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Abstract To satisfy the requirements of high energy

density, high power density, quick response and long

lifespan for energy storage systems (ESSs), hybrid energy

storage systems (HESSs) have been investigated for their

complementary characteristics of ‘high energy density

components’ and ‘high power density components’. To

optimize HESS combinations, related indices such as

annual cost, fluctuation smoothing ability as well as safety

and environmental impact have to be evaluated. The multi-

attribute utility method investigated in this paper is aimed

to draw an overall conclusion for HESS allocation opti-

mization in microgrid. Building on multi-attribute utility

theory, this method has significant advantages in solving

the incommensurability and contradiction among multiple

attributes. Instead of determining the weights of various

attributes subjectively, when adopting the multi-attribute

utility method, the characteristics of attributes and the

relation among them can be investigated objectively. Also,

the proper utility function and merging rules are identified

to achieve the aggregate utility which can reflect compre-

hensive qualities of HESSs.

Keywords Hybrid energy storage system (HESS),

Capacity optimization, Multi-attribute utility theory, HESS

combination evaluation, Utility function

1 Introduction

Currently, the energy storage system (ESS) applications

can be divided into 2 categories, which require high energy

capacity ESSs and high power capacity ESSs [1]. The

energy ESS is used for large-volume energy storage for a

long term. The power ESS is used during the peak power

period and is normally for short-term use. With an energy

ESS or a power ESS alone, the system could possibly fail at

satisfying power or energy demand, and a common solu-

tion is to increase the size of the ESS, but this will increase

the cost and bring challenges in thermal management and

lifetime management [2].

The main idea of a hybrid energy storage system (HESS)

is to exploit the complementarity between the 2 ESS types.

HESS ensures that the energy ESS serves as the basic energy

storage, and uses minimal charge and discharge operations

to extend its lifetime, whereas the power ESS works mainly

in the peak power period and without large amounts of

energy storage. With a proper balance of characteristics, the

system performance and cost can be optimized. In this

paper, 5 ESSs are under investigation. They are lead acid

batteries, NAS batteries, compressed-air energy storage

(CAES), fly-wheel storage, and super capacitors. Based on

an analysis of energy density, power density, efficiency and

lifespan analysis, these 5 ESSs are studied to understand the

basis for deciding their role in an HESS [3, 4].
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Among the existing studies on ESS optimization, [5] has

offered a new capacity optimization method. In particular,

two different real-time control algorithms for power allo-

cation and power response control between HESSs were

tested to achieve coordination and lower the total capacity

required. In [6], empirical mode composition has been

applied to decompose the wind power into high and low

frequency components, and a neural network model has

been utilized to determine the capacity of a supercapacitor-

battery HESS for power smoothing. However, these studies

have mainly focused on capacity optimization of 2 prede-

termined ESSs without discussing the HESS

combination.

Among the current research on ESS evaluation, [7]

discussed the optimal ESS capacities and the comparison

of different types of DG sources to minimize the cost of a

microgrid, whilst [8] built a model of photovoltaic power

systems by using 3 different ESSs, including battery, fuel

cell, and a battery/fuel-cell combination, and the 3 power

systems are evaluated using cost metrics and efficiency

metrics. Ref. [9] evaluated ESSs in hybrid mining loaders

and determined suitable ESSs for different technical

requirements based on the ESS characteristics and vehicle

simulation results.

However, the papers mentioned above are mainly about

the comparison between single ESSs and HESSs, and the

evaluation is based on subjective judgment instead of the

quantitative calculation of optimization results. Also, the

impact on safety and the environment is not included.

In this paper, a multi-attribute utility method is intro-

duced [10]. By adopting this method, the HESS combina-

tion evaluation is carried out after potential alternatives are

determined and their capacities are optimized, without

choosing 2 ESSs for the HESS subjectively.

The multi-attribute utility method has the ability to

evaluate and quantize each attribute into a utility measure,

and to merge all the elementary utilities into an overall

utility based on the features and their relationships.

To solve their incommensurability, the manifold attri-

butes are categorized and arranged according to the rela-

tionships between them. The quantitative and non-

quantitative attributes can all be quantified by their utility,

which can be normalized into non-dimensional parameter

within a common range by using a multi-attribute utility

function. To resolve any contradictions, the normalized

attributes can be merged by proper merging rules, like an

additive form, a multiplicative form, and a distance form

corresponding to different relationships between

parameters.

Moreover, the paper combines both ‘islanded’ and

‘parallel’ modes of microgrid operation in capacity opti-

mization. In parallel mode, the goal of optimization is to

minimize the operation and investment cost. And in the

islanded mode, the reliability limit is according to opera-

tional constraints. In the capacity optimization, the

volatility of wind and solar generation output is smoothed

by the HESS. After determining the HESS capacity and

combination, in the light of the Monte Carlo simulation and

the reliability evaluation method proposed in [11], the

regulation and control ability of the HESS could be

assessed when taking the uncertainties of the distributed

energy system into consideration in both modes.

