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Abstract This paper presents a Phillips-Heffron model for

the generation unit with current-controlled (CC) voltage

source converter (VSC) as the interface. A concept of

current angle is put forward for the CC-VSC, and the

relationship between the current angle and the power angle

is also quantified. Based on the current angle, a Phillips-

Heffron model is established for the generation unit with

CC-VSC, considering the dynamic of phase-locked-loop

(PLL) in the weak grid. The model demonstrates that

small-signal dynamics of the generation unit is similar to

that of the traditional synchronous generator (SG) which is

characterized by the electromechanical swing equations.

Then the dynamics can be depicted by the famous inertia,

synchronizing and damping coefficients. Small-signal sta-

bility of a CC-VSC-based single machine infinite bus

system is analyzed by means of the traditional theory of

power system. Based on the relationship between the cur-

rent angle and the power angle, the Phillips-Heffron model

of the CC-VSC is also used in stability analysis of multi-

machine power system, and parameter optimizations of the

CC-VSC are also studied for stability improvement.

Keywords Phillips-Heffron model, Voltage source

converter, Current angle, Synchronous generator,

Small-signal stability

1 Introduction

The penetration of Distributed Generation (DG) using

Voltage-Source-Converter (VSC) continuously increases

over the past few decades [1, 2]. It is a main characteristic

of new power-electronics-enabled power system. Diverse

renewable energy resources are integrated into the grid

with VSC as the interface, for example the photovoltaic,

the wind power, and the fuel cell. In addition, VSCs are

also used in the energy storage system and the high-voltage

dc (HVDC) transmission system [3, 4]. Consequently,

VSCs are becoming increasingly important component in

the modern power system. Compared with the traditional

SG, VSCs lack rotating inertia and damping property

which play a significant role in ancillary services for grid

dynamic performance and stability [5, 6]. With the pene-

tration of VSC-based DG increasing, the overall system

inertia and damping are dramatically decreased which can

lead to potential small-signal power angle stability problem

[7], which is characterized by the low-frequency oscilla-

tions of angular frequency and active power, and threatens

the stable operation.

In order to analyze the small-signal stability of modern

power system with VSCs, a promising solution is to

establish SG-equivalent model for the VSCs [8–12]. It is

the classic Phillips-Heffron model, which characterizes the

SG dynamics with inertia, synchronizing and damping

coefficients [13, 14]. Based on the Phillips-Heffron model,

the well-developed small-signal stability theories in tradi-

tional power system can be applied in the modern power
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system with VSCs. For the voltage-controlled (VC) VSCs

[15], the droop controlled VSC and traditional SG is

proved to have an equivalent dynamic in the electro-

mechanical time scale [8]. The Phillips-Heffron model of

the VC-VSC has been successfully applied to the syn-

chronization and stability analysis for microgrid with

multiple VSCs [12]. The classic Kuramoto oscillator theory

can be applied in this case, which is originally applied for

the stability analysis of the traditional power system based

on multiple SGs [16]. Besides the VC-VSCs, a lot of VSCs

are operated in current-controlled (CC) mode because of

the simplicity of its control strategy and the adequate uti-

lization of the renewable energy [17, 18]. Nevertheless, the

equivalence between the dynamic characteristics of the

CC-VSC and the traditional SG has been hardly studied. As

for the CC-VSCs, it is often regarded as an ideal current

source and the dynamic of phase-locked-loop (PLL) is

always overlooked. Such assumptions only hold true in

strong grid with low penetration level of VSCs [11, 19].

The CC-VSC is considered to affect the small-signal sta-

bility of the system indirectly just by altering the steady

state operation point of the SGs [19]. The interactive

mechanism between the CC-VSC and the SGs has not been

addressed. Some researches point out that the dynamic of

PLL can significantly affect the system synchronization

and stability [20–24], especially in the weak-grid system.

As the penetration increasing, the effect of CC-VSCs on

system stability becomes more prominent. Most of the

researches investigate the effect of CC-VSCs on small-

signal stability of the modern power system including CC-

VSCs and SGs based on the system synthesis with the

eigenvalues calculation of the whole system [19, 25–27].

The high-order mathematical model of the whole system is

complicated, and the physical explanation of the VSC

dynamic can hardly be recognized [26, 27]. Thus it is

inconvenience to obtain the direct principle for the

parameter optimizations of the CC-VSC to improve the

small-signal stability [11].

This paper presents a Phillips-Heffron model for the

CC-VSC considering the dynamics of PLL. It reveals that

the corresponding physical interpretation of the dynamic

behavior of CC-VSC based on the equivalence with SG.

Thus it promotes the cognition about the CC-VSC from the

perspective of the traditional SG-based power system, and

bridges the gap between the CC-VSC and the mature the-

ories of traditional power system. It is also essential for the

parameter design of the CC-VSCs from the perspective of

small-signal stability of the modern power system includ-

ing VSCs and SGs. An introduction about the architecture

and control of PLL-based CC-VSC is presented in Sec-

tion 2. It is followed by the definition of ‘‘current angle’’ in

Section 3, and the relationship between the current angle

and the power angle is also quantified. This provides a

foundation for Section 4 in which the Phillips-Heffron

model for the CC-VSC is presented, by highlighting the

virtual electromechanical swing process. Based on the

proposed model, the dynamic performance of the CC-VSC

is analyzed by using the theory and method of traditional

SG-based power system. Section 5 gives an application of

the proposed Phillips-Heffron model of the CC-VSC in

small-signal stability analysis, as well as the parameter

optimizations of the CC-VSC. Section 6 is dedicated to

simulation verification for the dynamic performance and

stability analysis.

