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Abstract Anovel distributed reinforcement learning (DRL)

strategy is proposed in this study to coordinate current

sharing and voltage restoration in an islanded DCmicrogrid.

Firstly, a reward function considering both equal propor-

tional current sharing and cooperative voltage restoration is

defined for each local agent. The global reward of the whole

DC microgrid which is the sum of the local rewards is

regarged as the optimization objective for DRL. Secondly,

by using the distributed consensus method, the predefined

pinning consensus value that will maximize the global

reward is obtained.An adaptive updatingmethod is proposed

to ensure stability of the above pinning consensus method

under uncertain communication. Finally, the proposed DRL

is implemented along with the synchronization seeking

process of the pinning reward, tomaximize the global reward

and achieve an optimal solution for a DC microgrid. Simu-

lation studies with a typical DC microgrid demonstrate that

the proposed DRL is computationally efficient and able to

provide an optimal solution even when the communication

topology changes.

Keywords Distributed reinforcement learning (DRL),

Distributed information discovery, DC microgrid, Local

reward function

1 Introduction

DC microgrids attract increasing attention in recent

years for two reasons: 1) on one hand, the emerging

diversity of distributed generators (DGs) includes a

majority of DC generators, such as photovoltaics (PVs),

fuel cells (FCs) and energy storage systems (ESSs); 2) on

the other hand, there will be more and more DC loads, such

as electric vehicles (EVs), DC relays, in future smart grids

[1–3]. Generally, a DC microgrid has several advantages

compared with an AC microgrid: 1) it has less loss from

power transformation because there are no AC/DC con-

verters, 2) it avoids some problems often occurring in an

AC microgrid, for instance, harmonics and synchroniza-

tion; and 3) it can have improved power quality and reli-

ability, because reactive power compensation is not needed

from the power supply [4–6]. Therefore, much current

research focusses on the control and management of DC

microgrids.

Droop control is generally accepted as an effective

solution for DC microgrids, and such applications of droop

control have been investigated in many papers [7, 8].

However, it is hard to achieve predictive, accurate load

sharing and voltage regulation by using the droop control

without communication, and moreover, both line impe-

dances and output impedances of DGs will affect the

accuracy of load sharing [9, 10]. Therefore, hierarchical
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control schemes which consist of primary and secondary

control have been proposed and utilized to solve these

problems.

The structures of hierarchical control schemes can be

centralized or distributed [11–13]. A typical centralized

control scheme was proposed in [14]; it collected global

voltage and current information by low bandwidth com-

munication and realized voltage restoration and enhanced

current sharing accuracy. It is well known that a centralized

control scheme requires a complicated communication

network to collect global operating conditions and a pow-

erful central controller to process the huge amount of

information. Thus, centralized schemes are costly to

implement and susceptible to single-point failures. Fur-

thermore, taking the uncertainty of intermittent DGs into

consideration, a generation fluctuation may result in unin-

tentional structural changes in current flows, which will

further increase the burden on centralized schemes

[15, 16]. Advantages of a distributed scheme include the

ability to survive unexpected disturbances and decentral-

ized data updating, which leads to efficient information

sharing and eventually a faster decision-making process

and operation [8, 17–19].

Much research focuses on improving distributed control

in multiple ways in AC or DC microgrids. [20] proposed a

distributed cooperative control strategy based on a multi-

agent system (MAS) that involves primary and secondary

frequency control and multi-stage load shedding to achieve

cooperative frequency recovery. [21] used input-output

feedback linearization to convert secondary voltage control

to a linear second-order tracker synchronization problem.

A pinning-based scheme for microgrids is proposed to

obviate the requirements for a central controller and a

complex communication topology, and to achieve control

under both fixed and uncertain communication topologies

in [22]. With regard to DC microgrids, [23–25] proposed

two kinds of distributed control schemes, which discover

global current information and adjust the droop control

gains using a distributed consensus algorithm, and imple-

mented accurate load distribution in DC microgrids.