2 Overview of multi-attribute utility method

2.1 Theory of multidimensional utility merging

To carry out the multi-attribute utility method, 3 pre-

mises are proposed as follows:

1) Systematic principle. The attributes should be able to

represent the aggregate function instead of a simple

addition of all the attributes. An explicit and reason-

able hierarchical structure, cohesive and coordinated,

is essential.

2) Comparability principle. The attributes should be

practical and subjective, and decomposition or trans-

formation should be applied ahead to avoid any

inclusive relationships.

3) Scientific principle. Quantitative and qualitative anal-

ysis is intended to be merged. For qualitative analysis,

the collected data should be compatible and

comparable.

2.2 Basic rules of multidimensional utility function

The interdependence among the attributes should be

fully reflected in the aggregate utility function. The basic

rules that must be satisfied are as follows:

oWðxÞ
oui

� 0 ð1Þ

lim
u1;u2;...;un!0

WðxÞ ¼ 0 ð2Þ

lim
u1;u2;...;un!1

WðxÞ ¼ 1 ð3Þ

where W(x) and un(x) are the aggregate utility function and

elementary utility function respectively.

Equation (1) indicates the aggregate function should

increase when the elementary utility increases. Equa-

tions (2) and (3) reflect that the aggregate utility function

should be very low when none of the attributes is satisfied,

and it should be very high when all of them are satisfied.

Currently, utility theory is widely applied in risk and

safety assessment as well as optimal planning of power
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systems [12, 13]. In our research, with capacity optimiza-

tion, multiple technical and operational parameters of

HESS are collected. A detailed utility function is con-

structed for normalization of each attribute, and the

merging rule is applied, according to the relationships

among operational parameters, cost and other attributes, to

get aggregated utility.

3 Evaluation model for HESS combinations

3.1 Process of model development

Figure 1 shows the operations involved in the multi-at-

tribute utility method. The standard evaluation process is given

on the left, and the steps involved are shown on the right.

There are 5 ESSs available in this research. Therefore,

the potential combinations of HESS are regarded as the

decision alternatives.

A comprehensive and reliable indication system (IS) is

the first step to evaluate each HESS, and then the utility

function can be identified on the basis of the IS. The

technical parameters are then collected after capacity

optimization.

During elementary utility function normalization and

aggregated function determination, the characteristics and

the relationships of the entire index are studied to compute

the comprehensive utility. The detailed process is presented

in the remainder of this section.

3.2 Classification of ESS

In this paper, the complementarity of the 2 ESS types is

exploited to improve the performance and reduce the cost.

The applications for the high energy capacity ESSs are

long-term and large-volume energy storage that require

high energy density, long sustained discharge time, and

low self-discharge rate.

The applications for the high power capacity ESSs are

periodic high-power output and frequent charge and dis-

charge that require high power density, short response

time, and long lifespan.

Currently, there is no standard specification to describe

the applications of ESSs. Additionally, some ESSs cannot

clearly and absolutely be assigned to either application

type. So based on the requirement above, the 6 character-

istics are divided into energy type and power type to reflect

the qualities of high energy capacity ESS and high power

capacity ESS respectively [14].

In this research, the compare-and-sort evaluation

method is therefore proposed to decide the relatively

appropriate application for ESSs. Each ESS is graded

according to 6 characteristics by ranking from the best

fitting to the worst, and then it is classified into 2 appli-

cation groups by comparing the sum of the grades of each

ESS.

Among the 5 ESSs, the lead acid battery, NAS battery,

and CAES are classified as high energy capacity type for

their better performance concerning the energy-type char-

acteristics, whereas the flywheel and super capacitor are

more suitable for high-power applications.

3.3 Capacity optimization of HESS

To acquire the parameters necessary to evaluate a

HESS, such as load shifting index, equivalent annual cost

and lifetime for each potential HESS combination, capacity

optimization is carried out in a microgrid.

3.3.1 Optimization model

In islanded microgrid mode, reliability and effective

power output smoothing are essential without the support

from the utility grid, whilst in parallel microgrid mode, the

economical characteristics of a microgrid are the major

concerns.

Consequently, the optimization objective is set as min-

imizing the equivalent annual cost in parallel mode, and the

operational constraints are the reliability index in an

islanded microgrid. This optimization model sets the

operational constraints according to the most challenging

circumstance that ensures reliability in both islanded and

parallel modes, also the equivalent annual cost is mini-

mized to improve the economic characteristics of the

microgrid. After capacity optimization, the load shifting

index needs to be calculated to evaluate the load smoothing

ability of each HESS.

