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Abstract Energy management is facing new challenges

due to the increasing supply and demand uncertainties,

which is caused by the integration of variable generation

resources, inaccurate load forecasts and non-linear effi-

ciency curves. To meet these challenges, a robust opti-

mization method incorporating piecewise linear thermal

and electrical efficiency curve is proposed to accommodate

the uncertainties of cooling, thermal and electrical load, as

well as photovoltaic (PV) output power. Case study results

demonstrate that the robust optimization model performs

better than the deterministic optimization model in terms of

the expected operation cost. The fluctuation of net elec-

trical load has greater effect on the dispatching results of

the combined cooling, heating and power (CCHP) micro-

grid than the fluctuation of the cooling and thermal load.

The day-ahead schedule is greatly affected by the

uncertainty budget of the load demand. The economy of

the optimal decision could be achieved by adjusting dif-

ferent uncertainty budget levels according to control the

conservatism of the model.

Keywords Combined cooling, Heating and power

(CCHP), Microgrid, Piecewise linear, Robust optimization,

Uncertainty

1 Introduction

The energy crisis and rising air pollution have led to a

greater worldwide focus on energy efficiency methods. A

promising approach for domestic power generation is a

combined cooling, heating and power (CCHP) system [1–3],

that can simultaneously provide cooling, heating and power

energy. CCHP systems have also been referred to as tri-

generation systems, and have been widely applied in hos-

pitals, supermarkets, and schools [4–7]. CCHPmicrogrid is a

complex systemwithmany operation conditions, a variety of

structures, and highly coupled characteristics caused by the

physical connections among components. The optimal

control strategy relies on the load profile and RES genera-

tion, which might show different patterns in the terms of

different time scales, such as daily/weekly/monthly/seasonal

patterns. It is also difficult to characterize the performance of

the components because of the nonlinearity of their effi-

ciency curves, which cannot be expressed as deterministic

values. Considering these obstacles, energy management of

a CCHP microgrid is challenging.

Many researches have been carried out about optimizing

CCHP microgrid operation using different strategies and

optimization methods. The performance of CCHP systems

following a hybrid electric-thermal load (FHL) is com-

pared with the performance of a CCHP following the
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electric load (FEL) and the thermal load (FTL) [8]. To

compensate prediction error, an online optimal operation

approach for CCHP microgrids based on model predictive

control with feedback correction was proposed in [9]. A

comparison between the CCHP systems and traditional

systems was carried out in [10], in terms of the energy-

saving ratio and the cost-saving ratio. Chance constrained

programming and particle swarm optimization were used

in [11] to optimize economic dispatch of combined heat

and power (CHP) system. The optimization model for

planning operation of CCHP systems was presented in

[12–14], and the mixed integer nonlinear programming

model was then converted into a linear programming

model by appropriate piecewise linear approximation of

the nonlinear performance curve.

Any solution must address the impacts of uncertainties

on optimal CCHP system operation. Stochastic optimiza-

tion [15–18], chance-constrained stochastic optimization

[11, 19, 20], fuzzy programs [21], and quantitative uncer-

tainty analysis [22–24] have been applied in power gen-

eration and irrigation systems. However, the computational

solutions to the stochastic optimization problem are

intractable and only an approximate model can be used.

Moreover, the probabilistic distribution or precise data

parameters of the uncertainty parameters must be given,

which is problematic in real-world applications.

Recently, the robust optimization has received signifi-

cant attention in [25, 26] as a modelling framework for

optimization under parameter uncertainty. The robust

optimization seeks the commitment and dispatch of gen-

eration resources for immunizing against all possible

uncertain situations. In [27], a robust optimization

approach was proposed to accommodate the uncertainties

of wind power and provide a robust unit commitment

schedule for thermal generators under the worst wind

power output scenario. Hajimiragha et al. [28] applied a

robust model to analyze the electricity and transport sectors

by considering the most relevant planning uncertainties and

determining the impact of estimation errors on the

parameters of the planning model. In considering the

worst-case amount of harvested RES, [29] introduced a

robust optimization approach to maintain the supply

demand balance arising from intermittent RES. In [30], an

inexact two-stage stochastic robust programming was

proposed for residential micro-grid management-based on

random demand. In [31, 32], a robust optimization method

was introduced to determine the optimum capacity of dis-

tributed generation technologies for buildings under

uncertain energy demands. The work in [33] used a robust

optimization model for managing combined heat and

power systems via linear decision rules. In [34–36], a uti-

lized robust optimization model was utilized to manage

building energy system with CHP systems considering the

randomness of electrical and thermal load, as well as solar

power production. However, [30, 34–36] did not consider

battery cost, piecewise linear approximate the non-linear

efficiency curves of the MT and their influence on dis-

patching results. Ramp limits and component operational

and maintenance cost were also not considered. In addition,

few research considered the situation that the fluctuation of

different load have effect on the dispatching results of a

CCHP microgrid under different robustness budget.