Hence, a distributed control scheme can be regarded as a

feasible solution for DC microgrids in this study. Another

problem that needs to be considered in a DC microgrid is to

coordinate the following two objectives in which exist

inherent contradictions: 1) to implement voltage restoration

in DC buses; and 2) to realize accurate current or load

sharing in a DC microgrid. For a DC microgrid, the aver-

age output current of each DG reflects the load fluctuation

of the whole system, and can also reflect the voltage

deviation caused by a load change. Thus, the average

output current of the DGs is selected as the control input to

simultaneously realize voltage adjustment and load pro-

portional distribution of current.

To address the above problems, reinforcement learning

(RL) has been introduced to the distributed control scheme,

and this would be a possible solution [26]. RL is a simple

iterative algorithm that learns to act in an optimal way

through a reward signal evaluated by the performance of

prior solutions obtained. Over the past few years, several

multi-agent based RL algorithms have been proposed and

applied to practical problems [27, 28]. The RL algorithm

has major advantages. It is an online learning algorithm

directly interacting with the environment, and it does not

require an accurate model of the environment. It only needs

a reward function to evaluate the quality of a solution

instead of complicated mathematical operations. Finally, it

has the ability to escape local minima because it performs

stochastic optimization [29–32].

Inspired by distributed control and the RL algorithm, a

novel distributed RL (DRL) approach for a DC microgrid

is proposed and investigated in this study. It can achieve

the same control performances as a centralized control

scheme while overcoming some of its problems. It also can

coordinate voltage restoration and load sharing during

secondary control, and implement accurate current sharing

while recovering the DC voltages. DRL with reward

feedback and applying the distributed consensus method

through pinning control are the distinguishing features of

this work. More specifically, the main contributions of this

study are as follows:

1) Proposal of a new DRL method, which combines RL

and the distributed consensus method together to

achieve an optimal solution for a DC microgrid.

2) Proposal of an evaluation method using a global

reward discovered locally, which can be used to

evaluate the control performance of DRL considering

both equal proportional current sharing and coopera-

tive voltage restoration for an islanded DC microgrid.

3) Proposal of a distributed consensus method through

pinning control, which can be applied to discover

global information or to achieve synchronization by

seeking a pinning consensus value. Additionally, the

corresponding adaptive updating method can adapt to

changes of communication topology, including both

exchanging coefficients and updating the identity of

participating agents.

The rest of this paper is organized as follows: Section 2

presents a brief introduction to hierarchical control of a DC

microgrid and the distributed consensus method through

pinning control; Section 3 elaborates on the proposed

DRL, including its reward function, the distributed con-

sensus method through pinning control, and its detailed

control process; the proposed DRL is simulated and

investigated with a typical system in Section 4; and finally,

conclusions are presented.
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2 Preliminary

2.1 Hierarchical cooperative control of DC

microgrid

Typically, a DC microgrid has a two-layered hierarchi-

cal control structure, comprising the primary control layer

and the secondary control layer. Primary control, which is

usually implemented by droop control, aims at quick

response to maintain the stability of a DC microgrid.

Whereas, secondary control has two control objectives: 1)

to restore voltage and 2) to share the load in a

suitable proportion.

In contrast to droop control in an AC microgrid, droop

control in a DC microgrid is based on the predefined

relationship between voltage and current as follows:

Ui ¼ Uref ;i � miIi

Uref ¼ UN � kV=2
m ¼ kV=Imax

8
><

>:
ð1Þ

where Uref,i is the voltage reference of the i
th DG; mi is the

droop control gain of the ith DG;Ii is the measured value of

the output current of the ith DG; kV indicates the maximum

voltage deviation; UN is the rated voltage;and Imax is the

maximum current of the droop controller.

