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Abstract This paper investigates the stability of LCL-fil-

tered grid-connected inverters with capacitor current

feedback (CCF) active damping. The impact of time delays

in the digital controller on active damping and its equiva-

lent virtual impedance is analyzed. The inherent relation-

ship between these time delays and stability is illustrated.

Specially, a critical value of the CCF active damping

coefficient kdamp_c is proposed to define three distinct

regions of stability evaluation. If kdamp_c[ 0, a sufficient

but smaller damping coefficient (kdamp\ kdamp_c) is rec-

ommended as optimum damping solution; if kdamp_c = 0,

system will be unstable irrespective of active damping; and

if kdamp_c\ 0, active damping is not necessary to design a

stable system. Necessary conditions to ensure stability are

identified; guidelines for controller design are then pre-

sented to optimize the performance of active damping and

dynamic response. Simulation and experimental results

confirm the presented analysis.

Keywords LCL filter, Grid-connected inverter, Controller

time delays, Stability

1 Introduction

With the increasing penetration of distributed energy

generation in power grids, grid-connected inverters become

an indispensable component of modern power systems

[1, 2]. A filter is necessary in a converter system to improve

the performance of harmonic attenuation. Among filter

designs, the LCL filter is attracting more attention because

of its much lower weight and size, compared to single L

filter. However, the LCL filter introduces substantial

complexities into controller design due to the resonance

phenomenon. Thus, damping solutions are needed to sta-

bilize the converter system.

Passive damping by inserting a resistor into the filter is

a direct and reliable solution. It has been proved that a

resistor connected in parallel with the filter capacitor has

an optimal magnitude characteristic for damping both in

low and high frequency ranges, but collateral effects of

high power losses are unaffordable [3]. To overcome this

drawback, various active damping strategies are proposed

to substitute the physical resistor by adding a feedback in

the controller, which can be proportional to the capacitor

current [4–6], or to the first-order differential of capacitor

voltage [7], or to the second-order differential of the grid-

side current [8, 9]. All of these damping strategies can be

applied as a virtual resistor with the equivalently optimal

performance, but proportional computation is more

accurate compared with differential approximation in

digital controller. Reference [10] found that an inverter-

side current feedback (ICF) control loop is naturally

stable, and this is equivalent to adding an inherent

capacitor current feedback (CCF) term to the forward

path of the direct control loop of the grid current; in other

words, active damping is achieved by CCF. Therefore, in

this paper, CCF active damping is adopted for its
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accuracy and simplicity when grid current is to be con-

trolled directly.

Despite a vast amount of literature that has been

published on the subject of LCL filter in grid-connected

inverters, there is still no consensus on a stability evalu-

ation method accounting for computation and pulse width

modulation (PWM) delays [11–17]. Reference [11] pre-

sented pioneering research on active damping in discrete-

time domain taking time delays into account, and con-

cluded that discrete-time active damping is not always

stable, depending on the ratio of resonance frequency to

sampling frequency. Then [12] identified three distinct

regions of LCL filter resonance frequency separated by

one sixth of the sampling frequency (fs/6), named the

critical resonance frequency. They also proposed a design

method for a digital controller in the two stable regions.

Similar conclusions were also drawn in [13, 14]. How-

ever, these papers do not provide sufficient explanation of

the inherent relationship between active damping and

controller time delays. Reference [15] demonstrated the

effect of delays on active damping performance, where

the virtual impedance model consisting of a resistance

paralleled with a reactance was proposed, but the con-

clusion is incomplete since active damping is not required

when the LCL filter is operated in the high resonance

frequency region. Reference [16] indicated that a single

loop of grid-side current feedback without any additional

active damping can be naturally stabilized by the inherent

damping characteristics owing to time delays in the dig-

ital control system. Besides, [17] analyzed the relationship

between time delays and stability of single loop con-

trolled inverters, and used an intentional time delay

addition method as inherent damping to improve stability

of the grid-side current feedback loop.

In summary, the literature does not provide a stability

evaluation method for digitally controlled LCL filtered

grid-connected inverters that accounts for computation

and PWM delays, nor does it provide a general guideline

for selecting controller parameters to ensure stability. In

this paper, Sect. 2 introduces a typical model of an LCL

filtered grid-connected inverter, and the traditional

method to evaluate CCF active damping is reviewed

briefly. Section 3 is devoted to a theoretical explanation

of the impact of time delays on active damping and the

equivalent virtual impedance caused by time delays. In

Sect. 4, by using a critical value of the active damping

coefficient, a stability evaluation method is developed.

Necessary conditions to ensure stability, and steps for

designing controller parameters to optimize the perfor-

mance of active damping and dynamic response, are

presented in Sect. 5. Simulation and experimental results

verify the presented evaluation method in Sects. 6, and 7

concludes this paper.