Classify ESS and identify decision alternatives

Build indication system (IS)

Determine elementary utility 
function and normalize attributes

Determine hierarchical structure 
based on elementary utility

Apply merging rules to aggregate utility function

Compute and arrange utility in descending order

1. HESS capacity optimization
2. Further parameter collection

1. Index characteristic analysis
2. Index normalization

1. Attribute relationship analysis
2. Aggregate utility function

Fig. 1 HESS evaluation and selection process
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3.3.2 Model of ESS

The state of charge (SOC) is the basis of a unified ESS

model [15] for both mechanical and chemical ESSs, with

the following definition:

SoC ¼ EðtÞ=EnðtÞ ð4Þ

where E(t) is the remaining capacity of ESS at the current

moment; En(t) is the maximum capacity.

The following equations define the charge and discharge

characteristics at moment t:

SoCðtÞ ¼ SoCðt � 1Þ þ PCðtÞgcDt=En ð5Þ
SoCðtÞ ¼ SoCðt � 1Þ � PDðtÞDt=ðEngdÞ ð6Þ

where Dt is the sampling interval; PC(t) and PD(t) are the

charge and discharge power of the ESS at the current

moment; gc and gd are the charge and discharge

efficiency.

The ESS constraints include input and output power

limits and the SOC limit:

Pmin
C �PCðtÞ�Pmax

C ð7Þ

Pmin
D �PDðtÞ�Pmax

D ð8Þ

SoCmin � SoCðtÞ� SoCmax ð9Þ

In the equations above, PC
max and PD

max are the maximum

input (charging) and output (discharging) power, defined

by:

Pmax
C ¼ min Pcm; ½En � Eðt � DtÞ�=ðDtgcÞgf ð10Þ

Pmax
D ¼ min Pdm; ½Eðt � DtÞ � Emin

B �gd=Dtg
�

ð11Þ

where Pcm and Pdm are the rated ESS power. Equa-

tions (10) and (11) compare the rated input/output with the

possible input/output to get the actually feasible ESS input/

output.

3.3.3 Optimization algorithm

Capacity optimization of a HESS is non-linear with a

large computation requirement. Also, there exist only 2

decision variables that are the capacities of 2 ESS, which

means, a multi-algorithm is not required to improve the

astringency. Under these circumstances, the particle swarm

optimization algorithm (PSO) is applied in this paper,

because it can converge quickly, perform accurate iterative

calculations and can be implemented easily.

3.4 Indication system

The optimum capacity results of multiple HESS alter-

natives need to be assessed to get the most suitable combi-

nation for a particular microgrid application. Furthermore,

during installation or operation, some ESSs, especially the

chemical ESSs, might pose safety or pollution risks [16].

Thus, in this research, besides the technical parameters, cost

and lifetime, the environmental impact and operational

safety are also included in the indication system.

3.4.1 Load shifting

In a microgrid, a HESS can be applied to shift and

smooth load to reduce peaks and valleys, and the corre-

sponding optimization function is:

f ¼

PM

t¼1

PfðtÞ � Paveð Þ2

M
ð12Þ

where Pf(t) is the total output of the HESS and renewable

energy system calculated by (13); Pave(t) is the average

output of the total microgrid system defined by (14).

PfðtÞ ¼ PloadðtÞ � PPVWðtÞ þ PstrðtÞ ð13Þ

Pave ¼
1

M

XM

t¼1

PfðtÞ ð14Þ

where Pload(t), PPVW(t), Psrt(t) are the power load, total

renewable energy system output, and HESS output; M is the

number of discrete samples in the 24-hour period modeled.

3.4.2 Equivalent annual cost

When the microgrid functions in parallel or ‘on-grid’

mode, the power exchange between the microgrid and the

utility grid could potentially bring profit or loss. Thus, in

this paper, the cost model is regarded as the equivalent

annual cost defined as the annual cost of the HESS minus

the power trading profit assumed the same on every day.

CE ¼ Cs � 365Ceco ð15Þ

where Cs is the annual cost of HESS; Ceco is the power

trading profit in 24 hours. Ceco is positive when power

trading results in profits and when Ceco is negative there

exists an economic loss. The calculation of Cs and Ceco is

defined as follows.

1) Annual cost

The capital cost, O&M cost and retirement cost are

taken into realistic consideration in this paper. All the costs

can be transferred into annual cost using the bank interest

and lifespan of the ESS.

Cs ¼
drðdr þ 1ÞY
ðdr þ 1ÞY � 1

½CpPþ CEE þ CR

ðdr þ 1ÞY þ CM� ð16Þ

where Cp is the investment in each energy storage unit; CE

is the investment in the power transmission, inverter and
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control system; P and E are the rated power and rated

capacity of the ESS module, which make CpP ? CEE the

capital cost for a single ESS module; CR is the retirement

cost; CM is the O&M cost; dr is the interest rate; Y is the

lifespan.