2 Configuration and control of CC-VSC

Figure 1 shows the configuration and control scheme of

a grid-connected power electronic generation unit based on

a CC-VSC. It includes the dc power source, the grid-tied

inverter, the passive filter, the transmission line, and the

grid. The voltage source on the DC side can be energy

storage system, fuel cells, or photovoltaic with energy

storage, so the DC-link dynamic can be ignored. Udc is the

voltage of the DC capacitor. The grid-tied inverter is

integrated to the point of common coupling (PCC) via an

L-type filter, as shown in Fig. 1. It is also feasible to

employ an LCL-type filter, but it is equivalent to the L-type

filter in electromechanical time scale [11]. The transmis-

sion line is denoted by the inductance L. The terminal

voltage of the VSC is uPCC and ug is the grid voltage.

With the assistance of PLL, current and voltage vari-

ables can be transformed from the abc stationary frame to

the dq synchronous rotational frame and vice versa. The

real and imaginary components of the current are regulated

by a proportional-integral (PI) controller in the syn-

chronous reference frame. In Fig. 1, two dq domains are

defined respectively [20]. One is the system dq domain

utilizing the actual phase-angle of the phasor ~UPCC. The
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Fig. 1 Structure and control diagram of CC-VSC

Phillips-Heffron model for current-controlled power electronic generation unit 583

123



variables of the system dq domain are all marked by the

superscript s. The other one is the converter dq domain

which applies the output angle of the PLL for dq trans-

formation. The variables of the converter dq domain are all

marked by the superscript c. The output angle of the PLL is

normally aligned with the actual phase-angle of ~UPCC, and

the converter dq frame is in accord with the system dq

domain. However, when the system suffers a disturbance,

the disturbance will propagate to the output angle of the

PLL. Consequently, the disturbance will further result in

the output power fluctuation, because the output current

control depends on the converter dq domain which is

determined by the PLL.

Though there are many kinds of structures of PLL, these

PLLs are extensions of the conventional synchronous ref-

erence frame (SRF) PLL which is described by the diagram

in Fig. 2 [28]. The SRF-PLL is commonly used as an

essential building block in the CC-VSCs to estimate the

grid frequency and phase. If not considering the unbal-

anced grid faults, the results drawn from the conventional

SRF-PLL are applicable since all the types of PLL share

the same phase-locking principle and the PLL model

[28, 29]. Therefore, the conventional SRF-PLL is used in

this paper for analysis. It is worth mentioning that the

parameter J in Fig. 2 is defined to represent a virtual inertia

coefficient in the subsequent SG-equivalent modeling.

For the generation units based on CC-VSCs, the PLL

dynamic may be set in 1 Hz to 30 Hz [30, 31], considering

the tradeoff between rapid tracking and disturbance rejec-

tion. The PLL dynamic plays a key role in the energy

conversion process in the electromechanical time scale

[20–24]. The current tracking dynamic may in 300*400

Hz [26], and it can be ignored in the electromechanical

dynamic investigation. Therefore, the PLL dynamic is the

main factor in the subsequent SG-equivalent modeling.

3 Definition of current angle for CC-VSC

Recently, the concept of ‘‘virtual rotor angle’’ of VC-

VSC is presented from the SG-equivalent perspective [32].

For the voltage source, such as SG and VC-VSC, the rotor

angle or virtual rotor angle can uniquely determine the

power. Thus they can also be regarded as power angle.

However, CC-VSC is a current source, which is different

from the voltage source. Therefore, it is necessary to define

a new concept for the CC-VSC from the SG-equivalent

perspective.

As shown in Fig. 1, the CC-VSC needs to be connected

to a reference voltage ~Ug. Its output current is ~I and the

terminal voltage is ~UPCC. In this system, the reference

variable is ~Ug, the independent variable is ~I, and the

dependent variable is ~UPCC. For a traditional voltage-

source-based system, the independent variable is the ter-

minal voltage of the voltage source, and the dependent

variable is its output current. This is a basic difference, and

it is also the foundation of the subsequent definition of

current angle.

As shown in Fig. 3, the angle between the current of

CC-VSC and the grid voltage is defined as ‘‘current angle’’,

and it is represented by the symbol di. The angle between
~UPCCand ~Ugis d, which is regarded as the rotor angle or the

power angle in the traditional voltage-source-based system.

The symbol u represents the power-factor angle. The

relationship among them is shown in (1).

d ¼ diþu ð1Þ

Comparing the Fig. 3a and b, it is revealed the active

power depends on the current angle di instead of d, as
shown in (2).

P ¼ 3

2
UgI cos di ð2Þ

For the power system based on CC-VSC, the current

angle di can uniquely determine the power, but the

relationship between current angle and power is different

from that between the traditional power angle and power.