2 CCF active damping in continuous domain

2.1 Modeling LCL-filtered grid-connected inverter

Figure 1 shows the topology of a three-phase inverter

feeding the grid through an LCL filter, composed of the

inverter-side inductor L1, filter capacitor C, and grid-side

inductor L2. The DC-side voltage Udc can be supplied by

absorbing active current from the grid. The objective of the

inverter is to regulate the grid-side current i2_a,b,c as

required. For this model all parameters of each phase are

assumed symmetrical, including i2_a,b,c, inverter-side cur-

rent i1_a,b,c, capacitor current iC_a,b,c, grid voltage Vg_a,b,c,

grid-side current ig_a,b,c, and local load current iL_a,b,c.

A block diagram of the inverter and controller is given

in Fig. 2. The synchronous dq frame is particularly suit-

able for analysing the direct control of active and reactive

current in a three-phase system. However, there are three

pairs of cross-coupling terms between the d-axis and the q-

axis in the block diagram, so decoupling is necessary to

achieve independent control. Hence, a synthesized system

is implemented in the stationary ab frame without any

cross-coupling terms, while the regulation of active and

reactive current remains in the synchronous dq frame

[18].

In Fig. 2, i2d_ref and i2q_ref represent the reference values

of active and reactive current, regulated by Gid and Giq

respectively. iC_a,b are feedback currents with active

damping coefficient kdamp. Subtracting the active damping

from the output of regulator, the modulation reference

signal Vmod_a,b will be yield. This is fed to the PWM

modulator after dividing by Udc/2 to transform into a per-

unit value. While bipolar sinusoidal pulse width modula-

tion (SPWM) is used for inverter, the transfer magnitude of

the inverter bridge Kpwm can be approximated by Udc/2,

since the switching frequency of inverter is assumed to be

sufficiently high. Gff is the grid voltage feed-forward

function, and in most cases, it can be simplified to 1

Vg_a,b,ciL_a,b,c

L1

Vinv_a

Udc / 2

L2

C

i2_a,b,c i1_a,b,c

iC_a,b,c

N '

N

OVinv_b Vinv_c

ZLoad
ig_a,b,c

Udc / 2

+

+

Fig. 1 Topology of a three-phase LCL filtered grid-connected

inverter
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(Gff & 1) when the grid voltage is mainly distorted by

low-frequency harmonics [19].

For the convenience of analysis, an equivalent circuit is

used for a single-phase LCL filtered grid-connected

inverter, as shown in Fig. 3. R is the virtual resistor con-

nected in parallel with filter capacitor, representing the

effect of CCF active damping. VPCC is the voltage at the

point of common coupling of the inverter and grid.

2.2 Evaluation method of CCF active damping

in continuous domain

Figure 4 shows a typical dual-loop control system with

CCF via an active damping coefficient kdamp. The grid

voltage feed-forward function Gff(s) is ignored, since it has

no relationship with stability. The open-loop transfer

function TA(s) in the s-domain can be expressed as:

TAðsÞ ¼
Gi sð Þ

s3L1L2C þ s2L2Ckdamp þ s L1 þ L2ð Þ ð1Þ

To assess the relationship between active damping and

the LCL filter resonance peak, it is assumed that the current

regulator gain Gi(s) = 1. Typically the crossover frequency

fc is restricted to be much lower than switching frequency

fsw (fsw is equal to sampling frequency fs) for the

effectiveness of attenuating high-frequency harmonics.

Although some of the latest research suggests setting the

resonance frequency fr to be higher than the Nyquist

frequency fs/2 [20], this is not the general practice, which

regards fr\ fs/2 as necessary to ensure system

controllability [21].

The frequency responses of open-loop gain are depicted

in Fig. 5. The dashed curve shows the case without

damping, which causes a high resonance magnitude

accompanied by a sharp phase transition through -180�,
and this is an unstable situation for all controller gains. In

contrast, active damping can both reduce the resonance

1
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i2d_ref
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+

+
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Fig. 2 Synthesized system block diagram implemented in stationary ab frame and synchronous dq frame

L1 L2

C

i2i1

Vinv Vg
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R

Fig. 3 Single-phase equivalent circuit of LCL filtered grid-connected

inverter with virtual resistor connected in parallel with filter capacitor

Gi(s) 1
    Vmod     Vinv

kdamp

i1(s)+     Vref VC(s)
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kdampiC(s)

+ + + + ++
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1
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1
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1

Fig. 4 Block diagram of single-phase LCL filtered grid-connected inverter with CCF active damping
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peak magnitude and smooth the phase transition, as shown

in Fig. 5 for two different damping coefficients. However,

increasing kdamp, results in a negative phase shift for fre-

quencies between fc and fr, which means an over-damped

system might lead to a poor phase margin. Therefore, the

system should be stabilized by a suitable damping coeffi-

cient. Damping performance is evaluated by the ‘Qr’-fac-

tor, related to the peak magnitude of the frequency

response plot at the resonance frequency, such that the

lower is the ‘Qr’ the better is the damping performance

[22].