2) Power trading profit

In parallel mode a microgrid creates a profit given by:

Ceco ¼
XM

t¼1

PgridðtÞCEpriceðtÞDt ð17Þ

where Pgrid(t) is the power exported to the utility grid;

CEprice(t) is the electricity cost. This assumes that elec-

tricity exported will be rewarded at the same price as

electricity purchased. This is not necessarily true and the

applicable feed-in tariff should be used where available.

3.4.3 Reliability constraints

In this research, the loss of power supply probability

(LPSP) and the loss of produced power probability (LPPP)

are applied to represent reliability in a microgrid [17].

LPSP expresses when the produced system power is less

than the power requirement, and it is defined as follows:

LPSP ¼
XM

t¼1

ELPSðtÞ=
XM

t¼1

ElðtÞ ð18Þ

where ELPS(t) is the energy shortfall in interval t; El(t) is

the energy demand in that interval.

LPPP expresses the lost or curtailed power when the

total produced power is more than the demand power,

which is defined as follows:

LPPP ¼
XM

t¼1

ELPPðtÞ=
XM

t¼1

EPVWðtÞ ð19Þ

where ELPP(t) is the unused or curtailed energy in interval

t; EPVW(t) is the total energy output of wind and solar

generators in the microgrid.

To make sure the microgrid works in a stable state,

LPPP and LPSP should be constrained by:

LPSP� LPSPmax ð20Þ
LPPP� LPPPmax ð21Þ

3.4.4 Lifespan

Of all 5 ESSs discussed in this paper, a NAS battery,

flywheel, CAES and super capacitor have a relatively long

lifespan. To simplify the calculation and model, the lifes-

pan for these ESSs is set at a constant value. However, the

depth of discharge (DOD), the discharge rate and the

number of cycles have large impact on the lifespan of a

lead acid battery [18], so the lifespan prediction model in

[19] is applied, as follows.

The battery has a finite life, which is regarded as the sum

of the effective ampere-hours in the entire lifecycle. There

exists a rated discharge life for each lead acid battery.

When the sum of the effective ampere-hours during every

discharge event equals the rated discharge life, the battery

is then considered to have reached the end of its

lifespan.

The rated discharge life UR is defined as:

CR ¼ LRDRCR ð22Þ

where DR is the DOD at rated cycle life, and DOD equals

to 1-SoC; LR is the cycle life at the rated DOD and dis-

charge current; CR is the rated amp-hour capacity at the

rated discharge current.

The effective discharge is expressed in the form of

effective ampere-hours as follows:

deff ¼
DA

DR

� �u0

exp u1

DA

DR

� �
� 1

� �
CR

CA

� �
dact ð23Þ

where DA is the actual DOD; dact is the discharge ampere-

hours during every discharge event; CA is the discharge

capacity that can be calculated from battery specification

sheet; u0 and u1 are the fitting parameters of the ‘life

cycles–DOD’ curve of the battery.

3.4.5 Safety and environmental impact

The environmental impact mainly comprises combus-

tion of fuels or gas, toxic remains and other impacts during

ESS construction. Ref. [20] reviewed the environmental

impact of several ESSs for comparison using a life cycle

assessment method.

In terms of safety, the condition during installation,

operation and dismantling are taken into account.

To evaluate the safety and environmental impact, this

paper grades the ESSs under consideration into 3 levels

according to collected data and results [21–23] so that

further quantitative transformation can be simplified. The

three levels express the performance of an ESS as ‘Good’,

‘Medium’ and ‘Poor’. Table 1 provides the given value of

safety and environmental impact of ESSs.

Table 1 Safety and environmental impact of ESSs

ESS Safety Environmental impact

Lead acid Medium Poor

NAS Poor Good

Flywheel Good Good

CAES Good Medium

Super capacitor Good Good
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3.5 Elementary utility functions and normalization

Multiple attributes should be converted into non-di-

mensional and standard form for evaluation. Let D = {D1,

D2, …, Dn} be the set of decision alternatives. Let A = {A1,

A2, …, Am} be the set of attributes associated with the

consequences, which can be evaluated. For decision alter-

native Di, there exists a set of utility consequences

g = {gi1, gi2, …, gij} (i = 1,2,…,n; j = 1,2,…,m) which is

the impact of each decision alternative on every conse-

quence attribute. The matrix G = (gij)n9m can be can be

used to describe and compute attributes and is called ‘at-

tribute matrix’ or ‘decision matrix’ [24]. In this paper,

D = {Load shifting optimal result, Equivalent annual cost,

LPSP, Lifespan, Safety, Environmental impact}.