To deal with these problem, we employ the robust

optimization approach incorporating a piecewise linear

thermal and electrical efficiency curve to hedge the

uncertainties of the power (cooling load, thermal load,

electric load, and PV outputs) in this paper. Specifically,

the uncertainties of the load and output PV in each period

are within an interval defined by their lower and upper

bounds and can be obtained based on the historical data or

estimated with a confidence interval. This problem can be

formulated as a min-max problem with the objective of

minimizing the total cost under the worst scenario. We

apply a tractable solution approach to solve robust opti-

mization problem and verify the effectiveness of the pro-

posed approach with computational results in this paper.

The remainder of this paper is organized as follows.

Section 2 formulates the deterministic optimization model

for energy management of a CCHP microgrid. Section 3

presents a detailed expression of the worst-case optimiza-

tion model and the proposed robust interval optimization

model for energy management of CCHP Microgrid. Sec-

tion 4 presents numerical case study results, and conclu-

sions are drawn in Section 5.

2 Deterministic optimal dispatching model
for a CCHP microgrid

A schematic of the energy flows for the CCHP micro-

grid is shown in Fig. 1. This paper considers a CCHP

microgrid that includes a PV cell, a battery, an MT, a gas

boiler, an absorption chiller, an electric chiller, and heat

exchanger, along with cooling, heating and power load.

1. Optimization objective: The objective function con-

tains cost and incomes:

minC ¼
XT

t¼1

CgridþCng þ Cbt þ Crm ð1Þ

a) Cost of interacting with the grid:

Ct
grid¼ðRt

gridP
t
grid � Rt

excessP
t
excessÞDt ð2Þ

b) Aging Cost of the battery [34]:
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Ct
bt ¼ RbtðUt

bt;dis� þ Ut
bt;chr�ÞDt ð3Þ

c) Natural gas cost:

Ct
ng ¼ Rt

ngðFt
mt þ Ft

bÞDt ð4Þ

d) Running and maintenance cost:

Ct
rm ¼

Pt
mtRmt;rm +Ht

bRb;rm +Ht
h/gheRhe;rm

+ Ht
acRac;rm + Pt

ecRec;rm + Pt
pvRpv;rm

+ ðPt
bt;chrþPt

bt;dis)Rbt;rm + ðHt
tst;chrþHt

tst;dis)Rtst;rm

2
664

3
775Dt

ð5Þ

where Cng
t , Cgrid

t , Cbt
t , Crm

t are the natural gas cost, the cost

of interacting with the grid, the aging cost function of the

battery, and the running and maintenance cost of the

system in time period t, respectively; Rng
t is the tariff for

natural gas; Fmt
t , Fb

t are the fuel consumption of the MT and

the boiler in period t, respectively; Rgrid
t is the tariff for

purchasing power from the main grid; Rexcess
t is the tariff

for selling power to the main grid; Pgrid
t , Pexcess

t are power

provided by the main grid and sold to the main grid in

period t, respectively; Rbt
t is charge/discharge of battery

cycles cost; Uc,bt*
t , Udisc,bt*

t are the status flag transferring

from charging to discharging and from discharging to

charging of the battery in period t; Pmt
t , Hmt

t are the power

and heat produced by the MT in period t; Pbt,chr
t , Pbt,dis

t are

the charge/discharge power of BT in period t; Htst,chr
t ,

Htst,dis
t are the thermal power stored/released by TST in

period t; Hac
t is the heat required by the absorption chiller

when handling the users’ cooling requirements in period t;

Pec
t is the electricity demand of the electric chiller when

handling the users’ cooling requirements in period t; Ppv
t is

the PV output in period t; and Rrm is the running and

maintenance cost of the unit.

2. Constraints on the system: constraints include cooling

balances, heating balances, electricity balances and

operational constraints for each device.

a) Cooling balance:

COPac � Ht
ac þ COPec � Pt

ec � Qt
c ¼ 0 ð6Þ

b) Thermal balance:

Ht
re þ Ht

b � Ht
ac � Ht

tst;dis þ Ht
tst;chr ¼ Ht

h=ghe ð7Þ

where the recovered thermal energy Hre
t from the

MT can be estimated as:

Ht
re ¼ Ht

mtgre ð8Þ

c) Electric power balance:

Pt
mt þ Pt

grid þ Pt
ec þ Pt

bt;dich � Pt
bt;chr � Pt

excess

¼ Pt
l � Pt

pv ð9Þ

d) Micro gas turbine:

The relationship between the fuel energy (Fmt
t )

and the power output (Pmt
t ) can be modeled using

a straight line [1].

Ft
mt ¼ aPt

mt þ bUt
mt ð10Þ

where a, b are fuel-to-electric-energy conversion

parameter, respectively; and Umt
t is the binary

variable that is equal to 1 if the MT is on in period

t and 0 otherwise. The capacity and ramp rate

constraints are define by (9)–(11):

Ut
mtP

min
mt �Pt

mt �Ut
mtP

max
mt ð11Þ

Ut
mtP

down
mt �Pt

mt � Pt�1
mt �Ut

mtP
up
mt ð12Þ

For each unit in the system, the input variables

(consumed fuel and electricity) are related to the

output variables (generated heat, electricity,

cooling) by means of the nonlinear performance

curves. Usually, low load results in low efficiency.