3 Impacts on active damping caused by time
delays

3.1 Modeling equivalent virtual impedance

when taking time delays into account

The basic method of controller design for LCL filtered

grid-connected inverter in continuous domain has been

reviewed above. However, the controller is widely imple-

mented by means of a digital micro-processor, and time

delays shouldn’t be omitted, so the impacts on active

damping and stability should be discussed.

The detailed mechanism of time delays generated in a

digitally controlled inverter has been analyzed in [15].

Taking into account one sample period (Ts) of computation

delay and a half sample period (0.5Ts) of PWM delay, the

block diagram of a digitally controlled system is introduced

in Fig. 6a. Synchronous sampling is adopted in this paper,

and the switching samplers are introduced into the feed-

back of the grid-side current, the capacitor current, and the

reference value of current. The switching samplers can be

represented in the s-domain by 1/Ts [23], and after a series

of transformations the block diagram in the continuous

domain is obtained as shown in Fig. 6b. The CCF active

damping can be represented by a model of virtual impe-

dance connected in parallel with the filter capacitor, the

virtual impedance expresses as Zeq(s):

Fig. 5 Bode diagram of CCF active damping with coefficients

kdamp_1 = 5 and kdamp_2 = 10

s.e 1 5sT− 1

eq

1
( )Z s

i2_ref(s)
Gi(s)

i1(s)Vinv(s) iC(s) VC(s)

Vg(s)

i2(s)

kdamp

i2_ref(s) i2_ref(z)

i2(z)

Vref(z) Vmod(z) Vinv(s) i1(s)
iC(s)

VC(s) i2(s)

kdampiC(z)
Vg(s)

Gi(z)

kdamp

Digital controller LCL filter 

(a) Block diagram in discrete domain

(b) Equivalent block diagram in continuous domain

+
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+ +

+
+ +

+
+ + ++ +
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+ sL1

1
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1
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1

sL2
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Fig. 6 Block diagram of a digital controlled inverter system taking time delays into account
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ZeqðsÞ ¼ Re1:5sTs,ReqðxÞ==jXeqðxÞ ð2Þ

where

ReqðxÞ ¼
R

cosð1:5xTsÞ
¼ R

cos 3p
f

fs

XeqðxÞ ¼
R

sinð1:5xTsÞ
¼ R

sin 3p
f

fs

8
>>>>>><

>>>>>>:

ð3Þ

The virtual resistor has been changed into another form

of parallel connection with a resistance Req and a reactance

Xeq [15], shown as the dashed box in Fig. 7a. Both two

components are frequency dependent and have two

singular points respectively (f = fs/6 for Req, and f = fs/3

for Xeq) as shown in Fig. 7b.

3.2 Impact on damping performance

The virtual reactance Xeq is inductive when f [ (0, fs/3),

but capacitive when f [ (fs/3, fs/2). This changes the

effective value of the filter capacitor. And according to (4)

the resonance frequency fr will then be shifted to a new one

fr
0.

fr ¼
xr

2p
¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L1 þ L2

L1L2C

r

ð4Þ

For instance, in the range of (0, fs/3), Xeq yields a higher

resonance frequency fr
0 because of the effective value of

filter capacitor is decreased; conversely, in the range of (fs/

3, fs/2), Xeq yields a lower fr
0. Whether decreased or

increased, fr
0 will only approach but never step over fs/3,

the singular point of Xeq.

Generally, in order to damp a resonance peak, positive

Req is required, which occurs when f [ (0, fs/6). But Req is

negative when f [ (fs/6, fs/2), and even worse, Req

approaches infinity when f = fs/6, in other words, the

resistance approaches an open circuit state (no damping) at

the singular point of fs/6.

Table 1 summarises the behaviour of Xeq and Req and

their impacts on resonance frequency and active damping.

These impacts mean that evaluating stability and selecting

active damping parameters in a digital controller are

completely different from the conventional situation in the

continuous domain, due to the effect of time delays.