The purpose of normalization is to convert all attributes

into real numbers in the range [0, 1]. There exists a worst

consequence gi
0 and a best consequence gi

* which should be

given values of 0 and 1 respectively, and other utility

measures be between gi
0 and gi

*.

3.5.1 Load shifting normalization

The level of consumption is the main characteristic

desired from load shifting, which means the smaller the

index is, the better the utility is. Also, in capacity opti-

mization, the design objective for load shifting involves

squaring, which benefits capacity optimization by empha-

sizing large shifting indexes. However, for subjective

evaluation, a lesser load shifting effect is preferable in the

utility. So, to remove the squaring effect, the square root is

applied in u1 for a more subjective result, and the following

utility function is used.

z1j ¼ u1ðg1jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gmax

1 � g1j

gmax
1 � gmin

1

s

ð24Þ

where g1
max and g1

min are the largest and smallest values of

attribute D1; g1
max is gi

0 and g1
min is gi

* so that u1(g1
max) = 0

and u1(g1
min) = 1.

3.5.2 Normalized equivalent annual cost normalization

The lower the cost is, the better the attribute should be.

Since the cost is a major concern in industry applications,

to enlarge the cost utility relative to decision alternatives,

the utility function is defined as a simple linear function.

z2j ¼ u2ðg2jÞ ¼
gmax

2 � g2j

gmax
2 � gmin

2

ð25Þ

where g2
max and g2

min are the largest and smallest values of

attribute D2.

3.5.3 Reliability normalization

The reliability requirement is given as a restriction on

the loss of power supply probability (LPSP) given in (20).

The LPSP provides a binary constraints, with the evalua-

tion result either satisfied or unmet, and thus the following

utility function is proposed.

z3j ¼ u3ðg3jÞ ¼
1 g3j � LPSPmax

0 g3j [ LPSPmax

�
ð26Þ

3.5.4 Lifespan normalization

There is a positive correlation between lifespan and

elementary utility. Since the lifetimes estimated in this

paper are approximate, the disparity among them should

not be emphasized too much. Thus, lifespan can be nor-

malized as follows:

z4j ¼ u4ðg4jÞ ¼
g4j

gmax
4

ð27Þ

Since (27) has a ratio based on the g4
max instead of

g4
max–g4

min, the disparity of the effect of approximate value

is reduced.

3.5.5 Safety and environmental impact normalization

For qualitative attributes, in this paper, the utility

function is based on grading, and the main characteristics

are discussed in Sect. 3.4.5. The 3 levels defined there

allow this normalized utility to be defined.

z5j ¼ z6j ¼ u5ðg5jÞ ¼ u6ðg6jÞ

¼
1 g5j ¼ ‘Good’

2=3 g5j ¼ ‘Medium’

1=3 g5j ¼ ‘Poor’

8
<

:
ð28Þ

For a HESS, the elementary utility is defined as the

average value.

z5j ¼
1

2
½u5ðgk5jÞ þ u5ðgl5jÞ� ð29Þ

where g5j
k and g5j

l are the storage type in the current HESS.

3.6 Merging rules and hierarchical structure

With the independent elementary utilities defined above,

the following method is applied to merge them and com-

pute the aggregate utility.

3.6.1 Multiplicative rule

When two attributes have mutual independence and

equal influence on the aggregate utility, and if and only if
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both of them are equal to 1, the utility consequence can

reach 1. This relationship is interpreted as follows:

1) W 1; 1ð Þ ¼ 1

2) W 0; 0ð Þ ¼ 0

3) W u1; 0ð Þ ¼ 0; W 0; u2ð Þ ¼ 0

These are satisfied by a multiplicative rule defined as

follows:

Wðu1; u2Þ ¼ u1u2 ð30Þ

3.6.2 Additive rule

When two attributes have additive independence, the

additive rule reflects how they compensate each other in

forming the aggregate utility. It is as follows:

1) W 1; 1ð Þ ¼ 1

2) W 0; 0ð Þ ¼ 0

3) W 1; 0ð Þ ¼ r1; W 0; 1ð Þ ¼ r2; r1 þ r2 ¼ 1

These are satisfied by an additive rule defined as

follows:

Wðu1; u2Þ ¼ u1 þ u2 ð31Þ

3.6.3 Distance rule

In the distance rule, the attributes can be compensated

by each other in a nonlinear way. The distance rule is

usually applied to combine cost and benefit indices due to

its ability to determine the best cost at a certain benefit or

the best benefit at a certain cost.

1) W 1; 1ð Þ ¼ 1

2) W 0; 0ð Þ ¼ 0

3) 0\W 1; u2ð Þ� 1; 0� u2 � 1ð Þ
0\W u1; 1ð Þ� 1; 0� u1 � 1ð Þ

The distance rule is defined as follows:

Wðu1; u2Þ ¼ 1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
½ð1 � u1Þ2 þ ð1 � u2Þ2�

r

ð32Þ

3.6.4 Multi-attribute merging hierarchical structure

of HESS

The merging hierarchical structure is built according to

the relationships among the indices, which is explained as

follows.

