:

F ¼ Fmax � Fmax � Fminð Þ I � 1ð Þ=Imax

CR ¼ CRmin þ CRmax � CRminð Þ I � 1ð Þ=Imax

�
ð11Þ

where Fmax and Fmin are the maximum and minimum

values of F; CRmax and CRmin are the maximum and

minimum values of CR; I and Imax are the iteration number

and the maximum number of iterations, respectively.

3.2 Multi-objective non-dominated sorting

In order to objectively evaluate the superiority or infe-

riority of multi-objective solutions, the following defini-

tions are useful, expressed in terms of two feasible

solutions x1 and x-2.

1) Pareto dominance [30]: x1 � x2 (i.e. x1 dominates x2)

if and only if all the objective function values of x1 are

not worse than those of x-2, and at least one objective

function value of x1 is better than that of x-2, that is,

fi x1ð Þ� fi x2ð Þ 8i 2 1; 2; . . .;NPf g
fi x1ð Þ\fi x2ð Þ 8i 2 1; 2; . . .;NPf g

�
ð12Þ

2) Pareto optimum solutions or Pareto non-dominated

solutions [31]: if and only if x� exhibits Pareto

dominance among all other solutions of its

Table 2 Proposed power dispatching strategy of a HESS

Phess c Pbat Puc

0\Phess c\0:125Pbat;max 0 Phess c

0:125Pbat;max\Phess c\0:375Pbat;max 0:25Pbat;max Phess c � 0:25Pbat;max

0:375Pbat;max\Phess c\0:625Pbat;max 0:5Pbat;max Phess c � 0:5Pbat;max

0:625Pbat;max\Phess c\0:875Pbat;max 0:75Pbat;max Phess c � 0:75Pbat;max

0:875Pbat;max\Phess c\Pbat;max Pbat;max Phess c � Pbat;max
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population, it can be called the Pareto optimum

solution of a multi-objective optimization, that is,

:9xi 2 Rd : xi � x� 8i 2 1; 2; . . .;NPf g ð13Þ

The set of all Pareto optimum solutions of a multi-

objective optimization can be called a Pareto optimum

solution set, and multi-objective optimization

problems are solved by finding as many Pareto

optimum solutions as possible. Then, the objective

function values of all Pareto optimum solutions form

Pareto fronts in space. In order to guarantee the

objectivity of Pareto solution sets, each objective

vector should be distributed as evenly as possible over

the Pareto fronts.

3.3 Calculation of Pareto fronts for the proposed

EMS

In this paper, the Pareto fronts for an EMS in a DC

microgrid are obtained by non-dominated sorting. Taking

the power Pcon(t) exchanged between the DC microgrid

and the main grid as a variable, the charging and dis-

charging power of the HESS can be obtained by power

balance constraints. According to the HESS power allo-

cation principles in Section 2.4, the respective charging

and discharging power of batteries and ultra-capacitors, i.e.

Pbat(t) and Puc(t), can also be obtained. The operating status

of DC microgrids on typical days can then be simulated,

accounting for all constraints, and the corresponding

operating and maintenance costs foc and the loss of the

power supply probability flpsp are obtained.

The improved DE algorithm presented in Section 3.1 is

used to conduct multi-objective optimization of a popula-

tion of individual functions Ppv(t), Pwt(t), Pcon(t), Pbat(t),

Puc(t), from which Pareto non-dominated solutions are

developed. Specific implementation steps are described as

follows:

Step 1: Input the basic data of the DC microgrid,

including user load information, environmental forecasts

of solar irradiance, ambient temperature and wind speed,

energy storage system characteristics (initial capacities,

SOC and charging and discharging power constraints),

and constraints and prices for power exchange with the

main grid.

Step 2: Calculate the hourly output of renewable energy

generators (Pt
pv andPt

wt) from the environmental fore-

casts [32], [33].

Step 3: Initialize seeds and randomly generate a

population of initial solutions Ppv(t), Pwt(t), Pcon(t),

Pbat(t), Puc(t) with hourly samples over a typical day.