However, fully decentralized droop control may cause

steady state deviations if there is no communication among

droop-controlled DGs. To address this problem, secondary

control is utilized to improve voltage restoration in DC

buses and realize predictive load sharing in a DC micro-

grid. It is accomplished by controlling the voltage refer-

ence Uref in (1) as follows:

Ui ¼ ðUref ;i þ DUiÞ � miIi
DUi ¼ DUC;i þ DUV ;i

�

ð2Þ

where the adjustment of Uref can control both voltage and

current. Thus, the control change of voltage reference DUi

is divided into the current adjustment term DUC,i and the

voltage adjustment term DUV,I; the control of DUC,i aims at

realizing proportional power dispatch, and DUV,i aims at

correcting the voltage deviation [19, 20].

2.2 Distributed consensus method through pinning

control

2.2.1 Pinning-based distributed consensus method

Assume that ri denotes the state variable of agent i. The

distributed consensus method through pinning control can

be expressed in a discrete form as follows:

r
½kþ1�
i ðtÞ ¼

X

j2Ni

aij r
½k�
j ðtÞ � r

½k�
j ðtÞ

n o
� di r

½k�
i ðtÞ � r�p

n o
ð3Þ

where i = 1, 2, …, n; j = 1, 2, …, n; n indicates the total

number of participating agents; k is the discrete-time index;

r
½kþ1�
i i is the state of agent i at iteration k ? 1, which

corresponds to the local information defined in this study;

r
½k�
i ; r

½k�
j are respectively the states of agents i and j at iter-

ation k; and aij is the connectivity coefficient between

agents i and j. If agents i and j are connected through a

communication line, aij = 0, otherwise, aij = 0. Ni

expresses the neighboring agent set of the ith agent; di is the

pinning gain of the ith agent, di C 0 with di = 0 when there

is no pinning control over agent i; and r�p is the preset

pinning consensus value of the consensus method.

Generally, the method in (3) can be used to control all

agents to the preset pinning consensus value using the

connectivity coefficients among them. When di = 0, the

method in (3) also can be used to discover global infor-

mation as for other average consensus methods

[19, 20, 22, 26].

For convenient analysis, define the control error as:

e
½k�
i ¼ r

½k�
i � r�p ð4Þ

Then, the distributed consensus method based on pinning

described in (3) can be rewritten in terms of (4) as follows:

e
½kþ1�
i ðtÞ ¼

X

j2Ni

aij e
½k�
j ðtÞ � e

½k�
j ðtÞ

n o
� die

½k�
i ðtÞ ð5Þ

Hence, the consensus process of the whole DC microgrid

based on pinning can be illustrated as

E½kþ1�ðtÞ ¼ A� ðD� IÞ½ �E½k�ðtÞ
A ¼ ½aij�
D ¼ ½di�

8
<

:
ð6Þ

where E[k] is the information matrix; A is the communi-

cation updating matrix that is determined according to the

communication topology; D is the pinning matrix; I is the

identity matrix;‘‘�’’indicates Kronecker product of matrix.

2.2.2 Adaptive updating method

To adapt to communication link changes, a connectivity

coefficient updating method is proposed in (7). Here, D(t)
is utilized to express the communication topology changes

in an DC microgrid; d is the consensus constant, the value

of which can affect the convergence characteristics of the

two-layer algorithm, 0\ d\ 2; ni,D(t) and nj,D(t) respec-

tively indicate the number of agents in the neighborhood of

agents i and j according to the communication topology.

Both ni,D(t) and nj,D(t) are local information which can be
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detected by corresponding agents, so (7) can adapt locally

to the communication link changes.

aij ¼

d
ni;DðtÞ þ nj;DðtÞ

j 2 Ni;DðtÞ

1�
P

j2Ni;DðtÞ

d
ni;DðtÞ þ nj;DðtÞ

j ¼ i

0 otherwise

8
>>>><

>>>>:

ð7Þ

Additionally, to adapt to changes in the number of agents

and thereby meet the plug-and-play operation requirements

for a DC microgrid, an agent identity updating method is

proposed. If (3) is initialized with the predefined index i,

and all di are set to 0, it will converge to the average value

of total number of agents. Thus, the total number of agents

can be determined by

na;i ¼ i
�
nDðtÞ

nDðtÞ ¼ i=ni ¼ i
�
½i
�
nDðtÞ�

�

ð8Þ

where na,i is the average value discovered by agent i, and

nD(t) is the total number of participating agents in the DC

microgrid, which will be adaptively adjusted when the

number changes.