As shown in Fig. 2, the thermal and electrical
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Fig. 1 Schematic of a CCHP microgrid
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Fig. 2 Piecewise linear approximation of thermal and electrical

efficiency curve of the MT
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efficiency of the MT is defined in (13)–(16)

through piecewise linearization [12]. Because the

nonlinear efficiency curve is changed to several

line segments, the control problem can be mod-

elled as a MILP:

Pt
mt ¼ Ut

mtB
1
mt þ

XLmt

k¼1

Dt;k
mt ð13Þ

Ut
mt ¼

XLmt

k¼1

vt;kmt ð14Þ

XLmt

j¼kþ1

vt;kmt �
D

t;k
mt

Bkþ1
mt � Bk

mt

�
XLmt

j¼k

vt;kmt ð15Þ

Ht
mt ¼ Ut

mtA
1
mt þ

XLmt

k¼1

gkmtD
t;k
mt ð16Þ

where Hmt
t is the heat produced by the MT; Amt

k is

the coefficient of the thermal and electrical effi-

ciency curve; Bmt
k is the block limit of the ther-

mal and electrical efficiency curve; gmt
k is the

slope of block k of the thermal and electrical

efficiency curve; vmt
t,k is the binary variable

encoding the thermal and electrical efficiency

curve of the MT; and Lmt is the index set of the

piecewise linear thermal and electrical efficiency

curve.

e) Storage battery: The MIP formulation of the

battery energy model is represented by:

Ut
bt;chrP

min
bt;chr �Pt

bt;chr �Ut
bt;chrP

max
bt;chr

Ut
bt;disP

min
bt;dis �Pt

bt;dis �Ut
bt;disP

max
bt;dis

Ut
bt;dis þ Ut

bt;chr � 1

Wt
bt ¼ Wt�1

bt ð1� rbtÞ þ ðgchrbt P
t
bt;chr � Pt

bt;dis=g
dis
bt ÞDt

Wmin
bt �Wtþ1

bt �Wmax
bt

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð17Þ

Equations (14)–(15) represent the ramp rate con-

straints of the charging/discharging battery:

Pdown
bt;chr �Ptþ1

bt;chr � Pt�1
bt;chr �P

up
bt;chr ð18Þ

Pdown
bt;dis �Ptþ1

bt;dis � Pt
bt;dis �P

up
bt;dis ð19Þ

Equations (16)–(17) represent the status-transfer

flag of the charging/discharging battery:

Utþ1
bt;chr � Ut

bt;chr �Ut
bt;chr� ð20Þ

Utþ1
bt;dis � Ut

bt;dis �Ut
bt;dis� ð21Þ

f) Thermal storage tank (TST):

Ut
tst;disH

min
tst;dis �Ht

tst;dis �Ut
tst;disH

max
tst;dis

Ut
tst;chrH

min
tst;chr �Ht

tst;chr �Ut
tst;chrH

max
tst;chr

Ut
tst;chr þ Ut

tst;dis � 1

Ht
ts ¼ Ht�1

ts 1� rtstð Þ þ ðgchrtst H
t
tst;chr � Ht

tst;dis=g
dis
tst ÞDt

Hmin
tst �Ht

tst �Hmax
tst

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð22Þ

g) Power exchange between the main grid and

microgrid:

0�Pt
grid �Ut

gridP
max
grid

0�Pt
excess �Ut

excessP
max
grid

�
ð23Þ

Mutual exclusion of status:

Ut
grid þ Ut

excess � 1 ð24Þ

3 Solution methodology

3.1 Robust decision-making model

A typical MILP model is defined in the following form:

min
Xn

j¼1

cjxj ð25Þ

s.t.
Xn

j¼1

aijxj � bj; 8i ¼ 1; 2; � � � ;m ð26Þ

xj � 0; 8j ¼ 1; 2; � � � ; n ð27Þ

xj 2 0; 1f g for some j ¼ 1; 2; � � � ; n ð28Þ

The uncertainty may reside in the coefficient aij, the

objective function c or the right-hand side b. If these

coefficients are unknown constants within known bounds, a

meaningful robust MILP can be formulated. Unlike the

modeling of uncertainty in stochastic programming, the

uncertainty model in robust optimization is typically

depicted as an uncertainty range. Each coefficient aij in the

constraints of the constraints of the formulation (i.e., the

coefficient of the jth variable in the ith constraint) is an

independent, symmetrical and bounded random variable

that can assume a value from the interval

½�aij � âij; �aij þ âij�, where �aij is the nominal value and âij is

the maximum deviation from the nominal value. The

scaled deviation of aij can be denoted by gij ¼ ð�aij �
âijÞ=�aij or gij ¼ ð�aij þ âijÞ=�aij, which is defined as the rel-

ative value of the forecast error and the realization of the

uncertainty. In addition, when formulating a robust MILP
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problem [26], it is necessary to define an integer control

parameter denoted by Ci with values in the interval [0, |Ji|];

this is called the budget of uncertainty. Ci = 0 yields the

nominal problem and thus does not incorporate uncertainty,

whereas Ci = |Ji| corresponds to interval-based uncertainty

sets and leads to the most conservative case. The gij value
is constrained as:

X

j2Ji
gij �Ci ð29Þ

A robust optimization formulation seeks for optimal

solutions that optimize the objective function and meet the

problem requirements for all possible uncertainties in

constraint coefficients. As a result, the variables are inde-

pendent of the uncertain parameters. In a worst-case

analysis that accounts for uncertainty, we consider the

following problem (30)–(33):

min
Xn

j¼1

cjxj ð30Þ

s:t:
Xn

j¼1

aijxj þmax
X

j2Ji
âijgijxj � bj; 8i ¼ 1; 2; � � � ;m

ð31Þ
xj � 0; 8j ¼ 1; 2; � � � ; n ð32Þ

xj 2 0; 1f g for some j ¼ 1; 2; � � � ; n ð33Þ

For the ith constraint, the auxiliary problem (34)–(36) is

shown as follows:

max
X

j2Ji
âijgij xj

�� �� ð34Þ

s:t:
P
j2Ji

gij �Ci ð35Þ

0� gij � 1 ð36Þ

Accordingly, the dual of problem (34)–(36) is shown as

problem (37)–(40):

min ziCi þ
X

j2Ji
pij ð37Þ

s:t: zi þ pij � âijyj; 8i; j 2 Ji ð38Þ

xj
�� ��� yj ð39Þ

zi; pij; yj � 0 ð40Þ

where zi and pij are the dual decision variables for con-

straints (35)–(36) of the auxiliary problem. When incor-

porating model (37)–(40) into the original problem (30)–

(33), the robust linear counterpart is formulated as:

min
Xn

j¼1

cjxj ð41Þ

s:t:
P
j2Ji

aijxj þ ziCi þ
P
j2Ji

pij � bi ð42Þ

xj � 0; 8j ¼ 1; 2; � � � ; n ð43Þ

xj 2 0; 1f g for some j ¼ 1; 2; � � � ; n ð44Þ

zi þ pij � âijyj; 8i; j 2 Ji ð45Þ

xj
�� ��� yj ð46Þ

zi; pij; yj � 0 ð47Þ

3.2 Uncertain energy output formulation

In general, the optimal operation of a CCHP microgrid

is associated with uncertainties from cooling, thermal and

electrical load, and the PV output. The randomness of

cooling and thermal load is affected by the weather sur-

rounding the buildings; the electrical load in the buildings

are influenced by the level of consumer activities, and the

power output of a PV unit can be impacted by the radiation

of the sun and the ambient weather. Because of these

factors, it is difficult to precisely characterise their power

value. In this paper, we assume that these power values fall

within the intervals of Qc,u
t [ [Qc

t - Qc
ld, Qc

t ? Qc
ud], Hh,u

t [
[Hh

t - Hh
ld, Hh

t ? Hh
ud], Pl,u

t [ [Pl
t - Pl

ld, Pl
t ? Pl

ud], and Ppv,u
t

[ [Ppv
t - Ppv

ld , Ppv
t ? Ppv

ud], with Qc
t , Hh

t , Pl
t and Ppv

t repre-

senting the predicted value in period t and Qc,u
t , Hh,u

t , Pl,u
t

and Ppv,u
t representing sets of possible cooling, thermal and

electrical load and the output PV. Qc
ld, Qc

ud, Hh
ld, Hh

ud, Pl
ld,

Pl
ud, Ppv

ld and Ppv
ud representing the allowed maximum

deviations above and below Qc
t , Hh

t , Pl
t and Ppv

t , respec-

tively, which can take any values with their uncertain

interval. For this approach, Cc
t , Ch

t , Cnl
t represent cardinality

budgets [26] introduced to adjust the ranges of uncertainty

for the cooling, thermal and net electricity load (Pl
t - Ppv

t )

in period t by the system operators, respectively; these

affect the robustness of the problem against the level of

conservatism of the solution.

The worst-case scenario is the key aspect of the robust

interval optimization model; it is a set of parameter values

such that the security for any other scenarios can be

guaranteed if and only if there is a feasible solution under

this scenario [32–35]. Therefore, the expressions in (48),

(51) and (54), can be interpreted as the security require-

ments of the CCHP microgrid under the worst-case sce-

narios of uncertain parameters (cooling, thermal, electrical

load and PV output):

COPac � Ht
ac þ COPec � Pt

ec ¼ maxQt
c;u

¼ Qt
c þmaxfgldc Qld

c þ gudc Qud
c g

ð48Þ
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gldc þ gudc �Ct
c ð49Þ

0� gldc ; g
ud
c � 1 ð50Þ

Ht
re þ Ht

b � Ht
ac � Ht

tst;dis þ Ht
tst;chr ¼ maxðHt

h;uÞ=ghe
¼ Ht

h=ghe þmaxfgldh Hld
h þ gudh Hud

h g=ghe
ð51Þ

gldh þ gudh �Ct
h ð52Þ

0� gldh ; g
ud
h � 1 ð53Þ

Pt
mt þ Pt

grid þ Pt
bt;chr þ Pt

ec � Pt
excess � Pt

bt;dis

¼ maxðPt
l;u � Pt

pv;uÞ

¼ Pt
l � Pt

pv þmax gldl P
ld
l þ gudl Pud

l � gldpvP
ld
pv � gudpvP

ud
pv

n o

ð54Þ

gldl þ gudl þ gldpv þ gudpv �Ct
nl ð55Þ

0� gldl ; g
ud
l ; gldpv; g

ud
pv � 1 ð56Þ

where gc
ld, gc

ud are the scaled deviations for the random

cooling load; gh
ld, gh

ud are the scaled deviations for the

random thermal load. Similarly, gl
ld, gl

ud, gpv
ld , gpv

ud are the

scaled deviations for the random electrical load and the PV

output.