For example, if the current angle increases, the active

power decreases. The incremental formula is shown in (3).

DP ¼ � 3

2
UgI sin di0Ddi ð3Þ
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Fig. 2 Diagram of conventional SRF-PLL
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For the traditional voltage-source-based system, the power

angle d can uniquely determine the power, and the

incremental formula is shown in (4).

DP ¼ 3

2

UPCCUg

XL

cos d0Dd ð4Þ

Then, the quantitative relationship between the current

angle in CC-VSC-based system and the traditional power

angle can be derived, as shown in (5).

Dd ¼ KCDdi
KC ¼ � tan di0 tan d0

(
ð5Þ

The relationship establishes the connection between the

CC-VSC and the voltage source, such as SG and VC-VSC.

It will be applied in the stability analysis of multi-machine

power system including CC-VSCs and the voltage source.

4 Phillips-Heffron model of CC-VSC

4.1 Small-signal modeling of PLL-based CC-VSC

Based on the proposed current angle, a Phillips-Heffron

model is established for the generation unit with CC-VSC,

considering the dynamic of PLL in the weak grid. As

previously stated, this paper focuses on the dynamics in the

electromechanical time scale. For the CC-VSC, the cur-

rent-loop bandwidth in PWM-based VSC systems is

overwhelming higher than the grid frequency (50 Hz). It

provides a precise fundamental frequency current tracking,

so the CC-VSC behaves as a current source accurately

following the current reference. However, the current

control is based on the reference frame provided by the

PLL, which significantly influences the actual output cur-

rent and power. Therefore, the electromechanical dynamic

of PLL is very important for the generation unit with CC-

VSC.

As shown in Fig. 1, the q-axis component of the ter-

minal voltage ~UPCC is the input of the PLL. The terminal

voltage of the CC-VSC can be represented in (6). It con-

sists of two parts: the grid voltage and the voltage drop on

the transmission line.

~UPCC ¼ jXL
~I þ ~Ug ð6Þ

In the process of small-signal modeling, the amplitude of

current and the amplitude of grid voltage are assumed to be

the value before the disturbance and to keep constant.

Because this paper focuses on the small-signal stability

analysis, the modeling is based on algebraic differential

equations and the effect of frequency dynamic on the

transmission line is overlooked [14]. As shown in Fig. 4a,

the graphical analysis procedure of the q-axis component

of ~UPCCis given, under the steady state condition. The

output angle of the PLL is h0. It is aligned with the actual

phase-angle of ~UPCC, so the converter dq frame is in accord

with the actual terminal voltage of CC-VSC. The corre-

sponding current angle is represented as di0.

As shown in Fig. 4a, the q-axis component of ~UPCCcan

be represented in (7).

uq ¼ IXL sin
p
2
þ uþ h0

� �
� h0

h i
þ Ug sin 0� h0ð Þ ð7Þ

The first item in (7) depicts the upward arrow line

parallel to the q-axis of PLL in Fig. 4a, and the second item

depicts the downward arrow line. These two arrow lines in

the reverse direction have the equal length. Thus the q-axis

component of ~UPCC is zero under the steady state

condition.

When the system suffers disturbances, the output angle

of the PLL is not aligned with the actual phase-angle of
~UPCC. Figure 4b shows the graphical analysis procedure of

the q-axis component of ~UPCC. The output angle of the PLL

is h0 ? Dh. The corresponding current angle is di0?Ddi,
since the current phase depends on the reference frame

provided by the PLL. Therefore, the increment of current

angle is equal to the increment of the output angle of the

PLL, as shown in (8).

Ddi ¼ Dh ð8Þ
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Synthetically considering Fig. 4a and b, the q-axis

component of ~UPCCcan be represented in (9).

uq ¼ IXL cosu� Ug sin h ð9Þ

where h is the output angle of the PLL, which can also be

represented as di?u.
As shown in (9), the first item depicts the upward arrow

line in Fig. 4b, and the second item depicts the downward

arrow line. These two arrow lines in the reverse direction

do not have the equal length. Thus the q-axis component of
~UPCC is not zero under the dynamic state condition, which

means the PLL will suffer the process of dynamic adjust-

ment. According to the diagram of the PLL in Fig. 2, the

dynamic behavior of the PLL can be depicted in (10).

Jsx ¼ skp þ ki
� �

uq

sh ¼ x

(
ð10Þ

Substituting (9) into (10), the equivalent swing equation

can be obtained:

Jsx ¼ kiIXL cosu� kiUg sin h� kpUg cos h � x
sh ¼ x

�
ð11Þ

According to (7), it is obvious that equation (12) can be set

up under the steady state condition.

kiIXL cosu� kiUg sin h0 ¼ 0 ð12Þ

The virtual mechanical torque which acts as the

accelerating torque in the equivalent swing equation can

be obtained. The virtual electromagnetic torque which acts

as the decelerating torque in the equivalent swing equation

can also be obtained. Both of them are given in (13).