Thus, there are 24 variables in the multi-objective

optimization algorithm process, and the improved DE

algorithm randomly generates 100 individuals of this

kind to form a population.

Xi ¼ Pconi1;Pconi2; � � � ;Pconi24½ � ð14Þ

Step 4: Calculate the fitness values (f1 ¼ foc and

f2 ¼ flpsp) of every individual in the initial population,

each corresponding to a different optimization objective.

Step 5: To a selected individual, add two other randomly

selected individuals from the population with a differ-

ence weighting, to obtain a mutated middle individual.

Step 6: Cross the selected individual and the mutated

middle individual, according to the DE algorithm’s

rules, obtaining a crossed candidate individual.

Step 7: Calculate the objective function values of the

crossed candidate individual according to Fig. 2.

Step 8: Contrast the objective function values of the

selected individual with the ones of the crossed candi-

date individual, and select the stronger individual to

enter the next-generation population, which is able to

improve the population performance. This selection uses

the fitness function in (21) based on the MMDP which is

described below.

Step 9: Check whether maximum iterations in (11) has

been reached. If so, cease iterations; otherwise, go back

to Step 5.

Phess(t)=Ppv(t)+Pwt(t)-Pload(t)-Pcon(t)

Power distribution of HESS: Pbat(t), Puc(t)

t=24?

t=t+1

Calculation of Plps(t)

Y

N

Calculation of foc, flpsp

t=1

Fig. 2 Flow chart of the proposed EMS control and calculation

scheme
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3.4 MMDP of fuzzy control

In classical set theory, an element either belongs to a

certain set or does not belong to it, and other situations do

not exist. The concept of a fuzzy set is different, and the

elements on the domain do not absolutely ‘‘belong’’ or ‘‘not

belong’’ to a certain set. The degree that elements belong to

a certain set is not an absolute 0 or 1, but a real number

between 0 and 1 [34].

The concept of a fuzzy set can be described as follows.

A mapping lA from the domain U to [0, 1], defines a fuzzy

set A of U. If x is an element in A, the membership degree

to which x belongs to A is lAðxÞ. If the degree to which x

belongs to A is higher, the value of lAðxÞ is closer to 1; if

the degree to which x belongs to A is lower, the value of

lAðxÞ is closer to 0.

Applying this concept to multi-objective optimization,

the intersection of the objective functions fi can be

expressed as the intersection of fuzzy sets, giving the fuzzy

decision set D ¼ \
m

i¼1
fi where i 2 ð1; 2; . . .;mÞ. Its mem-

bership degree function can be expressed as

lD xð Þ ¼
\m

i¼1

li fið Þ ð15Þ

The definition of the intersection of fuzzy sets is as

follows. For three fuzzy sets A, B and C, and x belonging to

U, then

lC xð Þ ¼ lA xð Þ ^ lB xð Þ ¼ min lA xð Þ; lB xð Þ½ � ð16Þ

and the set C can be regarded as the intersection of A and B,

written as C ¼ A \ B.

According to the MMDP, the following equation can be

obtained:

lD x�m
� �

¼ maxlD xð Þ ¼ max
\m

i¼1

li fið Þ ð17Þ

The optimal x�m that has the maximum membership degree

of the fuzzy decision set is the optimum solution to the

multiple objective functions fi.