Identifying the worst-case scenarios when cooling,

thermal, and electric load and PV vary within their

uncertain intervals requires transforming (21), (22) and

(24) into an equivalent max optimization problem (48),

(51) and (53) for calculating the worst-case scenarios.

Thus, a CCHP microgrid economic dispatch model is a

min-max optimization problem. To make the above prob-

lem tractable, (57), (63) and (69) must be converted into

corresponding dual problems (60), (66) and (72) by intro-

ducing dual variables kc
t , pc1

t?, pc1
t-, kh

t , ph1
t?, ph1

t-, knl
t , pl1

t?, pl1
t-,

ppv2
t? , and ppv2

t- .

max gldc Q
ld
c þ gudc Qud

c

s:t: gldc þ gudc �Ct
c

0� gldc ; g
ud
c � 1

ð57Þ

ð58Þ

ð59Þ

8
>><

>>:

)

minktcC
t
c þ ptþc1 þ pt�c1

s:t: ktc þ pt�c1 �Qld
c ; k

t
c þ ptþc2 �Qud

c

ktc; p
tþ
c1 ; p

t�
c1 � 0

8
>><

>>:

ð60Þ

ð61Þ

ð62Þ

maxðgldh Hld
h þ gudh Hud

h Þ=ghe
s:t: gldu þ gudh �Ct

h

0� gldh ; g
ud
h � 1

8
><

>:

ð63Þ
ð64Þ
ð65Þ

)
minkthC

t
h þ ptþh1 þ pt�h1

s:t: ktc þ pt�h1 �Hld
h ; k

t
h þ ptþh1 �Hud

h

kth; p
tþ
h1 ; p

t�
h1 � 0

8
><

>:

ð66Þ
ð67Þ
ð68Þ

max gldl P
ld
l þ gudl Pud

l � gldpvP
ld
pv � gudpvP

ud
pv

s:t: gldl þ gudl þ gldpv þ gudpv �Ct
nl

0� gldl ; g
ud
l ; gldpv; g

ud
pv � 1

ð69Þ
ð70Þ
ð71Þ

8
><

>:

)

min ktnlC
t
nl þ ptþl1 þ pt�l1 þ ptþpv2 þ pt�pv2

s:t: ktnl þ pt�l1 �Pld
l ; k

t
nl þ ptþl2 �Pud

l

ktnl þ pt�pv � � Pld
pv; k

t
nl þ ptþpv � � Pud

pv

ktnl; p
tþ
l1 ; p

t�
l1 p

tþ
pv2; p

t�
pv2 � 0

8
>>>><

>>>>:

ð72Þ
ð73Þ
ð74Þ
ð75Þ

Finally, a tractable robust model can be formulated as:

minC ¼ CgridþCf þ Cbt þ Crm ð76Þ

COPac �Ht
ac þCOPec �Pt

ec ¼ Qt
c þ ktcC

t
c þ ptþc1 þ pt�c1 ð77Þ

Ht
re þ Ht

b � Ht
ac � Ht

tst;dis þ Ht
tst;chr

¼ ðHt
h þ kthC

t
h þ ptþh1 þ pt�h1Þ=ghe ð78Þ

Pt
mt þ Pt

grid þ Pt
bt;chr þ Pt

ec � Pt
excess � Pt

bt;dis ¼ Pt
l;u � Pt

pv;u

¼ Pt
l � Pt

pv þ ktnlC
t
nl þ ptþl1 þ pt�l1 þ ptþpv2 þ pt�pv2

ð79Þ

along with (1)–(20), (23), (60)–(62), and (66)–(68), (73)–

(75).

4 Case study

To verify the performance of the proposed algorithm, a

CCHP building in Shanghai, China, was used in a case

study. The building has twelve floors with a total square

footage of 6000 m2 and an average floor height of 3.8 m.

Figure 3 shows the hourly PV output and the cooling,

heating, and power load for representative days during the

summer.

Fig. 3 Hourly PV power, and cooling, heating, and power load of the

building
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The CCHP system consists of a photovoltaic system (80

kW), a battery (200 kWh), a gas micro turbine (200 kW), a

boiler (258 kW), an electric chiller (100 kW), an absorption

chiller (200 kW), a heat exchanger (200 kW), and a thermal

storage tank (150 kWh), as shown in Fig. 1. Table 1 is the

peak-valley price of the double system electricity price in

summer and selling prices at different times of the day

[37, 38]. The fuel we chose here is a widely used fuel,

which is natural gas, and its price is 0.4561 $/m3. Table 2

lists the remaining parameters used in this study as refer-

enced by [1, 9, 39].