4 Evaluation method of stability regarding time
delays

4.1 Descriptions of Nyquist stability criterion

The Nyquist stability criterion is widely used for

designing and analyzing linear and time-invariant systems

with feedback, and it is adopted in this paper. Before

evaluating stability, the significance of -180� phase

crossings within the frequency ranges that have magnitudes

Req Xeq

s
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(a) Equivalent circuit of LCL filtered grid-
connected inverter with virtual impedance

(b) Value of equivalent virtual impedance (Req, Xeq)

0

Fig. 7 Model of equivalent virtual impedance taking 1.5Ts time

delays into account

Table 1 Detailed analysis of impacts on virtual impedance

Working frequency f Xeq Req

State Impact on resonance frequency State Impact on active damping

(0, fs/6) Inductive fr is increased to a higher fr
0 Positive Beneficial effect on fr

0 when fr
0[(0, fs/6)

fs/6 Infinity No contribution when fr
0 = fs/6

(fs/6, fs/3) Negative Adverse effect on fr
0 when fr

0[(fs/6, fs/2)

fs/3 Infinity fr
0 will never step over fs/3

(fs/3, fs/2) Capacitive fr is decreased to a lower fr
0
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above 0 dB in bode diagram, and their relationship with

open-loop unstable poles, should be reviewed as follows:

1) A -180� crossing where phase increases with fre-

quency is defined as positive crossing; a -180�
crossing where phase decreases with frequency is

defined as negative crossing. The numbers of positive

and negative crossings are denoted by C? and C-

respectively.

2) The value of 2(C?–C-) must be equal to the number

of open-loop unstable poles to ensure stability. If no

open-loop unstable pole exists, that means the value of

2(C?–C-) must be equal to zero to ensure stability, so

the value of C? also should be equal to zero, since C-

is restricted to zero by the Nyquist criterion; if a pair of

open-loop unstable poles exists, that means the value

of 2(C?–C-) must be equal to 2 to ensure stability, so

the value C? should be equal to 1.

4.2 Location of unstable open-loop poles

Based on the equivalent block diagram of the system in

continuous domain shown in Fig. 6b, the open-loop gain

with time delays can be easily derived, and is shown in (5).

The denominator of TA_Delay(s) contains a nonlinear ele-

ment e�1:5sTs , a transcendental function with open-loop

poles that cannot be solved directly in the s-domain. On the

other hand, TD(z) can be derived from Fig. 6a as the dis-

crete representation of open-loop gain, an expression

without any nonlinear element in the denominator part as

shown in (6), and this form is preferred for determining

poles. Thus, unstable open-loop poles can be comprehen-

sively explored in the z-plane.

TA DelayðsÞ ¼
GiðsÞe�1:5sTs

s3L1L2C þ s2L2Ckdampe�1:5sTs þ sðL1 þ L2Þ
ð5Þ

TDðzÞ ¼
GiðzÞ

xrðL1 þ L2Þ
�

xrTs z
2 � 2z cosðxrTsÞ þ 1ð Þ � ðz� 1Þ2 sinðxrTsÞ

ðz� 1Þ z z2 � 2z cosðxrTsÞ þ 1ð Þ þ ðz� 1Þ kdamp sinðxrTsÞ
xrL1

h i

ð6Þ

A critical value of the active damping coefficient kdamp_c

is proposed as shown in (7). The relationship between

kdamp_c, the ratio of resonance frequency to sampling

frequency fr/fs, and the sampling frequency fs is depicted by

Fig. 8. Parameters fs = 10 kHz and L1 = 2.3 mH are used

as a typical example. The resonance frequency can be

divided into three regions depending on kdamp_c[ 0,

kdamp_c = 0, and kdamp_c\ 0, defined as low resonance

frequency region, critical resonance frequency, and high

resonance frequency region.

kdamp c ¼
2 cos 2p fr

fs

� �
� 1

h i
2p frL1

sin 2p fr
fs

� � ð7Þ

The location of unstable open-loop poles can be easily

concluded by means of kdamp_c:

1) If kdamp[ kdamp_c, there is a pair of unstable open-loop

poles, and when kdamp\ kdamp_c, no unstable open-

loop poles exist. Substituting kdamp = kdamp_c into

TD(z) allows a pair of critical open-loop poles

z1,2 = (1 ± j
ffiffiffi
3

p
)/2 to be calculated, located on the

unit circle of z-plane. Their unique mapping poles

s1,2 = ±jpfs/3 (related to the frequency fs/6) on the

imaginary axis of s-plane can also be exactly derived.

2) The magnitude of TD(z)||z=e
-jp/3 tends towards infinity,

yielding a new resonance frequency of fs/6. This is

defined as the critical resonance frequency, where the

-180� crossing definitely will occur in bode diagram.