2.2.3 Stability proof

To verify the stability of the proposed information dis-

covery method, a positive Lyapunov function L is defined,

and the partial derivative of L with respect to e[k] is derived

as follows:

L ¼ 1

2

Xn

i¼1

ðe½k�i ÞTe½k�i

DL ¼
Xn

i¼1

ðe½k�i ÞTe½k�i

¼
Xn

i¼1

ðe½k�i ÞT
X

j2Ni

aijðe½k�j � e
½k�
i Þ � die

½k�
i

" #

�
Xn

i¼1

ðe½k�i ÞT
X

j2Ni

aijðe½k�j � e
½k�
i Þ �

Xn

i¼1

di e
½k�
i

�
�
�

�
�
�
2

�
Xn

i¼1

e
½k�
i

�
�
�

�
�
�
X

j2Ni

aijð e
½k�
j

�
�
�

�
�
�þ e

½k�
i

�
�
�

�
�
�Þ �

Xn

i¼1

di e
½k�
i

�
�
�

�
�
�
2

¼ E½k��
�

�
�TðA� D� IÞ E½k��

�
�
�

ð9Þ

Therefore, to ensure the stability of the distributed

consensus method, the stability condition can be finally

expressed as

A� D� I� 0 ) DL� 0 ð10Þ

where DL B 0 implies that the stability of the proposed

consensus method can be ensured and consensus will be

reached asymptotically.

3 Distributed reinforcement learning control
(DRLC) for a DC microgrid

In this study, a DC microgrid is considered as an MAS,

which includes distributed generator agents (DGAs),

energy storage system agents (ESSAs) and load agents

(LAs). By implementing specific characteristics of agents

in a MAS, such as autonomy, sociality, proactivity, and

adaptability, the agents can provide greater functionality

than traditional controls and cater to the special needs and

difficulties of the proposed control [19–22]. The proposed

DRL scheme can immediately take action in the event of

disturbances and realize distributed decision-making to

achieve cooperative recovery.

Furthermore, DRL for agents, which is a simple iterative

algorithm by which optimal actions are learnt through

rewards gained by exploring the unknown environment,

can be applied to improve the control characteristics. As

illustrated in Fig. 1, during the process of DRL, the solu-

tion is updated according to its performance as evaluated

by the corresponding reward signal. Hence, each agent can

optimize its control solution for the associated generator,

storage, or load, while some elements of its solution can be

communicated to other agents to arrive at a shared

solution.

To implement such a distributed DRL, two related

problems of defining the local reward function and

achieving distributed consensus based on pinning are

described in detail below.

Agent
1

Reward

Solution

Agent
2

Reward

Solution

Agent
i

Reward

Solution

Control

Feedback

Control

Feedback

Feedback

Control

Distributed
communication

…

Environment

Fig. 1 Fundamental control structure of DRL

Distributed reinforcement learning to coordinate current sharing and voltage restoration for… 367

123



3.1 Definition of reward for DRL

For DRL the main challenge is finding the global reward

of the entire system. It is hard to obtain the global reward

directly under a distributed communication framework

where each agent can exchange information only with its

neighboring agents. Thus, a local reward function is

designed to evaluate the performance of a candidate

solution.