Based on the observation of historical data, it has been

shown that hourly PV power and cooling, heating, and power

load follow a normal distribution with a mean value l and

standard deviation r during for representative days in sum-

mer,as shown in Fig. 2 and Table 11. To estimate the

uncertainties of PV power and the cooling, heating, and

power load, the fluctuation of the uncertainties are defined as:

Dhi;t ¼
ri;tffiffiffiffiffiffiffiffiffiffiffi
1� q

p ð80Þ

where Dhi,t is the fluctuation range of the i-th uncertainty

(including the PV output and the cooling, heating, and

power load). The upper fluctuation of each uncertainty is

expressed as Dhi,t (i.e., Qc
ud = Dhc,t, Hh

ud = Dhh,t, Pl
ud = Dhl,t

and Ppv
ud = Dhpv,t), whereas the lower fluctuation of the each

uncertainty is modelled as -Dhi,t (i.e., Qc
ld = -Dhc,t, Hh

ld =

-Dhh,t, Pl
ld = -Dhl,t, Ppv

ld = -Dhpv,t). The fluctuation

interval can be controlled effectively by adjusting the

parameter value of qit.
To demonstrate the effectiveness of the uncertain set in

the robust optimization model, a Monte-Carlo simulation

was adopted to sample the cooling, heating and electrical

power randomly. We then determined the probability of

each interval that fell into the uncertain interval and cal-

culated the average probability of each interval.

It can be seen from Table 3 that with the decrease of q,
the probability that the cooling, heating and electrical

power and PV output are included in the uncertain set also

Table 1 Time-of-use price

Period Time Purchase price

($/kWh)

Sell price

($/kWh)

Peak load period 8:00–10:59 0.1974 0.099

13:00–14:59

18:00–20:59

Flat load period 6:00–7:59 0.123 0.099

11:00–12:59

15:00–17:59

21:00–21:59

Off-peak load period 22:00–5:59 0.0585 0.099

Table 2 Parameters values

Parameters Value Parameters Value

a, b 2.67, 11.43 Kom,pv 0.00205 $/kWh

gb 0.73 Kom,bt 0.00106 $/kWh

ghr 0.75 Kom,tst 0.0031 $/kWh

ghe 0.9 Pmt
min 30 kW

COPec 4 Pmt
max 200 kW

COPac 0.9 Pb
min 0

gbt
chr 0.95 Pb

max 258 kW

gbt
dis 0.95 Pgrid

min 0

rbt 0.02 Pgrid
max 200 kW

gtst
chr 0.9 Pbt

min 170 kW

gtst
dis 0.9 Pbt

max -250 kW

rtst 0.1 Wbt
min 100 kWh

Rng 0.4561 $/m3 Wbt
max 500 kWh

Hng 9.78 kWh/m3 Htst
min -200 kW

Kom,mt 0.026 $/kWh Htst
min 200 kW

Kom,b 0.0027 $/kWh Wtst
min 0 kW

Kom,he 0.001 $/kWh Wtst
max 500 kW

Kom,ac 0.0024 $/kWh Rbt
t 8.05 $

Kom,ec 0.0016 $/kWh Pmt
up 60 kWh

Pbt
up, Pbt

down 40 kWh Pmt
down 60 kWh

Table 3 Average probability of potential power falling into uncer-

tainty set

q Probability

0.9 0.973

0.7 0.947

0.5 0.836

0.3 0.743

0.1 0.674

Table 4 Five cases for energy management of CCHP microgrid

Case Efficiency curves Model

Constant Nonlinear Piecewise

linear

Deterministic Robust

1 4 4

2 4 4

3 4 4

4 4 4

5 4
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decreases. When the value of q reaches 0.9, it can be

guaranteed that the probability will reach 97%; however,

when the value decreases to 0.1, the probability decreases

to 67%. Therefore, the conservativeness of robust opti-

mization model can be controlled effectively by adjusting

the parameter value of q.
To analyze the effectiveness of the proposed model, five

cases are studied and simulated as shown in Table 4, in

which ‘4’ means that source is in the CCHP microgrid.

The MILP robust optimization model is solved by Cplex

[40]. The PSO approach was applied to solve the case 5,

which used nonlinear efficiency curves [11].

4.1 Comparison of three efficiency models

under deterministic optimization

Table 5 summarizes the operating cost and computing

times of the three aforementioned approaches when an

optimality parameter was specified. The three methods

yield similar solutions in terms of total operating cost,

though Case 3 obtained a lower operating cost than Case 1

and 5 because a global optimization result was guaranteed

for the MILP. Meanwhile, Case 3 achieved a more accurate

system operating status than Case 1 and 5, without sacri-

ficing computational advantage.

As shown in Fig. 4, compared with Case 3, there were

different MT optimization results for the CCHP microgrid

in Cases 1 and 5. In Case 1, the MT provided its rated

power in periods 12 to 19 but operated at rated power

during periods 14 to 18 in Case 3. In all time periods, the

scheduling curves of the MT were extremely similar for

both Case 3 and Case 5. In Case 5, the power generated by

the MT was greater than Case 3 in periods 7 to 13 and 19 to

24, which could not determine global optimization results

through comparing the optimization results for both

deterministic and robust cases when considering the

piecewise linear efficiency curve model in detail.