4.3 Stability evaluation method

Based on the previous analysis, the stability evaluation

can be focused on the relationship between kdamp and

kdamp_c. When the value of kdamp_c is different from the
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Fig. 8 Variation of critical value kdamp_c with sampling frequency fs
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resonance frequency, the problem should be divided into

three regions, and each region has sub-cases as listed in

Table 2. Each sub-case will now be discussed.

Case 1.1: If kdamp[ kdamp_c[ 0, the resonance fre-

quency is located in the low region (fr\ fs/6), and

kdamp_c[ 0 is satisfied, so a pair of open-loop unsta-

ble poles is produced. Hence, to ensure stability, the value

of 2(C?–C-) must be equal to 2, i.e., C? = 1 and C- = 0,

which means the positive -180� crossing should be at fs/6.

Consequently, the magnitude margin at fr defined as GM1

must be greater than 0 dB to prevent the negative crossing,

i.e. C- = 0; and the magnitude margin at fs/6 defined as

GM2 must be smaller than 0 dB to ensure the positive

crossing, i.e. C? = 1. The bode diagram for this case is

shown in Fig. 9a.

The resonance frequency is shifted to a higher one

(fr
0 [ fs/6), and as discussed in Sect. 3.2 the virtual resistance

Req is negative and has adverse effect on active damping

when fr
0[(fs/6, fs/2). The stringent constraint on overall sta-

bility margins is an adverse effect of negative Req.

Case 1.2: If kdamp = kdamp_c[ 0 while fr\ fs/6,

kdamp_c[ 0 is satisfied and a pair of open-loop poles arises

on the imaginary axis of s-plane. According to the previous

analysis, the critical resonance peak is shifted to fs/6

(fr
0 = fs/6). Although active damping fails to suppress the

resonance peak, the system can remain stable when the

value of 2(C?–C-) remains 0, i.e. when C? = 0 and GM1

is greater than 0 dB. The bode diagram is shown in

Fig. 9b.

A critical resonance peak is produced but cannot be

damped when kdamp = kdamp_c, and the virtual resistance

Req approaches an open-circuit state at the singular point of

fs/6, which means Req makes no contribution to suppression

when the resonance peak is located at critical resonance

frequency.

Case 1.3: If 0\ kdamp\ kdamp_c while fr\ fs/6,

kdamp_c[ 0 is satisfied, and no unstable pole exists. Hence,

GM1 greater than 0 dB and C- = 0 is enough for ensuring

stability. The bode diagram is shown in Fig. 9c.

The resonance frequency fr
0 [ (0, fs/6) so the virtual

resistance Req is positive and has beneficial effect on active

damping. The relaxed stability condition is seemed as the

beneficial effect from positive Req.

Case 2.1: If kdamp[ kdamp_c = 0 and the resonance

frequency is located at the critical point (fr = fs/6),

kdamp_c = 0 is satisfied, and a pair of open-loop unsta-

ble poles is produced. Similarly to the Case 1.1, negative

and positive crossings should occur at fr and fs/6

respectively, which causes the phase-frequency curve to

touch the scale line of -180� in the bode diagram, i.e.

C? = 0.5. The system cannot be stable irrespective of

active damping. The bode diagram is shown in

Fig. 9d.

Case 2.2: If kdamp = kdamp_c = 0 and fr = fs/6,

kdamp_c = 0 is satisfied. The system is unstable with no

damping supplied for the resonance peak and the negative

crossing occurs at the critical resonance frequency.

Case 3.1: If kdamp[ 0[kdamp_c while the resonance

frequency is located in the high region (fs/6\ fr\ fs/2),

kdamp_c\ 0 is satisfied and a pair of open-loop unsta-

ble poles is produced, similarly to Case 1.1. It should

be noted that the frequency of positive crossing is

changed to fr, so the necessary magnitude margins are

GM2[ 0 dB to prevent the negative crossing at fs/6, i.e.

C- = 0, and GM1\ 0 dB to ensure the positive cross-

ing, i.e. C? = 1. The bode diagram is shown in

Fig. 9e.

Case 3.2: If kdamp = 0[kdamp_c while fs/6\ fr\ fs/2,

kdamp_c\ 0 is satisfied, and this case is shown by the

dashed curve (no damping) in Fig. 9e. Here it can be seen

that the phase transits below -180� at fs/6 (well before the

resonance frequency), which means, even though there is

no damping to supress the resonance peak, the system is

naturally stabilized by selecting a suitable gain for the

current regulator, because the magnitude response crosses

0 dB prior to fs/6. An updated bode diagram with no

damping is shown in Fig. 9f, where the current regulator

gain of Gi1 is larger than Gi2. The magnitude margin at fs/6

defined as GM2Nodamping must be greater than 0 dB to

ensure stability.