In the application of fuzzy set theory, the selection of

membership degree functions is very important, and needs

to be made according to their characteristics and the opti-

mization model. Common membership degree functions

include the normal type and the C type. In this paper, the

optimization objective of an EMS is to achieve the lower

economic costs and higher reliability, that is to say, the

objective functions of operating and maintenance cost and

LPSP should be kept as low as possible. In this case, the C
type membership degree function was chosen, and its

expression is given here and graphed in Fig. 3:

l xð Þ ¼
0 x\0

x

k
e1�

x
k x� 0

(
ð18Þ

Two objective functions, f1 for operating and

maintenance cost and f2 for LPSP, are used to construct a

fuzzy decision set for optimization by the MMDP. Setting

k ¼ fminiði ¼ 1; 2Þ, the membership degree function of li in
the range of (0, 1] is given by

li ¼
0 fi\0
fi

ffmini

e
1� fi

fmini fi � 0

8
<

: ð19Þ

Thus, according to fuzzy control theory, the multi-

objective problem of optimal dispatch of a DC microgrid

can be converted into the single-objective problem of

maximizing the overall membership degree:

lðxÞ ¼ min l1ðxÞ; l2ðxÞf g ð20Þ

where lðxÞ, l1ðxÞ and l2ðxÞ are the overall satisfaction

degree, the satisfaction degree of operating and mainte-

nance cost, and the satisfaction degree of LPSP, respec-

tively, when the EMS of a DC microgrid is operated

according to solution x.

The solution is to maximize the value of lðxÞ, but the
DE algorithm is for minimization. Therefore, maximum

membership degree objectives should be converted into

minimum value objectives, and consequently the final

converted fitness function can be expressed as:

fEMS ¼ 1=l ð21Þ

4 Case analysis and simulation results

4.1 Data and parameters of DC microgrid

The following data have been constructed to represent a

typical day’s operation of a DC microgrid. The forecast

load profile is shown in Fig. 4, and the forecast profiles of

1

0 x

(x)

x λ=

Fig. 3 Curve of C type membership degree function
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solar irradiance, temperature and wind speed are shown in

Fig. 5, Fig. 6 and Fig. 7 respectively.

From these data, using output power modeling for PV

and WT generators [32], [33], the power generated by

renewable energy in a DC microgrid during a typical day

are calculated, as shown in Fig. 8. The output power of PV

units varies with solar irradiance, and is zero at night. WT

units can generate power both day and night, however, they

stop working from 2:00 pm to 4:00 pm because the wind

speeds exceed the cut-out wind speed.

The type and capacity of DG sources in a microgrid, and

the rated power and energy storage capacity of a HESS,

can be optimized by using methods such as those described

in [35] and [36]. Sizing results for components of an

example DC microgrid, their corresponding operating and

maintenance costs (O&M C), and SOC limits of a HESS

are shown in Table 3. In addition, the value of outage

losses (Kloss) is estimated as 11 CNY / kWh.

4.2 Pareto fronts of the multi-objective optimization

According to these data and parameters for a DC

microgrid, by using the DE algorithm steps presented in

Section 3.3, the Pareto front of the multi-objective opti-

mization of an EMS for this DC microgrid can be obtained,

and the corresponding objective values are shown in

Table 4. They can be chosen as the optimal solution of

multi-objective optimization.

As can be seen in Table 4, with lower LPSP, the oper-

ating and maintenance cost is higher than for situations

with higher LPSP. Therefore, although the results shown in

Table 4 are the optimal solutions of multi-objective opti-

mization, it is still necessary to decide where on the Pareto

front is the best solution. As described in Section 3,

existing methods to select Pareto non-dominated solutions

to obtain a final optimization result are significantly influ-

enced by artificial factors.

4.3 Simulation results for EMS based on the MMDP

This paper obtains a unique solution with maximum

satisfaction degree according to the proposed approach

based on the MMDP. By using the this method and the

Pareto front obtained above, the minimum values of

operating and maintenance cost and the LPSP can be

obtained. The unique solution with the maximum mem-

bership degree in this case has operating and maintenance

cost foc = 980.00 CNY and LPSP flpsp = 1.58%. The

corresponding power supply balance for the DC microgrid

is shown in Fig. 9, and the power exchanged between the

GCC and the main grid is shown in Fig. 10.