4.2 Comparison of constant efficiency model

and piecewise linear efficiency curve model

under robust optimization

Table 6 provides the simulated running cost under dif-

ferent load and PV uncertainties, using constant and

piecewise linear efficiency curves, respectively. It shows

that when the fluctuation interval of the uncertainties

increases, the running cost of the robust case increases.

Figure 5 shows the operating conditions of the MT, the

exchange power with the main grid, the electric chiller

power, and the gas boiler power during the entire

scheduling horizon at different uncertainty levels during

the summer when q = 0.9. When coping with the fluctua-

tion of load and PV output, the power generated by the MT

in the robust case was always greater than in the corre-

sponding deterministic case due to the response of the MT

to the uncertainty of the cooling, thermal and electrical

energy requests. Meanwhile, the CCHP microgrid sold less

extra power to the main grid, and coordinated the power of

the electric chiller and absorption chiller. In considering

the aging cost, the scheduling curves of the battery were

extremely similar for both the deterministic and robust

cases in all time periods.

Compared with the constant efficiency model, there were

different dispatching results for the CCHP microgrid in the

piecewise linear efficiency model. In Case 2, the MT pro-

vided rated power during periods 11 to 19 but operated at

rated power during periods 13 to 19 in Case 4. In Cases 3 and

4, the CCHP microgrid sold almost no extra power to the

main grid during periods 9 to 11; however, it sold more extra

power to the main grid during these periods in Cases 1 and 2.

The TST charged more heating power during periods 1 to 6

and 22 to 24, charged less heating power during periods 9 to

12 and discharged more heating power during periods 18 to

Table 5 Comparison three efficiency curves

Case Operation cost ($) Computing time (s)

1 500.07 0.87

3 496.5 1.31

5 498.76 138

2 4 6 8 10 12 14 16 18 20 22 24

50

100

150

200

t (hour)

M
T 

Po
w

er
 (k

W
)

0

Case1; Case3; Case5

Fig. 4 Comparison of the MT power considering constant, piecewise

linear and nonlinear efficiency curve model

Table 6 Comparison of different efficiency curves under robust

models

q Case 2 ($) Case 4 ($)

0.9 545.90 542.94

0.7 541.13 537.48

0.5 530.52 528.36

0.3 525.18 522.13

0.1 513.35 510.24
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21 than in the constant efficiency model. In all time periods,

the scheduling curves of the electric chiller were extremely

similar for both Case 1 and Case 2, but the power of the

electric chiller was greater than in the piecewise linear effi-

ciency model during periods 11 to 18. In addition, the power

of the absorption chiller providedmore cooling power during

periods 12 to 18 in piecewise linear efficiency model.

To show the effectiveness of robust optimization and its

applicability in a real-time environment, Monte Carlo

simulation is applied to generate different realizations of

load and RES generation. The size of the sample is set to be

1000. The expected intra-day operation cost of the robust

optimization and the deterministic optimization can be

calculated under the day-ahead schedule. The expected

operation cost of two optimization models are shown in

Table 7. It can be seen from Table 7 that with the increase

of q, compared with robust optimization, the operating cost

of deterministic optimization was increasing. When q

equals to 0.1/0.3, the expected cost of deterministic

approach is almost the same with robust optimization

approach, only increased by 0.18%/0.27%, respectively.

When q equals to 0.5/0.7/0.9, expected cost of the deter-

ministic approach is more than robust optimization

approach, increased by 1.85%/2.54%/3.25%, respectively.

The economy of the optimal decision could be achieved by

adjusting the fluctuation interval of uncertainty set to

control the conservatism of the model.

4.3 Influence of uncertainty budget levels

on the system fluctuation (q 5 0.9)

Compared with no fluctuation of the cooling, thermal

and net electrical load, Figs. 6, 7 and 8 shows the adjusted
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Fig. 5 Comparison of the deterministic and robust case for CCHP microgrid (q = 0.9)

Table 7 Expected cost of robust model and deterministic model

q Case 4 ($) Case 3 ($) Increased (%)

0.1 502.58 503.47 0.18

0.3 510.83 514.22 0.27

0.5 517.26 526.85 1.85

0.7 526.87 540.24 2.54

0.9 538.46 555.96 3.25

ΓcΓc=0.5; Γc=0.8; =1Γc=0;

Po
w
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(k

W
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Fig. 6 Effect of robustness budget in controlling the uncertain ranges

of cooling load
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power of the MT and the exchange power with the main

grid in different robustness budgets in controlling the

uncertain ranges of cooling, thermal and net electricity load

when q = 0.9. In Fig. 6, Ch and Cnl are fixed at 1 and 2,

respectively, to ensure the worst-case thermal and net

electrical load. Cc is adjusted from 0 to 1. Cc =0 denotes

there are no cooling load fluctuation; Cc = 1 denotes the

worst-case cooling load. Table 8 shows the change of

operating cost with the increase of robustness budget Cc.

In Fig. 7, Cc and Cnl are fixed at 1 and 2, respectively, to

ensure the worst-case cooling and net electricity load; the

uncertainty set of the thermal load is enlarged by increasing

the robustness Ch from 0 to 1. Table 9 shows the change of

operating cost as the robustness budget Ch increase.