This analysis leads to a generalized stability evaluation

method accounting for digital controller time delays, as

follows:

1) If kdamp_c[ 0, which is equivalent to the condition

that the LCL resonance frequency is in the low region

(fr\ fs/6), kdamp[ 0 is necessary for stability so active

damping is applied. A sufficient but smaller damping

coefficient (kdamp\ kdamp_c) is recommended as an

optimal solution because the virtual resistance Req

makes a contribution to active damping. In contrast,

Table 2 Regions and sub-cases in stability analysis

Value of kdamp_c Resonance frequency Sub-cases

kdamp_c[ 0 fr\ fs/6 1.1 kdamp[ kdamp_c[ 0

1.2 kdamp = kdamp_c[ 0

1.3 0\ kdamp\ kdamp_c

kdamp_c = 0 fr = fs/6 2.1 kdamp[ 0

2.2 kdamp = 0

kdamp_c\ 0 fs/6\ fr\ fs/2 3.1 kdamp[ 0[ kdamp_c

3.2 kdamp = 0[ kdamp_c
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Fig. 9 Bode diagram of sub-cases of stability analysis
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over damping (kdamp[ kdamp_c) leads to an adverse

effect, and the conditions of overall stability would be

compromised. The critical damping (kdamp = kdamp_c)

solution should be avoided because it leads to a new

resonance frequency (fs/6), where Req makes no

contribution to damping the resonance peak.

2) If kdamp_c = 0, which is equivalent to the condition

that the LCL resonant frequency is equal to the

critical frequency (fs/6), the system will be unsta-

ble irrespective of active damping, unless additional

modifications are implemented to the controller time

delays [15].

3) If kdamp_c\ 0, which is equivalent to the condition

that LCL resonant frequency is above the critical

frequency (fs/6\ fr\ fs/2), and even if kdamp = 0 a

single loop of grid-side current feedback is naturally

stabilized by a proper current regulator gain. Certainly,

system is also stable when a redundant damping

solution (kdamp[ 0) is applied.

Therefore, kdamp_c is an important measure of stability

and kdamp_c = 0 will cause instability.

5 Design method for controller parameters

5.1 Phase and magnitude margins

High-performance LCL filtered grid-connected con-

verters should have fast dynamic response, sufficient

switching frequency attenuation, and good damping per-

formance while preserving stability. This section provides

guidelines for selecting controller parameters. A propor-

tional integral (PI) current regulator is adopted in this

paper, which expresses as Gi(s) = Kp ? Ki/s.

Dynamic response is mainly evaluated by the phase

margin (PM) at the unity-gain crossover frequency fc, and

as discussed above, to guarantee the robust stability of

system, sufficient magnitude margins GM1 and GM2 also

should be assured. PM, GM1 and GM2 are deduced and

presented from (8) to (10). PMNodamping and GM2Nodamping

can be derived by substituting kdamp = 0 into (8) and (10).

Typically, PM 2 (30�, 60�), and 3\ |GM|\ 6 are rec-

ommended to ensure satisfactory dynamic response and

robust stability [24].

PM ¼ 180� þ \TA Delay sð Þ s¼j2p fc

�
�

¼ arctan
2p fcKp

Ki

� 3p
fc

fs

� arctan
fckdampcos 3p fc

fs

� �

fckdampsin 3p fc
fs

� �
þ 2pL1 f 2r � f 2c

� � ð8Þ

GM1 ¼ �20lg TA DelayðsÞ
�
�

�
�
s¼j2p fr

�
�

¼ �20lg
KpL1

kdamp L1 þ L2ð Þ

�
�
�
�

�
�
�
� ð9Þ

GM2 ¼ �20lg TA DelayðsÞ
�
�

�
�
s¼j2pfs

6

�
�
�

¼ �20lg
Kp

p
3
fsL1L2C 2p frð Þ2� p

3
fs

� �2þ p
3
fs

kdamp

L1

h i

�
�
�
�
�
�

�
�
�
�
�
�

ð10Þ

5.2 Selection of optimum damping parameters

The selection of kdamp directly impacts the performance

of active damping. In order to demonstrate the selection of

optimum damping parameters, two typical design examples

with different LCL filters are given in Table 3. For these

two designs, Fig. 10 shows the variation of ‘Qr’-factor with

different kdamp.

For example filter 1, kdamp_c[ 0, while the resonance

frequency is located in the low region (fr = 1.40 kHz). As

seen in Fig. 10a, the value of Qr is high if active damping is

not supplied (kdamp = 0), or if the damping coefficient is

equal to the critical value (kdamp = kdamp_c = 7.2), so that

active damping fails to suppress the resonance peak. In

contrast, Qr approaches 0 dB by selecting a damping

coefficient higher than 4, and thus optimum damping per-

formance could be achieved by kdamp = 4. Similarly,

kdamp = 10 could be chosen for an over-damped solution,

and then Qr is less than 0 dB.