Tvm ¼ kiIXL cosu

Tve ¼ kiUg sin di þ uð Þ

(
ð13Þ

For the CC-VSC, the current tracking dynamic can be

ignored in the electromechanical dynamic investigation,

and the current amplitude is an independent variable.

Therefore, it is reasonable to assume that the virtual

mechanical torque keeps constant. Thus the corresponding

incremental equation of the CC-VSC can be obtained in

(14) resembling the Phillips-Heffron modeling of

traditional SG, which is suitable for small-signal stability

analysis.

JsDx ¼ �kiUg cos h0Ddi � kpUg cos h0Dx

sDdi ¼ Dx

(
ð14Þ

According to (14), the diagram of the Phillips-Heffron

model of CC-VSC can be presented in Fig. 5.

Likewise, for the proposed Phillips-Heffron model of

CC-VSC, the corresponding equivalent inertia KJ,

equivalent synchronizing coefficient KS, and equivalent

damping coefficient KD can be obtained as:

KJ ¼ J

KS ¼ kiUg cos h0
KD ¼ kpUg cos h0

8<
: ð15Þ

Resembling the Phillips-Heffron modeling of traditional

SG, the equivalent inertia KJ denotes the power cost for

altering the angular frequency of the CC-VSC. The

synchronizing coefficient KS reflects the performance

supporting machine-grid synchronism. As shown in (15),

the integral regulator of PLL leads to the synchronizing

property, which takes charge of restoring the operation

point when it deviates from its steady state. The damping

coefficient KD represents the capability for damping the

oscillation of angular frequency. It is apparent in (15) that

proportional regulator of PLL in CC-VSC generates the

effect of damping. If J, kp and ki are all positive, KJ, KS and

KD will be positive correspondingly under the condition of

normal operating point (cosh0[0). That means the VSC is

equipped with certain inertia, damping and synchronizing

ability. These parameters are important physical concepts

to represent the dynamic characteristics of the SG in the

classical stability theory.

According to Fig. 2, the relationship in (16) can also be

revealed, which gives the definition of the equivalent

energy serving for inertia response in CC-VSCs.

w ¼ 1

s
� uq ð16Þ

Substituting (9) into (16):

sw ¼ IXL cosu� Ug sin h ð17Þ

Consequently, the linearized form of (17) can be obtained.

By replaceing Dh with Ddi according to (8), the

incremental equation of w can be obtained as (18).

sDw ¼ �Ug cos h0Ddi ð18Þ

Then, substituting the quantitative relationship between

the current angle and the traditional power angle,which is

given in (5), into (17), the relationship between Dw and

the traditional power angle can be derived, as shown in

(19).

sDw ¼ Ug cos h0 cot di0 cot d0 � Dd ð19Þ

+ Δ
Δ i

ΔTve

+
ΔTvm

ΔTvd

−

cos θki0

1
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Fig. 5 Diagram of the Phillips-Heffron model of CC-VSC
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It is revealed in (19) that the increment Dw is the

integral of traditional power angle increment Dd. Likewise,
it is the integral of power increment, which is the so-called

energy from the perspective of physical meaning.

Therefore, the variable w in Fig. 2 is defined as

equivalent energy in this paper. It describes the extra

energy which the CC-VSC supplies for the inertia

response.

4.2 Small-signal stability mechanism of CC-VSC

The traditional small-signal stability mechanism of SG-

based single machine infinite bus system can also be

applied to analyze the small-signal stability mechanism of

the corresponding CC-VSC system, since the Phillips-

Heffron model of CC-VSC has been established resem-

bling the traditional SG. As stated in [14], for the tradi-

tional SG-based single machine infinite bus system, the

system characteristic equation can be obtained according to

the Phillips-Heffron model, as shown in (20).

s2 þ KD

KJ

sþ KS

KJ

¼ 0 ð20Þ

Thus, the natural frequency xn and the damping ratio f can
be expressed in (21).

xn ¼
ffiffiffiffiffiffi
KS

KJ

r

f ¼ 1

2

KDffiffiffiffiffiffiffiffiffiffiffi
KSKJ

p

8>><
>>: ð21Þ

The conclusion above is also suitable for the CC-VSC

system. Considering the equivalent inertia, synchronizing

coefficient and damping coefficient of the Phillips- Heffron

model of CC-VSC as shown in (15), the following con-

clusions can be deduced. It can be readily seen in (15) that

the CC-VSC will possess a larger inertia with the value of

J increasing. As a result, both the natural frequency and the

damping ratio will decreases according to (21). With a large

integral coefficient ki of the PLL, the equivalent synchro-

nizing coefficient KS is also large, thus the natural fre-

quency will increase while the damping ratio will decrease.

In addition, if the proportional coefficient kp of the PLL is

larger, the equivalent damping coefficient KD is larger,

which means that the damping ratio will increase, and the

current angle as well as the angular frequency will turn into

steady state with a quicker dynamic response process.

Besides the parameters of PLL, other factors such as the

output power, the grid voltage and the impedance of

transmission line also play an important role on the small-

signal stability. When the output power of CC-VSC is

large, it means that the steady-state angle h0 between the

terminal voltage of CC-VSC and the grid voltage is large.