In Fig. 8, Cc and Ch are fixed at 1 and 1, respectively, to

ensure the worst-case cooling and thermal load; the

uncertainty set of the net electrical load are enlarged by

increasing the robustness Cnl from 0 to 2. Table 10 shows

the change of operating cost as the robustness budget Cnl

increase.

Tables 8, 9 and 10 show that with the increase of the

robustness budget C (Cc, Ch and Cnl), the operating cost of

the robust case increases. When Cc is adjusted from 0 to 1

(Ch = 1 and Cnl = 2), the operating cost increases by 2.33%.

When Ch is adjusted from 0 to 1 (Cc = 1 and Cnl = 2), the

operating cost increases by 0.07%. When Cnl is adjusted

from 0 to 2 (Cc = 1 and Ch = 1), the operating cost increases

by 5.94%. The differences in the operating cost show that

the fluctuation of net electrical load has the more signifi-

cantly effect on the operating cost of the CCHP microgrid

than the fluctuation of the cooling or thermal.

Figures 6, 7 and 8 show that with the increase of the

robustness budget C (Cc, Ch and Cnl), there are different

dispatching results for the CCHP microgrid under different

uncertainty budget levels of different energy (cooling, ther-

mal and electrical). Thefluctuation of net electrical load have

the greater effect on the dispatching results of the CCHP

microgrid than the fluctuation of the cooling or thermal.

In general, these dispatching results demonstrate that

uncertainties in the load and PV outputs are mitigated by the

MT, the exchange power with the main grid, and other

components.The thermal fluctuation during the summer

subtly change the dispatching results, which reduce the

impact on the superior power grid. When the fluctuation in

cooling load, electrical load and PV become increase, the

exchange power with the main grid will change with the

system electric power fluctuation, which have impacts on the

superior grid. These fluctuation can be suppressed not only

by adjusting the MT but also coordinating other equipment.
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Fig. 8 Effect of robustness budget in controlling the uncertain ranges

of electrical load and PV

Table 8 Operating cost with various Cc (Ch = 1, Cnl = 2)

Cc Case 4 ($) Increased (%)

0 530.6 0

0.5 536.74 1.16

0.8 540.45 1.86

1 542.94 2.33

Table 9 Operating cost with various Ch (Cc = 1, Cnl = 2)

Ch Case 4 ($) Increased (%)

0 539.3 0

0.5 541.11 0.03

0.8 542.21 0.05

1 542.94 0.07

Table 10 Operating cost with various Cnl (Cc = 1, Ch = 1)

Cnl Case 4 ($) Increased (%)

0 512.49 0

0.5 523.55 2.16

0.8 530.22 3.46

1 534.65 4.52

1.3 537.14 4.81

1.6 539.62 5.29

1.8 541.28 5.62

2 542.94 5.94
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Fig. 7 Effect of robustness budget in controlling the uncertain ranges

of thermal load
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5 Conclusion

This paper presented a robust optimization method that

considered piecewise linear thermal and electrical effi-

ciency curves to hedge the uncertainties of the cooling,

thermal, and electrical load and solar power generation for

the energy management of a CCHP microgrid. A worst-

case security-constrained economic optimization model

was developed and a strong duality theory was used to

transform the problem into a MILP formulation. The

robustness could also be adjusted to control the conserva-

tiveness of the proposed model.

By characterizing a piecewise linear thermal and elec-

trical efficiency curve model instead of constant efficien-

cies or non-fixed efficiency models, the operating status of

the system could be reflected exactly without sacrificing

problem linearity.

The simulation results showed that fluctuation of the

system have less effect on the dispatching results of the

battery when considering the aging cost. Meanwhile, the

robust optimization approach performs better than the

deterministic optimization mode, and decreases the

expected operation cost. Furthermore, compared with

fluctuation of the cooling and thermal load, fluctuation of

net electrical load has a greater influence on the operating

cost and conditions of the system.

The demand response can mitigate the variability of

renewable resources and partial user demand by allowing

user demand to be controllable. Thus, future research

should be focus on combining the robust optimization

method with demand response to address the uncertainties

of the CCHP microgrid.
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Appendix A

See Table A1.

Table A1 Average probability of potential power falling into uncertainty set

Time Cooling (rc) Heat (rh) Power (rl) PV (rpv)

1 2.33 0.59 2.13 0

2 2.21 0.28 2.01 0

3 1.98 0.11 1.98 0

4 1.85 0.32 2.09 0

5 1.79 0.96 2.13 0

6 2.38 1.97 2.76 0.10

7 2.57 1.87 3.28 0.67

8 3.56 1.63 3.63 1.11

9 4.53 1.54 4.03 1.72

10 4.67 1.91 4.36 2.23

11 5.95 1.27 4.55 2.57

12 9.13 1.52 4.59 2.69

13 9.27 1.70 4.61 3.01

14 10.46 1.58 4.60 2.89

15 10.01 1.61 4.70 1.89

16 9.81 1.79 4.65 1.72

17 9.23 1.95 4.83 1.12

18 8.92 2.30 4.76 0.82

19 9.02 3.04 4.66 0.27

20 8.67 3.63 4.24 0

21 5.68 3.77 3.83 0

22 3.06 3.20 3.86 0

23 2.78 2.04 2.61 0

24 3.02 0.90 2.33 0
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