Fig. 4 Load profile on typical day

Fig. 5 Profile of solar irradiance on typical day

Fig. 6 Profile of ambient temperature on typical day

Fig. 7 Profile of wind speed on typical day

Fig. 8 Prediction of energy production of PV and WT units in DC

microgrid
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From Fig. 9 and 10, it can be seen that, in the typical day

studied, the system has insufficient electricity supply dur-

ing the hours concluding at 20:00, 21:00 and 23:00.

However, the power supply requirements can be satisfied at

most of the time. Considering the process of exchanging

power between the DC microgrid and the main grid, the

influence of the electricity price on operational strategies of

the EMS is confirmed. Specifically, at the peak price of the

main grid, the DC microgrid is mainly purchasing elec-

tricity, and at the valley price it is mainly selling electricity.

However, the operational strategies do not strictly syn-

chronize with electricity price fluctuations because the

system must primarily meet stability requirements. For

example, at the peak price, when the power generated by

renewable energy units is not enough to supply the load,

purchasing electricity is necessary even though it is rela-

tively expensive at this moment. Similarly, at the valley

price, when the power generated by renewable energy units

is greater than the load requires, and the system still has

available energy after the HESS is charged, even though

the price is relatively cheap at this moment, selling elec-

tricity selling is the best choice.

The charging and discharging profiles and the normal-

ized SOC of batteries and ultra-capacitors in the HESS are

shown in Fig. 11 and Fig. 12. In Fig. 11, positive power

Table 4 Multi-objective non-dominated sorting solutions of EMS

No. fLPSP (%) foc (CNY)

1 1.12 1512.82

2 1.21 1302.76

3 1.40 1185.83

4 1.54 984.56

5 3.47 900.57

6 3.69 887.75

7 5.06 829.83

8 8.01 828.89

9 9.77 818.54

Fig. 9 Power delivery and demand in DC microgrid by using the

proposed MMDP based EMS

Fig. 10 Power exchanged through the grid-connected converter

Table 3 Data and parameters of DC microgrid

Component Rated power (kW) Capacity (kWh) O&M C (CNY/kWh) SOC

Batteries 187 3171 0.02 0.20*0.80

UC 795 961 0.003 0.05*0.95

PV arrays 1583 9 0.2 - 0.0096 -

WTs 23 9 30 - 0.0296 -

GCC 178 - * -

* The O&M C of GCC is determined by time-of-use electricity prices

Fig. 11 Charging and discharging power of batteries and ultra-

capacitors based on the proposed EMS
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means the battery or UC is discharging, and negative power

means it is charging.

It can be seen that the output power of the batteries does

not have the sudden and large variations because the ultra-

capacitors buffer the power fluctuations, and in particular

they deliver power to compensate the WT cut-off due to

high winds at 14:00. These operating results for the HESS

verify the complementary advantages of the batteries and

the ultra-capacitors, which help to prolong the life span of

the batteries.

5 Conclusion

This paper proposes a multi-objective optimization

approach for an EMS in DC microgrids. The DE algorithm

is used to obtain the optimal solutions for the EMS

according to modeling of a DC microgrid, the power

allocation method of a HESS, and constraints of the

microgrid components. The operating and maintenance

cost and the LPSP are chosen as the EMS optimization

objectives. Based on the multi-objective non-dominated

sorting method, the Pareto front of the multi-objective

optimization can be obtained. Then, by using the MMDP,

the best combination of fitness values for operating and

maintenance cost and LPSP can be obtained from the

Pareto front solutions. Accordingly, the unique solution

from the Pareto optimum solution set is achieved, with the

maximum overall satisfaction degree for DC microgrid

optimized operation.

By considering a typical day of microgrid operation as

an example, and according to predictions of load, solar

irradiance, wind speed, and temperature, the hourly power

output of the renewable energy generation units can be

calculated, and the operation of the HESS determined. The

power exchanged with the main electricity grid is consid-

ered as the optimization variable. The optimum operating

solution to optimize the power flows in DC microgrid to

achieve economy and reliability is determined using the

proposed multi-objective EMS optimisation. The simula-

tion results demonstrate its feasibility and effectiveness.
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