It is also the steady-state power angle d0 in traditional

power system. As demonstrated in (15), it is obvious that

the large h0 makes the stability deteriorate, by degrading

the damping performance and the synchronizing ability.

Likewise, the amplitude of grid voltage can also influence

the small-signal stability, by altering the value of equiva-

lent synchronizing coefficient and damping coefficient.

When the grid voltage dips, both the damping performance

and the synchronizing ability will be weakened according

to (15). It also helps explain why the CC-VSC system tends

to lose its stability when suffering voltage sag. An impor-

tant parameter of the system configuration is the impedance

of the transmission line which is represented by an inductor

L in Fig. 1. A large inductance indicates a large virtual

mechanical torque, as shown in (13). Under the condition

of the steady state, the virtual mechanical torque is equal to

the virtual electromagnetic torque which is also represented

in (13). Thus, it is inferred that the steady-state angle h0 is
large with the large inductance. As mentioned above, the

large h0 degrades the damping performance and the syn-

chronizing ability of the CC-VSC system. Therefore, it is

evident that larger inductance of transmission line is

unfavorable, because it will lead to weaker small-signal

stability. The traditional power system theory also presents

that the compactness of electrical link between two inter-

connected power sources depends on the inductance of the

transmission line: if the linking inductance is larger, the

electrical connection will be weaker, and the stability will

get worse.

From the perspective of the energy which the CC-VSC

provides for the inertia response, the small-signal stability

can also be analyzed as following.

Substituting (16) into the dynamic behavior of PLL in

(10), the linearized equation can be achieved in (22).

JDx ¼ skp þ ki
� �

Dw ð22Þ

Generally, only the incremental relationship represented by

the linearized equation is considered for small-signal

stability analysis [11]. By manipulating (22) and

substituting Dx for sDd, the following equation can be

obtained:

J

Dw
¼ kp

Ddi
þ ki

Dx
ð23Þ

Plainly stated in the linearized relationship shown in (23),

the equivalent energy w is related to not only the angular

frequency x but also the current angle di. Further analysis
of the result shows that a larger virtual inertia J implies

more energy supporting inertia response in the CC-VSC

system when other parameters are unaltered. It is revealed

that more energy is required from the DC-side of the CC-

VSC with a larger virtual inertia, thus the design of virtual

inertia can’t be arbitrary and it is limited by the physical

property of the DG on the DC-side. Although the increase
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of the control parameters kp and ki is beneficial to

enhancing the damping performance and the synchronizing

ability as stated above, it will also cause negative effect to a

certain extent. As shown in (23), the instantaneous fluctu-

ation of the current angle di may be very large if the pro-

portional coefficient kp of PLL increases to a extreme

degree. Analogously, there will be a considerable instan-

taneous fluctuation of the angular frequency with a large

integral coefficient ki. Therefore, the parameter selection of

kp and ki also need tradeoff, considering the damping

performance and the synchronizing ability, as well as the

instantaneous fluctuation of current angle and angular

frequency.

5 Model application in small-signal stability
analysis

5.1 Model application in a two-machine power

system

In this section, the proposed Phillips-Heffron model is

applied in a two-machine power system, as shown in

Fig. 6. As we known, both Virtual SG (VSG) controlled

VC-VSC and droop controlled VC-VSC can be regarded as

an equivalent SG [8, 9]. Therefore, microgrid constructed

by multiple VC-VSCs would be tantamount to a SG with

large capacity, which is called ‘‘master SG’’ in this paper

with inertia KJ1, damping coefficient KD1 and synchroniz-

ing coefficient KS1. The PLL-based CC-VSC is regarded as

a Phillips-Heffron model with KJ2, KD2 and KS2 in the

following analysis. The two-machine system including a

CC-VSC and a voltage source is the basic configuration of

multiple-machine system.

For small-signal analysis of the two-machine power

system, the corresponding linearized model which is also

known as the incremental equation can be obtained in (24).

dDd1
dt

¼ x0Dx1

KJ1

dDx1

dt
¼ �KS1 Dd1 � KCDd2ð Þ � KD1Dx1

dDd2
dt

¼ Dx2

KJ2

dDx2

dt
¼ �KS2 Dd2 � Dd1ð Þ � KD2Dx2

8>>>>>>>>>><
>>>>>>>>>>:

ð24Þ

In (24), Dd1 and Dx1 are the phase increment and

frequency increment of the master SG which represents the

microgrid. Dd2 and Dx2 are the current angle increment

and frequency increment of the CC-VSC. x0 is the

synchronous angular frequency of the grid.

It is worth noting that there is a coefficient KC in the cal-

culating process of the frequency dynamic of the master SG.

It is the conversion ratio between the current angle of the CC-

VSC and the traditional power angle, as shown in (5). From

the synchronous torque items in (24), it can be observed that

there is a difference between the voltage source, namely the

master SG, and the current source, namely the CC-VSC. The

reason is that there is distinction between their synchronizing

mechanisms. For the voltage sources, their phase synchro-

nization depends on the exchange of active power which

actuates the frequency change. However, for the current

source, its phase synchronization aiming to the voltage ref-

erence depends on the PLL. As shown in (15), its synchro-

nizing ability is related to the control parameter of PLL

instead of the exchange of active power. Therefore, the

variation of the current angleDd2 shouldbe converted into the
variation of traditional power angle when calculating the

synchronous torque for the master SG. The quantitative

relationship shown in (5) represents the effects of the current

angle of CC-VSC on the phase and the angular frequency of

the voltage source connected with it.