Table 3 Parameter list of typical examples

Nominal system parameters Vg = 220 V

50 Hz

Udc = 800 V

fs = 10 kHz

Ts = 100 ls

fs/6 = 1.67 kHz

fs/2 = 5 kHz

Filter 1

(fr = 1.40 kHz)

L1 = 2.3 mH

L2 = 0.9 mH

C = 20 lF

fc = 0.5 kHz

kdamp_c = 7.2

Filter 2

(fr = 2.34 kHz)

L1 = 1 mH

L2 = 0.3 mH

C = 20 lF

fc = 0.5 kHz

kdamp_c = -11.8
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For example filter 2, kdamp_c\ 0, while the resonance

frequency is located in the high region (fr = 2.34 kHz). As

mentioned at the end of Sect. 4.3, a single loop of grid-side

current feedback without damping can sometimes be sta-

bilized, but, as seen in Fig. 10b, the high Qr when

kdamp = 0 indicates that the resonance peak still exists.

Moreover, Qr does not show any significant improvement

beyond kdamp = 2, so kdamp = 2 is considered as the

redundant damping solution.

The optimized controller parameters for these two

examples, including PI regulators, active damping param-

eters and stability margins, are presented in Table 4.

5.3 Root loci

After exploring stability margins using bode diagram to

ensure all the parameters above are selected correctly, it is

also necessary to investigate the movement of closed-loop

transfer function poles by root loci to verify the stable op-

erating region.

For example filter 1, Fig. 11a shows the root loci of vari-

ation in active damping parameter for the PI regulator. By

increasing kdamp from zero, the dominant poles will be forced

to track back inside the unit circle, and the overall system

becomes stable. However, the over-damping (kdamp[ -

kdamp_c) solution will make the poles track back outside the

unit circle, thus, stability will deteriorate. The part of the root

loci within the unit circle boundary region determines the

upper and lower limit of kdamp, so the observation of root loci

verifies the value of kdamp calculated for filter 1 in Table 4.

For example filter 2, Fig. 11b shows the root loci of vari-

ation in proportional gain for the single-loop system without

active damping. The dominant poles trackwell inside the unit

circle, hence, the system remains stable until Kp becomes

larger than the upper limit. The observation of root loci also

verifies the result of Kp calculated for filter 2 in Table 4.

Figure 11c shows the root loci of variation in kdamp

when kdamp_c = 0, while the resonance frequency is close

to the critical resonance frequency. As can be seen, the

system will be unstable irrespective of active damping.

6 Verification of evaluation method

6.1 Verification by simulation

Using the parameters in Table 4, both simulations and

experiments were performed on a three-phase distribution

Table 4 Optimized controller parameters of typical examples

Filter Cases Parameters

Filter 1 Over damping solution

(Case 1.1)

kdamp = 10

Kp = 9

Ki = 1000

fr
0 = 1.77 kHz

PM = 54�
GM1 = 4.0 dB

GM2 = -4.2 dB

Critical damping

(Case 1.2)

kdamp = 7.2

Kp = 5

Ki = 1000

fr
0 = 1.67 kHz

PM = 65�
GM1 = 6.3 dB

Optimum damping solution

(Case 1.3)

kdamp = 4

Kp = 4

Ki = 1000

fr
0 = 1.55 kHz

PM = 61�
GM1 = 6.4 dB

Filter 2 Redundant damping solution

(Case 3.1)

kdamp = 2

Kp = 5

Ki = 500

fr
0 = 2.46 kHz

PM = 50�
GM1 = -5.8 dB

GM2 = 4.2 dB

No damping solution

(Case 3.2)

kdamp = 0

Kp = 3

Ki = 500

PMNoDamping = 62�
GM2NoDamping = 7.2 dB

Fig. 10 Variation of ‘Qr’-factor with different kdamp
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static compensator (D-STATCOM). Simulations were

implemented to verify the stability evaluation method and

the guidelines for controller design, examining the effect of

harmonic attenuation, the dynamic response, and the per-

formance of active damping.

The primary objective of the D-STATCOM is to regu-

late the grid-side current i2 as the reactive load requires.

The control algorithm is implemented in a synthesized

scheme including a stationary ab frame and a synchronous

dq frame. Reference values of reactive current i2q stepping

from 30 to 15 A were examined to evaluate the transient

response.

Simulation results with example filter 1 are shown in

Fig. 12a–c.