Considering the equivalent annual cost and lifespan, if

and only if both of them are the optimal results, the

effective cost of the system would also be optimal, so the

multiplicative rule is applied:

Wðu2; u4Þ ¼ u2u4 ð33Þ

Considering safety and environmental impact, they are

both non-operational indexes. They indicate the effect that the

system brings to the surroundings. Thus the relation between

them is additive. Moreover, they are regarded as equal in

significance, therefore, r1 and r2 are both equal to 0.5 and

Wðu5; u6Þ ¼
1

2
u5 þ

1

2
u6 ð34Þ

Considering load shifting and the effective cost, they are

typically cost and benefit attributes, and the improvement

of either could increase the satisfaction index of the final

HESS combination. This compensation relationship

indicates that distance rule should be used as follows:

Wðu1; u2; u4Þ ¼ 1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
½ð1 � u1Þ2 þ ð1 � u2u4Þ2�

r

ð35Þ

In the overall evaluation, none of the aggregated

attributes mentioned above can be ignored, and if and

only if all of them achieve the optimal result, the aggregate

utility could also be the highest, that is to say the rule

applied for overall evaluation is multiplicative.

The general utility function can be defined as follows:

WG ¼ 1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
½ð1 � u1Þ2 þ ð1 � u2u4Þ2�

r( )
1

2
u5 þ

1

2
u6

� �
u3

ð36Þ

Based on this analysis, the hierarchical structure for and

HESS combination in a microgrid is shown in Fig. 2.

4 Case study

Figure 3 shows the curve of wind, solar and load output,

and the electricity price which are studied to test the model

presented. The capacity of the wind generator is 1.2 MW,

the capacity of the solar generator is 800 kW, the maxi-

mum load is 3 MW, and the power exchange limit between

the microgrid and the utility grid is 500 kW.

General consequence

Cost-benifit Safety and reliability

Effective cost

Annual
cost Lifespan

Load shifting 
optimization

Other factors

Safety Environment
impact Reliability

Distance rule

Fig. 2 Evaluation hierarchical structure in microgrid
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4.1 Multiple attributes computations

After capacity optimization of a HESS for this micro-

grid, using PSO in MATLAB, the optimal results shown in

Table 2 can be obtained. In this case, the original load

shifting index without HESS optimization is 522350, and

the original LPPP and LPSP are 0.1555 and 0.2723.

As shown in the Table 2, all the HESSs are effective at

smoothing output and improving reliability in total

system.

A lead acid battery which works as a single ESS has

the best load shifting performance. On the other hand,

the CAES and super capacitor combination has the

lowest equivalent annual cost. However, this HESS

cannot satisfy LPSP limit, which makes it unaccept-

able in this case.

4.2 Elementary utility computations and merging

After capacity optimization, the necessary attributes are

collected to carry out the multi-attribute utility method.

The elementary and aggregated utilities of 6 combinations

are expressed in Table 3.

Figures 4, 5, 6, 7 and 8 present the utility functions of

the 6 attributes with the safety and environment impact

attributes are already merged. For load shifting index, the

slope of the curve is smaller than for the other indices,

which exactly expresses the smaller disparity between 2

HESSs, if they have similar abilities to reduce load shifting

Fig. 3 Wind output, solar output, load and electricity price curve for

an islanded microgrid

Table 2 Capacity optimization in islanded microgrid

HESS Capacity (kW) Equivalent annual cost ($) Load shifting optimal result LPPP LPSP Lifespan (year)

Lead acid ? Flywheel 709.320 1316700 287290 0.1 0.2017 10

20

Lead acid ? Super capacitor 709.320 1316700 287290 0.1 0.2017 10

15

NAS ? Flywheel 300

400

1887900 347380 0.0989 0.225 15

20

NAS ? Super capacitor 420

985.6

1893000 330910 0.1 0.2222 15

15

CAES ? Flywheel 550

1100

1944800 325500 0.0995 0.2306 40

20

CAES ? Super capacitor 550

0

776730 348270 0.12 0.2431 40

15

Table 3 Elementary utility after multi-attribute evaluation for islanding microgrid

HESS Elementary utility of each attribute

Load shifting

optimal result

Equivalent

annual cost

LPPP/LPSP Lifespan Safety Environmental

impact

Aggregate

utility

Lead acid ? Flywheel 1 0.5377 1 0.5 0.8333 0.6667 0.3623

Lead acid ? Super capacitor 1 0.5377 1 0.5 0.8333 0.6667 0.3623

NAS ? Flywheel 0.1208 0.0487 1 0.75 0.6667 1 0.0648

NAS ? Super capacitor 0.5336 0.0443 1 0.75 0.6667 1 0.2001

CAES ? Flywheel 0.6111 0 1 1 1 0.8333 0.2212

CAES ? Super capacitor 0 1 0 0.75 1 0.8333 0
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index. The other utility curves also show the correct

behavior corresponding to the attributes’ characteristics.