Taking Dd1, Dx1, Dd2 and Dx2 as state variables, the

small-signal model of the two-machine power system can

be written in a state-space form as shown in (25).

D _d1
D _x1

D _d2
D _x2

2
6664

3
7775 ¼

0 x0 0 0

�KS1

KJ1

�KD1

KJ1

KS1

KJ1

KC 0

0 0 0 1
KS2

KJ2

0 �KS2

KJ2

�KD2

KJ2

2
6666664

3
7777775

Dd1
Dx1

Dd2
Dx2

2
6664

3
7775

ð25Þ

5.2 Stability analysis of two-machine power system

As mentioned above, droop controlled VC-VSC can be

regarded as an equivalent SG [8, 9]. Since there are more

and more droop controlled VC-VSCs applied in microgrid

as voltage sources, droop controlled VC-VSC is taken as a

typical example of the master SG in this paper. As stated in

[8], the corresponding equivalent inertia KJ1, equivalent

synchronizing coefficient KS1, and equivalent damping

coefficient KD1 can be deduced as (26). In (26), Tf is the

filtering time constant in the droop control, and kP is the

power-frequency droop coefficient. U1 is the terminal

voltage amplitude of the VC-VSC itself, and U2 is the

amplitude of the voltage at the other end of the

CC-VSC

L

Microgrid

Filter Transmission line

Lf

Fig. 6 Structure of two-machine power system
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transmission line. XL is also the reactance of the trans-

mission line, and d0 is the steady-state phase difference

between U1 and U2.

KJ1 ¼
Tf

kP

KS1 ¼
3

2

U1U2

XL

cos d0

KD1 ¼
1

kP

8>>>>>><
>>>>>>:

ð26Þ

Parameters of the two-machine power system are given

in Table 1. As stated above, the two-machine system

including a CC-VSC and a voltage source is the basic

configuration of multiple-machine system. The stability

analysis based on the two-machine system is both

representative and typical. Therefore, it is regarded as the

basic case to investigate the small-signal stability in this

part.

Figure 7a shows the trajectories of the eigenvalues

along with the virtual inertia of the PLL, namely the

equivalent inertia coefficient of the CC-VSC, increasing

from 0.05 to 0.2. The direction of the arrow represents the

variation trend of system eigenvalues. Since the parameter

J changes with equal space, the effect of the equivalent

inertia on the eigenvalues is stronger at the sparse sections

of the eigenvalue trajectories, while the effect of the

equivalent inertia on the eigenvalues is weaker at the

serried sections of the eigenvalue trajectories. As shown

in Fig. 7a, there are two pairs of conjugate eigenvalues in

the two-machine power system. According to the sensi-

tivity analysis [14], it is revealed that the conjugated

eigenvalues #1 and #2 are sensitive to the state variables

Dd2 and Dx2 and the conjugated eigenvalues #3 and #4

are sensitive to the state variables Dd1 and Dx1 when the

parameter J is less than 0.16. In this parameter range, the

frequency of the oscillation mode which is dominated by

the CC-VSC decreases gradually, while the damping ratio

gets worse with the parameter J increasing. In the

parameter range 0.16 B J B 0.2, all the eigenvalues are

influenced by the state variables Dd1, Dx1, Dd2 and Dx2

together and there is little difference between the

strengths of influence. It is obvious that the conjugated

eigenvalues #3 and #4 move to the right half plane sig-

nificantly in this parameter range with the parameter

J increasing. The critical value of the parameter J is about

0.18. When the equivalent inertia coefficient of the CC-

VSC is larger than 0.18 in this case, the two-machine

system will be unstable. It implies that the equivalent

inertia of the CC-VSC can’t be designed too large relative

to the inertia of the voltage source which it connected

to.

Figure 7b shows the trajectories of the eigenvalues with

the decrease of the parameter kp, which will cause the

decrease of the equivalent damping coefficient of the CC-

VSC. According to the sensitivity analysis, it is revealed

that the conjugated eigenvalues #1 and #2 are sensitive to

the state variables Dd2 and Dx2 and the conjugated

eigenvalues #3 and #4 are sensitive to the state variables

Dd1 and Dx1. From the trajectories of the eigenvalues in

Fig. 7b, it can be observed that the frequency of the

oscillation modes almost not affected by the variation of

the parameter kp. Nevertheless, damping ratio of the

oscillation modes is reduced with the parameter kp
decreasing, especially the oscillation mode dominated by

the state variables Dd2 and Dx2 of the CC-VSC. As shown

in Fig. 7b, eigenvalues of the two-machine system move

into the unstable region when the parameter kp is less than

0.16.

Figure 7c demonstrates the trajectories of the eigenval-

ues as the synchronizing coefficient of CC-VSC decreasing

which is caused by the decrease of the parameter ki.