Firstly, to take into account the equal proportional cur-

rent sharing in the DC microgrid, a proportional coefficient

for the ith agent is defined by

ji ¼
Ii

IN;i
ð11Þ

where Ii is the measured current and IN,i is the rated current

of the ith agent. By using the distributed consensus method

illustrated in (3), ji can be shared among the MAS as

follows:

j½kþ1�
i ðtÞ ¼

X

j2Ni

aij j½k�j ðtÞ � j½k�j ðtÞ
n o

di ¼ 0 ð12Þ

where, because all di are set to 0, all ji will converge to the

average consensus value j�p of the current proportional

coefficients, which can be determined as

j�p ¼
X

i

ji=n ð13Þ

Secondly, to take voltage restoration of the DC microgrid

into consideration, voltage control should be coordinated

with current control. The DC voltages need to be adjusted

while maintaining the equal proportional current sharing.

The voltage control adjustment DUV,i defined in (2) can be

calculated as

DUV ;i ¼ kij
�
p ¼ ki

X

i

ji=n

 !

ð14Þ

where ki is the voltage control constant, which is set to

bring the DC voltage to its new stable value.

Finally, the local reward function can be defined to solve

the current sharing and voltage restoration problems as

follows:

gi ¼
1

DUV ;i þ ji � j�p

�
�
�

�
�
�
¼ 1

fij�p þ ej;i
�
�

�
�

ð15Þ

using (14), where gi is the local reward defined for the ith

agent, and fi is a constant set to decrease the sensitivity of

gi and avoid zero denominator.

Hence the global reward g is accordingly derived as the

summation of all the local rewards:

g ¼
X

i

gi ¼
X

i

1

fij�p þ ej;i
�
�

�
�

ð16Þ

This global reward g can be used to evaluate the perfor-

mance of a candidate solution; generally, the larger the

global reward, the better the current solution.

3.2 DRL based on pinning

Based on the above local and global rewards, the DRL

can be recognized as an optimization method to maximize

the global reward:

max g ¼
X

i

1

kij�p þ ej;i
�
�

�
�

( )

ð17Þ

Accordingly, the optimal objective of (17) will be reached

when all the local rewards of the DC microgrid converge to

a common value g�p, which is the well-known solution of

(16) as shown in [19, 33]. With regard to (16) and (17), it is

clear that the global reward will reach its maximum value

when the |ej,i| become zero, therefore, the pinning

consensus value g�p of the global reward can be

predefined by

g�p ¼
1

kij�p
ð18Þ

Hence, by using the distributed consensus method

illustrated in Section 2.2, DRL with respect to the local

reward gi can be accomplished as follows:

g½kþ1�
i ðtÞ ¼

X

j2Ni

aij g½k�j ðtÞ � g½k�j ðtÞ
n o

� di g½k�j ðtÞ � g�p

n o

ð19Þ

When all the local rewards converge to the pinning

consensus value preset in (18), the global reward will

reach its maximum value of

g1 ¼
X

i

gi;1 ¼
X

i

1

kij�p þ ej;i;1
�
�

�
�
¼
X

i

1

kij�p
¼ ng�p

ð20Þ

Based on the synchronization process of the local reward

described in (19), DC current and voltage control can be

realized, and the control structure of the DC microgrid

implemented through this process is shown in Fig. 2. The

entire control process of the proposed DRL can be

described in the following steps:

Step 1: To take into account the requirements for equal

proportional current sharing and voltage restoration in

the DC microgrid, the local reward function is defined

for each agent as in (15), and the related current

368 Zifa LIU et al.
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proportional coefficients ji and the voltage control

adjustments DUV,i are calculated as in (11)–(14).

Step 2: Accordingly, maximizing the corresponding

global reward of the whole DC microgrid is the

optimization objective for DRL, as described in (17).

Step 3: The distributed consensus method based on

pinning described in Section 2.2 is used to solve this

optimization problem, and the pinning consensus value

for the DRL is preset according to (18).