The reference current steps down at 0.1 s, and the

converter operates without oscillation with active damping

is enabled. Active damping is disabled at 0.2 s, and

immediately a large resonant current arises for all three

cases. It is clear that active damping is necessary to

maintain stability when kdamp_c[ 0. Moreover, a fast

Fourier transform (FFT) of the grid-side current demon-

strates the effectiveness of the filter. Compared with the

over-damping solution in Fig. 12a, a sufficient but smaller

active damping (kdamp\ kdamp_c), i.e. an optimum solution

in Fig. 12c, possesses the same total harmonic distortion

(THD) and equivalent damping performance at the new

resonance frequency fr
0, but also achieves a faster transient

response because of the enhanced phase margin. As to

critical damping (kdamp = kdamp_c), a significant resonant

component is observed at fs/6 in Fig. 12b, due to the

matching condition of kdamp, that results in active damping

being ineffective on the resonance peak.

Simulation results with filter 2 are shown in Fig. 12a–b,

and both the transient response and THD are acceptable.

Even without active damping, the system is still quite

stable, that means active damping is not a necessary con-

dition for LCL filtered converters when kdamp_c\ 0.

It should be noted that an abundant resonant component

can be observed when there is no damping. In contrast, the

redundant adoption of active damping leads to a reduced

resonant component. Furthermore, comparison stability

tests with different regulator gains were conducted to val-

idate the understanding of root loci for single-loop grid-

side current feedback without active damping, shown in

Fig. 11b. It was discussed earlier that very high loop gain is

difficult to achieve because system becomes unstable be-

yond a certain stage, and this is verified by Fig. 13c which

shows that without active damping the stability degrades

for a higher Kp close to upper limit (Kp = 7.1).
Fig. 11 Root loci
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6.2 Experimental verification

The experimental verification was carried out in three

steps: � testing the current tracking capability of the over

damping solution and the optimum damping solution when

using filter 1; ` testing the current tracking capability of

the redundant damping solution and without damping when

Fig. 13 Transient response of regulated reactive current and FFT of

grid-side current with filter 2 (kdamp_c\ 0), and test of stability

margin for different regulator gain when using no damping

Fig. 12 Transient response of regulated reactive current and FFT of

grid-side current with filter 1 (kdamp_c[ 0)
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using filter 2; ´ testing the stability of un-damped con-

verter with the different Kp when using filter 2.

As seen in Fig. 14a, b, the experimental results verified

that active damping solutions with both larger and smaller

kdamp possess the equivalent effect of harmonic attenuation

and damping performance with example filter 1. Faster

current tracking capability was obtained with the optimum

damping solution (kdamp\ kdamp_c).

Compared with the experimental result for the redundant

damping inverter with filter 2, shown in Fig. 15a, the

inverter without damping can be naturally stabilized by a

suitable loop gain, and faster tracking capability can be

obtained, as shown in Fig. 15b. However, the resonance

oscillation is barely suppressed when kdamp = 0, and in fact

the LCL filter with a high resonant frequency approaches

the performance of a single L filter, hence, the benefit of

having a three-order filter is lost to a large extent.

Figure 15c demonstrates that with the undamped solu-

tion it is difficult to achieve both very high loop gain and

sufficient stability margins. The stability deteriorates when

Kp = 7. Generally, it is preferable for the controller to have

wider stability margins rather than a large Kp.

Finally, both of simulation and experimental results

show an evident steady-state error. This paper is focussed

on the stability evaluation method considering the stability

margins and the performance of active damping, and not on

minimising steady-state error, which might be effectively

compensated by a fundamental proportional resonant (PR)

regulator [25].
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7 Conclusion

In this paper, a critical value of the CCF active damping

coefficient kdamp_c is proposed to construct a stability

evaluation method for LCL filtered grid-connected con-

verters. This value is based on analysis of the inherent

relationship between time delays in the digital controller

and stability. If kdamp_c[ 0, while the resonance frequency

is located in the low region (fr\ fs/6), active damping is

identified as an essential factor for stability, furthermore, a

sufficient but smaller damping coefficient (kdamp\ kdamp_c)

is recommended as optimum solution. In contrast, over

damping (kdamp[ kdamp_c) leads to a stringent constraint on

overall stability margins, and selection of critical damping

(kdamp = kdamp_c) should be avoided, because it results in a

new resonance peak at the critical frequency (fs/6) which

cannot be damped. If kdamp_c = 0, while the resonance

frequency meets the critical frequency, system will be

unstable irrespective of active damping. If kdamp_c\ 0,

active damping is not required, and by adopting a suit-

able regulator gain, a single-loop controller without any

additional damping is sufficient to design a stable system.

Both simulation and experimental results have confirmed

the stability evaluation method and verified the guidelines

for selecting controller parameters to improve the stability

margins and the performance of active damping.
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