According to the sensitivity analysis, it is revealed that the

conjugated eigenvalues #1 and #2 are sensitive to the state

variables Dd2 and Dx2 and the conjugated eigenvalues #3

and #4 are sensitive to the state variables Dd1 and Dx1

when the parameter ki is larger than 90. In this parameter

range, the frequency of the oscillation mode which is

dominated by the CC-VSC decreases gradually, while the

damping ratio increases with the parameter ki decreasing.

In the parameter range from 90 to 50, all the eigenvalues

are influenced by the state variables Dd1, Dx1, Dd2 and

Dx2 together and there is little difference between the

strengths of influence. As shown in Fig. 7c, the conjugated

eigenvalues #3 and #4 move to the right half plane sig-

nificantly in this parameter range with the parameter ki
decreasing. When the parameter ki of the CC-VSC is less

Table 1 Parameters of two-machine power system

Parameters Symbol Values

Grid phase voltage Ug 220 V

Grid frequency f 50 Hz

Link inductance L 6 mH

Filtering inductance Lf 0.4 mH

DC-link voltage Udc 800 V

Filtering time constant Tf 0.2 s

P-f droop coefficient kP 0.05 rad/Ws

Switching frequency fs 12.5 kHz

Active power P 20 kW

Reactive power Q 0

PI gain of current loop Kp, Ki 200, 30

Parameters of CC-VSC J, kp, ki 0.05, 2, 200
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than 55 in this case, the two-machine system will be

unstable.

It is worth mentioning that the purpose of the stability

analysis based on the two-machine system presented

above is providing a basic reference case for the small-

signal stability analysis of multiple-machine system.

Actually, it can be observed that the amount increasing

of the CC-VSCs in the multiple-machine system is

equivalent to the inertia decreasing of the master SG

which acts as the voltage reference in the basic two-

machine system through the similar analysis. The inertia

decreasing of the master SG means that the relative

inertia of the CC-VSC increases, which may cause the

eigenvalues moving to the right half plane and threat to

the system stability. It can be easily validated, for

example the stability has a tendency to deteriorate when

the penetration of DGs increases or the grid gets weaker

for application in engineering. Due to the limited space,

the detailed discussion about other multiple-machine

systems is not presented here, but the relative conclu-

sions can be deduced according to the stability analysis

presented above.

6 Simulation verifications

6.1 Validation of Phillips-Heffron model of CC-VSC

In order to verify the proposed Phillips-Heffron model

of the CC-VSC, a simulation of one-machine infinite-bus

power system is performed, as illustrated in Fig. 1. In the

simulation, the DC side is connected to a constant voltage

source, which facilitates focusing on the electromechanical

dynamic of PLL. The control structure is also illustrated in

Fig. 1 which applies the usual PI control scheme with the

assistant of SRF-PLL. The main parameters are given in

Table 2.

In these following simulation results, sub-graph (a) de-

picts the angular frequency x of the PLL-based CC-VSC.

The variation of equivalent energy w supporting inertia

response of the CC-VSC and the output active power P of

the VSC are illustrated in sub-graph (b) and (c), respec-

tively. The reactive current reference of VSC is always set

to zero. The active current reference id
* is originally set to

105A (the corresponding output power of three-phase VSC

is about 50 kW), and generates a 5% step disturbance at the

time of 1.1 s.

Figure 8 illustrates the influence of the virtual inertia

J on the dynamic behavior of CC-VSC. As shown in Fig. 8,

it is obvious that the oscillation of x decreases with the

virtual inertia J increasing. It means that the larger virtual

inertia coefficient is able to withstand abrupt fluctuation of

the angular frequency x. If the virtual inertia of the CC-

VSC is too small, the instantaneous fluctuation of the

angular frequency will be large. The ability to maintain the

system frequency can be regulated by designing the virtual

inertia coefficient J. However, the stronger ability of fre-

quency stabilization is at the cost of larger fluctuation of

the output power of CC-VSC, and the corresponding
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Table 2 Parameters for simulation

Parameters Symbol Values

Grid phase voltage Ug 220 V

Grid frequency f 50 Hz

Link inductance L 2 mH

Filter inductance Lf 0.4 mH

Active power P 50 kW

Reactive power Q 0

DC-side voltage Udc 800 V

Switching frequency fs 12.5 kHz

Equivalent parameters J, kp, ki 0.05, 1, 200

PI gain of current loop Kp, Ki 200, 30

590 Shulong TAN et al.

123



equivalent energy w supporting inertia response, as shown

in Fig. 8. It is also coherent with the theoretical analysis

given in (16). As shown in (16), if the virtual inertia J is

larger, the fluctuation of the equivalent energy Dw will be

large, so as the corresponding active power DP.
Figure 9 illustrates the influence of the proportional gain

of PLL on the damping characteristic of CC-VSC. Dis-

tinctly, oscillations of the angular frequency, the equivalent

energy w and the output active power are mitigated with

the parameter kp increasing. It is indicated that larger kp
provides a better damping capability, which is coherent

with the theoretical analysis given in (15).