Step 4: The proposed DRL is finally implemented to

achieve an optimal solution and control the DGs

asymptotically, coordinating equal proportional current

sharing and voltage restoration of the DC microgrid

through the synchronization process of the global

reward, as shown in (19) and (20).

4 Simulation studies

To investigate the effectiveness and adaptability of the

proposed DRL, a typical DC microgrid containing 5 DGs is

simulated in the PSCAD/EMTDC platform, and its con-

figuration is shown in Fig. 3. The algorithms of the pro-

posed DRL, including the calculation of local rewards, the

distributed consensus method for information sharing, and

the distributed consensus method through pinning control,

are compiled in MATLAB, making full use of the mathe-

matical capabilities of this software. Then, the PSCAD

model and MATLAB programs are connected together

through a Fortran-language-based interface procedure [19].

The communication topology of the simulated DC micro-

grid is illustrated in Fig. 3.
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Using this simulation model three case studies are pre-

sented in the following sections.

4.1 Case A: overload scenario

Initially, the DC microgrid works in a stable islanded

mode, and all DGs are controlled by droop control. When

t = 1 s an overload occurs. Consequently, the power bal-

ance between supply and demand is lost at that moment,

and the proposed DRL is immediately implemented to

maintain the DC microgrid.

The rated voltage of the DC microgrid is 0.6 kV and its

control parameters are given in Table 1.

Firstly, the current proportional coefficients ji are col-

lected by each agent, the average value of which j�p is

discovered by using the distributed consensus method

described in (12). The synchronization process of the ji is
shown in Fig. 4a.

Secondly, with the discovered average value j�p, the

associated values DUV,i can be calculated by (14), and with

ki = 0.204 the pinning consensus value of the local reward

can be preset as g�p ¼ 5:576 according to (18). Thus, the

local reward gi of the DRL defined in (15) is estimated by

its corresponding agent, and the synchronization seeking

process is shown in Fig. 4b.

Finally, the proposed DRL which coordinates the volt-

age restoration and equal proportional current sharing is

implemented, and the current and voltage control per agent

Table 1 Control parameters of DC microgrid in Case A

DG mi ji (A) IN,i (A) R (X) Ui (kV)

DG1 3 0.95 66.7 0.18 0.591

DG2 3 0.75 66.7 0.42 0.601

DG3 4 1.14 50 0.15 0.589

DG4 3 0.87 66.7 0.24 0.595

DG5 5 0.78 50 0.28 0.594

Note: R is the resistance of electrical line

Fig. 4 Control performances of the proposed DRL in Case A
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are shown in Fig. 4c and d, where the consensus conver-

gence process can be seen clearly.

It can be observed in Fig. 4a and b that the distributed

consensus method presented in Section 2.2 realizes two

functions in this case: 1) discovering global information

based on average consensus and obtaining the averaged

current proportional coefficient, as shown in Fig. 4a, and 2)

implementing the distributed consensus method based on

local reward pinning to coordinate equal proportional

current sharing and voltage restoration, as shown in

Fig. 4b. Thus, in the DRL for equal proportional current

sharing and voltage restoration, illustrated in Fig. 4c and d

respectively, the current proportional coefficients of all

agents converge to equal consensus values, and the volt-

ages reach a corresponding new state.

4.2 Case B: overload and communication line

switches on

In this case, the overload accident occurs in the DC

microgrid at t = 1 s, and at the same time a new com-

munication link between agent 1 (A1) and agent 3 (A3)

switches on, as illustrated in Fig. 5. The control parameters

of the proposed DRL in Case B are shown in Table 2.

In contrast to Case A, to address the change in com-

munication topology, the connectivity coefficients aij for
the newly connected agents update as described in (7).