Combining the results in Table 2 and the aggregate

utility in Table 3, the result shows that the most satisfying

combination and capacity allocation is the lead acid battery

with flywheel or supercapacitor, and the highest aggregate

utility is 0.3623. This HESS has the lowest equivalent

annual cost but has the best performance in load shifting

and is also able to satisfy the reliability limit.

Figure 9 presents 4 elementary utilities, without LPSP

and LPPP limits.

Combining Table 3 with Fig. 9, several conclusions can

be drawn. For the CAES and flywheel HESS, even an

excellent load shifting performance cannot make up for the

highest equivalent annual cost, which makes it less suit-

able in this case, and the same assessment also applies to

the NAS and flywheel HESS. The 709 kW lead acid bat-

tery has the best load shifting performance and a rather low

equivalent annual cost. From Fig. 9, it can be seen that the

lead acid battery doesn’t have any extremely low attributes,

which makes it the most acceptable solution in this case.

Fig. 4 Utility curve for load shifting

Fig. 5 Utility curve for equivalent annual cost

Fig. 6 Utility curve for reliability

Fig. 7 Utility curve for lifespan

Fig. 8 Utility curve for safety and environmental impact

Fig. 9 Elementary utility of 4 possible HESS combination
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5 Conclusion

In this paper, based on ESS characteristics and power

system requirements, both capacity optimization and multi-

attribute combination optimization for HESSs in a micro-

grid are conducted. The effectiveness and validity of this

model are verified by a case study. From the case study, the

following conclusions can be drawn:

1) For capacity optimization, with the proper amount of

HESS integrated in a microgrid, the equivalent annual

cost in parallel mode and the reliability in islanded

mode are both substantially improved. Through this

optimization model, the optimization objectives of

both microgrid operational modes can be combined.

2) For HESS combination optimization, instead of mak-

ing a subjective choice in advance without considering

a range of ESS characteristics, this paper proposes an

evaluation method that can offer an aggregate utility of

each HESS combination. This helps to reconcile

sometimes conflicting requirements to reduce the cost

and environmental impact, and at the same time to

improve operating stability, reliability and safety.

Acknowledgements This work was supported by Science and

Technology Foundation of State Grid Corporation of China (No.

520940120036) and the Key Project of the National Twelfth-Five

Year Research Programme of China (No. 2013BAA01B04).

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits unrestricted

use, distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

[1] Zhou H, Bhattacharya T, Tran D et al (2011) Composite energy

storage system involving battery and ultracapacitor with

dynamic energy management in microgrid applications. IEEE

Trans Power Electron 26(3):923–930

[2] Cao J, Emadi A (2012) A new battery/ultracapacitor hybrid

energy storage system for electric, hybrid, and plug-in hybrid

electric vehicles. IEEE Trans Power Electron 27(1):122–132

[3] Ferreira HL, Garde R, Fulli G et al (2013) Characterisation of

electrical energy storage technologies. Energy 53:288–298

[4] Kim Y, Koh J, Xie Q et al (2014) A scalable and flexible hybrid

energy storage system design and implementation. J Power

Sources 255(6):410–422

[5] Arrigoni S, Tarsitano D, Cheli F (2016) Comparison between

different energy management algorithms for an urban electric

bus with hybrid energy storage system based on battery and

supercapacitors. Int J Heavy Veh Syst 23(2):171–189

[6] Sun C, Yue Y, Choi SS et al (2015) Capacity optimization of

hybrid energy storage systems in microgrid using empirical

mode decomposition and neural network. Autom Electr Power

Syst 39(8):19–26. doi:10.7500/AEPS20140719002

[7] Chen C, Duan S, Cai T et al (2011) Optimal allocation and

economic analysis of energy storage system in microgrids. IEEE

Tran Power Electron 26(10):2762–2773

[8] Li CH, Zhu XJ, Cao GY et al (2009) Dynamic modeling and

sizing optimization of stand-alone photovoltaic power systems

using hybrid energy storage technology. Renew Energy

34(3):815–826

[9] Lajunen A, Suomela J (2012) Evaluation of energy storage

system requirements for hybrid mining loaders. IEEE Trans Veh

Technol 61(8):3387–3393

[10] Amali C, Jayaprakash D, Ramachandran B (2014) Optimized

network selection using aggregate utility function in heteroge-

neous wireless networks. Int Rev Comput Softw 9(7):1293–1301

[11] Liang H, Cheng L, Liu S (2011) Monte Carlo simulation based

reliability evaluation of distribution system containing micro-

grids. Power System Technol 35(10):76–81

[12] Zhang GH, Duan MY, Zhang JH et al (2009) Power system risk

assessment based on the evidence theory and utility theory.