Figure 10 shows the impact of the integral gain ki of the

PLL on the synchronizing ability of CC-VSC. As shown in

Fig. 10, the angular frequency, the equivalent energy w as

well as the corresponding output power are able to draw

near to each steady state value more quickly, with the

increase of ki. It is revealed that larger ki indicates stronger

synchronizing ability in accordance with (15). As stated in

Section 4, the natural frequency will increase while the

damping ratio will decrease with the parameter ki
increasing. So it can also be observed that the oscillation

amplitudes of x, w, and P get higher with the integral gain

ki increasing in Fig. 10.

6.2 Validation of stability analysis based

on proposed model

Simulation based on the two-machine power system is

also performed to demonstrate the validity of the proposed

Phillips-Heffron model of CC-VSC for multi-machine

application in Section 5. System configuration is illustrated

in Fig. 6. The main parameters are given in Table 1. It is

worth to note that the ‘‘master SG’’ which represents the

microgrid is implemented as a droop- controlled VC-VSC

in the simulation.

In these following simulation results, the output active

power of CC-VSC is set to 20kW and the reactive power is

zero. At the time of 5.1s, the voltage of the microgrid
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generates a 5� phase jump as a disturbance. Figure 11

illustrates the influence of the inertia coefficient of CC-

VSC on the small-signal stability of the two-machine

system. Figure 11a depicts the situation when the inertia of

CC-VSC is relatively small (J = 0.05), Fig. 11b shows the

situation with a larger inertia (J = 0.15), and Fig. 11c

shows the situation when the inertia is larger than the

critical value shown in Fig. 7a. There is a coupling oscil-

lation between the angular frequency of master SG, namely

x1, and the angular frequency of CC-VSC, namely x2. The

coupling oscillation is relatively slow with a large inertia of

the CC-VSC, while the frequency of the coupling oscilla-

tion mentioned above is higher with a small inertia, com-

paring the Fig. 11a and b. It is also revealed that, with the

inertia of the CC-VSC increasing, the small-signal stability

of the system is deteriorated, regardless of the suppression

of the instantaneous frequency fluctuation of CC-VSC

itself. From Fig. 11c, it can be see that the system will

become unstable after the equivalent inertia of the CC-VSC

exceeds the critical value.

As shown in Fig. 12, the coupling frequency dynamic of

the two-machine system will be affected by the damping

coefficient of the CC-VSC. As shown in Fig. 12a, with a

large damping coefficient (kp = 3), the convergence of the

frequency oscillation is fast. While the damping coefficient

of the CC-VSC is decreased (kp = 1), the frequency

oscillation gets more obvious, which implies a poor sta-

bility. With the parameter kp further decreasing and

exceeding the critical value in Fig. 7b, the angular fre-

quency of both the CC-VSC and the master SG keep sus-

tained divergent oscillating.

The influence of the synchronizing coefficient of the

CC-VSC is illustrated in Fig. 13. Compared with the

Fig. 13b, Fig. 13a has a relatively poor performance of the

system stability with a large synchronizing coefficient

(ki = 300) of the CC-VSC. The frequency oscillation is

more obvious than that in Fig. 13b when the disturbance

occurs, especially the frequency dynamic of the CC-VSC

itself. Moreover, the frequency of the coupling oscillation

is higher with the large synchronizing coefficient, which is

also in accordance with the analysis in Section 5. After the

synchronizing coefficient of the CC-VSC is reduced

(ki = 150) appropriately, the frequency oscillation of the

system is suppressed in a certain extent. Nevertheless, as

mentioned in the theoretical analysis in Section 5, with the

parameter ki further decreasing and exceeding the critical

value in Fig. 7c, the system will be unstable. This situation

is shown in Fig. 13c with a very small synchronizing

coefficient (ki = 50) of the CC-VSC.
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7 Conclusion

Considering the differences and relations between the

CC-VSC and the voltage source, the concept of current

angle is proposed for the CC-VSC, similar to the rotor

angle of traditional SG. By using the current angle, a

Phillips-Heffron model for the CC-VSC is presented,

considering the dynamic of phase-locked-loop (PLL) in the

weak grid. Then the dynamics of the CC-VSC in the

electromechanical time scale is represented by the famous

inertia, synchronizing and damping coefficients, and the

small-signal stability of a CC-VSC-based single machine

infinite bus system is analyzed by means of the traditional

theory of power system. It is found that: 1) The CC-VSC

can imitate the traditional SGs to implement equivalent

inertia by designing the parameter J in the PLL; 2) Within

certain limits, the CC-VSC possesses strong capabilities for

damping oscillations and supporting machine-grid syn-

chronism, if kp and ki are large; 3) On the contrary, these

capabilities will be weakened with the output active power

increasing or the connection inductance increasing.

Based on the relationship between the current angle and

the traditional power angle, the proposed Phillips- Heffron

model of the CC-VSC can be applied in the multiple-ma-

chine system. Taking the two-machine power system as a

basic case, the small-signal stability analysis is investi-

gated. It is revealed that the inertia, the damping and

synchronizing coefficient of CC-VSC will influence the

coupling oscillation of the whole system. Based on the

proposed model and the theoretical analysis, parameter

optimization of the CC-VSCs can be achieved from the

perspective of the small-signal stability of the modern

power system including VSCs and SGs.
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