A1 A2 A3 A4 A5

A1 A2 A3 A4 A5

Communication topology in Case A

Communication topology in Case B

Fig. 5 Communication topology changes in Case B

Table 2 Control parameters of DC microgrid in Case B

DG mi ji (A) IN,i (A) R (X) Ui (kV)

DG1 3 0.80 66.7 0.18 0.591

DG2 3 0.68 66.7 0.42 0.600

DG3 4 0.89 50 0.15 0.587

DG4 3 0.75 66.7 0.24 0.593

DG5 5 0.65 50 0.28 0.590

Fig. 6 Control performances of the proposed DRL in Case B
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Then, by using the proposed distributed consensus method,

the average value of the current proportional coefficients is

discovered to be j�p ¼ 0:75. Additionally, with ki = 0.232,

the pinning consensus value of the local reward can be

preset as g�p ¼ 5:747. The synchronization seeking process

of the current proportional coefficients and the local

rewards are shown in Fig. 6a and b respectively.

Through (17)–(20) the global reward is maximized

when the pinning-based distributed consensus is reached. It

can be seen in Fig. 6c that the current proportional coef-

ficients of all DGs converge asymptotically to a new

common value, and the synchronization seeking process is

different from that of Case A because of the additional

communication link. Similary, DRL-based voltage

restoration is also adjusted to adapt for changed commu-

nication topoloty, as can be seen in Fig. 6d.

A1 A2 A3 A4 A5

A1 A2 A3 A4 A5

Communication topology in Case A

Communication topology in Case B

Fig. 7 Communication topology changes in Case C

Table 3 Parameters of DC microgrid in Case C

DG mi ji (A) IN,i (A) R (X) Ui (kV)

DG1 3 0.97 66.7 0.18 0.603

DG2 3 0.72 66.7 0.42 0.612

DG3 4 1.19 50 0.15 0.601

DG4 3 0.87 66.7 0.24 0.605

Fig. 8 Control performances of the proposed DRL in Case C
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4.3 Case C: overload and agent unplugs

In Case C, the agent 5 marked as A5 unplugs from the

DC microgrid and its corresponding communication link

switches off accordingly at t = 1 s; as a result, the com-

munication topology of the simulated DC microgrid

changes, as shown in Fig. 7.

The control parameters are illustrated in Table 3 and the

proposed control response is implemented as follows.

Firstly, to adapt for the unplugging of A5, agent identities

are updated according to the method described in (8). Only

the neighboring agents of the faulted A5 need to be upda-

ted. Secondly, after the adaptive updating, both the dis-

covery of current proportional coefficients by distributed

consensus and the pinning-based distributed consensus of

the local reward can be implemented, as in Cases A and

B.

The average value of the current proportional coeffi-

cients in Case C is discovered to be j�p ¼ 0:916. Addi-

tionally, with ki = 0.236, the pinning consensus value of

the local reward can be preset as g�p ¼ 4:761. The syn-

chronization seeking process of the current proportional

coefficients and the local rewards are shown in Fig. 8a and

b.

In Fig. 8c and d it can be seen that the DC currents and

voltages of all the DGs asymptotically converge to new

common values through the proposed DRL, so the equal

proportional current sharing and the voltage restoration

problems are successfully coordinated, and the proposed

DRL can be adaptively implemented when an agent is

unplugged.

5 Conclusion

In this study, a novel DRL strategy has been proposed

and investigated for an islanded DC microgrid. The

implementation of this DRL strategy is achieved by inte-

grating two methods, which are the distributed consensus

method through pinning and the RL method.

The proposed distributed consensus method can be used

to discover global information and implement pinning

synchronization, and it can also meet the requirement to

adapt to changes in the communication network, such as

communication line switches or agent plug-and-play

operations. The proposed DRL based on local and global

rewards can be utilized to maximize the global reward and

achieve an optimal solution for a DC microgrid. Hence, the

proposed strategy can coordinate the equal proportional

current sharing and the voltage restoration of an autono-

mous DC microgrid.

The effectiveness and advantages of this approach are

demonstrated by simulating three representative cases of an

overload condition, including addition of a new commu-

nication link and unplugging of a DG agent. The DRL

method worked quickly and effectively in each case.
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