Autom Electr Power Syst 33(23):1–4

[13] Golshannavaz S, Nazarpour D (2014) Multi attribute investment

planning of a grid-connected diesel/wind/PV/battery hybrid

energy system. J Renew Energy Environ 1(1):43

[14] Kim Y, Chang N (2010) Hybrid electrical energy storage sys-

tems design. Int Symp Low Power Electron Design 22:363–368

[15] Zou J, Dai B, Chao P et al (2013) Wind power smoothing

method using hybrid energy storage system based on SOC

hierarchical optimization. Autom Electr Power Syst 37(24):1–6

[16] Larcher D, Tarascon JM (2015) Towards greener and more

sustainable batteries for electrical energy storage. Nature Chem

7(1):19–29

[17] Abbes D, Martinez A, Champenois G (2014) Life cycle cost,

embodied energy and loss of power supply probability for the

optimal design of hybrid power systems. Math Comput Simul

98:46–62

[18] Masih-Tehrani M, Ha’Iri-Yazdi MR, Esfahanian V et al (2013)

Optimum sizing and optimum energy management of a hybrid

energy storage system for lithium battery life improvement.

J Power Sources 244(4):2–10

[19] Drouilhet S, Johnson BL (1997) A battery life prediction method

for hybrid power applications. In: AIAA aerospace sciences

meeting and exhibit, Reno, Nevada, 6–9

[20] Mcmanus MC (2012) Environmental consequences of the use of

batteries in low carbon systems: the impact of battery produc-

tion. Appl Energy 93(5):288–295

[21] Chen H, Cong TN, Yang W et al (2009) Progress in electrical

energy storage system: a critical review. Prog Nat Sci

19(3):291–312

[22] Rosewater D (2015) Guide to safety in utility integration of

energy storage systems. Energy Storage Integration Council,

2015

[23] Kousksou T, Bruel P, Jamil A et al (2014) Energy storage:

applications and challenges. Sol Energy Mater Sol Cells

120(1):59–80

[24] Pohekar SD, Ramachandran M (2004) Application of multi-

criteria decision making to sustainable energy planning—a

review. Renew Sustain Energy Rev 8(4):365–381

Xiaoshan FENG received the B.S from the School of Electronic,

Information and Electrical Engineering of Shanghai Jiao Tong

University, Shanghai, China, in 2014. Currently she is pursuing

Master degree at Shanghai Jiao Tong University. Her research interest

is the allocation optimization of energy storage system in power

system.

116 Xiaoshan FENG et al.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7500/AEPS20140719002


Jie GU received the B.S. and M.S. degrees from the Electric Power

Department of Shanghai Jiao Tong University, Shanghai, China, in

1992 and 1995, respectively, and the Ph.D degree from Shanghai Jiao

Tong University, Shanghai, China, in 2000. Currently, she is an

associate professor in the Key Laboratory of Control of Power

Transmission and Conversion, Ministry of Education, Department of

Electrical Engineering, Shanghai Jiao Tong University, Shanghai,

China. Her main interests and research fields are power system

planning and application of big data in power system as well as the

integration of the renewable energy.

Xuefei GUAN received the B.S. and M.S. degrees from the

Department of Electrical Engineering, Tsinghua University, Beijing,

China, in 2006 and 2011, respectively. Currently, he is a researcher in

the Research Center of New Technology, Shanghai Electric Power

Design Institute Co., Ltd, Shanghai, China. His research interests

include the application of energy storage technology in power system.

Optimal allocation of hybrid energy storage for microgrids based on multi-attribute… 117

123


	Optimal allocation of hybrid energy storage for microgrids based on multi-attribute utility theory
	Abstract
	Introduction
	Overview of multi-attribute utility method
	Theory of multidimensional utility merging
	Basic rules of multidimensional utility function

	Evaluation model for HESS combinations
	Process of model development
	Classification of ESS
	Capacity optimization of HESS
	Optimization model
	Model of ESS
	Optimization algorithm

	Indication system
	Load shifting
	Equivalent annual cost
	Reliability constraints
	Lifespan
	Safety and environmental impact

	Elementary utility functions and normalization
	Load shifting normalization
	Normalized equivalent annual cost normalization
	Reliability normalization
	Lifespan normalization
	Safety and environmental impact normalization

	Merging rules and hierarchical structure
	Multiplicative rule
	Additive rule
	Distance rule
	Multi-attribute merging hierarchical structure of HESS


	Case study
	Multiple attributes computations
	Elementary utility computations and merging

	Conclusion
	Acknowledgements
	References




