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Abstract With intermittence and stochastics of wind

power largely introduced into power systems, power sys-

tem stability analysis and control is in urgent need of

reliable wind farm models. Considering the superiority of

wide-area measurement systems, this paper develops a

novel methodology for practical synchrophasor measure-

ment-based modeling and parameter identification of wind

farms. For the sake of preserving basic structural charac-

teristics and control patterns simultaneously, a compre-

hensive wind farm model is constructed elaborately. To

improve the efficiency of the identification procedure,

dominant parameters are classified and selected by trajec-

tory sensitivity analysis. Furthermore, an improved genetic

algorithm is proposed to strengthen the capability of global

optimization. The test results on the WECC benchmark

system and the CEPRI 36-bus system demonstrate the

effectiveness and reliability of the proposed modeling and

identification methodology.

Keywords Wind farm, Trajectory sensitivity, Dominant

parameter, Improved genetic algorithm (IGA), Parameter

identification

1 Introduction

The increasing penetration of wind power into power

systems has brought tremendous challenges to system

operation and maintenance especially in the sense that

power system stability analysis and control seem to be

largely dependent on the reliability of wind farm models. If

the modeling issue is not treated felicitously, relevant

misleading analysis and control measures may improperly

hamper the absorption of large scale wind power [1–4]. For

the past few decades, several kinds of wind farm models

have been established to study those problems such as

security and economic operation [5], subsynchronous res-

onance [6], operational outage [7], etc. The research

communities have made various efforts, mainly involving

two categories of approaches, to cope with the modeling

issue. Some researchers attempt to classify and cluster the

wind turbine generators (WTGs) based on some dynamic

parameters or response characteristics in a large wind farm

[8–10]. However, the effectiveness of those clustering

criterions including input wind speed, rotor slip and rotor

current are difficult to be theoretically verified. The others

make the whole wind farm equivalent to a single wind

generator, which focus primarily on the whole wind farm’s

response behaviors, yet omitting the complex location
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information and electrical connections [11–13]. However,

both kinds of approaches attempting to meet the parameter

identification requirements establish reduced-order and

simplified wind farm models at the cost of deteriorating

some control effects and dynamic responses [14, 15].

In addition to the unreliable models, inaccurate model

parameters further exacerbate the modeling problem.

Generally, the parameters for manufacturer-specific

models are regarded as classified commercial data, and

not suit for each kinds of models [16]. Nowadays, the

empirical parameters are widely used in practice by dis-

patchers for convenience. What’s worse, almost all of the

wind farms within a region are usually modelled with the

unified parameters, which is clearly not in accordance

with the practical scenarios. A survey of a regional power

grid in China conducted by the authors shows that almost

91% of the wind farm models (see Table A1 in Appendix

A) are set by the same empirical parameters in power

system stability simulation, which further illustrates this

ubiquitous problem. Empirical parameters based models,

ignoring the practical dynamics of wind farms, may cause

potential hazards in power system security and stability

analysis. For example, the simulation with a certain set of

empirical parameters after power system faults may draw

an optimistic conclusion, while probably drawing a pes-

simistic one with another set. Therefore, instead of

adopting empirical parameters, it is imperative to identify

the parameters based on field or practical

measurements.

With the rapid development of wide-area measurement

systems in recent years, phase measurement units (PMUs)

and wide-area measurement systems (WAMS) based

modeling approaches have been widely used on various

occasions to effectively reflect the devices’ real dynamic

characteristics, such as modeling of generator, excitation

system and dynamic load [17–19]. PMUs are capable of

providing reliable field measurement data that contains

synchronous and dynamic information, which can meet the

requirement of respectively modeling and identifying

individual wind farms within a region.

In this paper, a novel wind farm modeling approach

based on WAMS is proposed to deal with the unreliability

and inaccuracy of conventional wind farm modeling

methods. Firstly, a dynamic equivalent model of doubly

fed induction generator (DFIG) wind farm is elaborately

constructed to simulate the overall characteristics of the

wind farm for system analysis. Then, dominant parameters

are selected by trajectory sensitivity analysis to tackle the

intricate and laborious identification issue of multiple

parameters. Additionally, a method incorporating model

simulation and the improved genetic algorithm (IGA) is

employed to search the wind farm’s optimal parameter

combination based on the PMU data.

2 Generic model of wind farm

The equivalent model based on the G.E. standard DFIG

model, recommended by Western Electricity Coordinating

Council’s (WECC) [20], is established in the MATLAB/

Simulink. As shown in Fig. 1, its main components are

divided into four modules: two-mass shafting module,

pitch angle control module, reactive control module and

wind farm interface module. The frequency control and

reactive power droop control are omitted.

1) Two-mass shafting module

Actually, there will be some difference dynamic response

characteristics due to the distinction between structure and

mass of wind turbine shaft and wind generator shaft. So two-

mass module is closer to the actual conditions than one mass

module. Ignoring the gearbox, twoblockswith different inertia

coefficients are used to represent the mechanical driving sys-

tem, which is described as

Twt

dxwt

dt
¼ Pmech

xwt

� Ktgðhwt � hgÞ � Dtgðxwt � xgÞ

Tg

dxg

dt
¼ �Pelec

xg

þ Ktgðhwt � hgÞ þ Dtgðxwt � xgÞ
dhwt

dt
¼ xwt

dhg

dt
¼ xg

8
>>>>>>>>><

>>>>>>>>>:

ð1Þ

where Twt and Tg represent the inertia coefficients of the

equivalent wind turbine and generator, respectively; hwt

and hg are the torsion angles; xwt and xg stand for the

rotational speeds; Pmech and Pelec are mechanical and

electromagnetic powers; Ktg is stiffness coefficient and Dtg

is damping coefficient.

2) Pitch angle control module

The DFIG wind farms always adopt variable-speed con-

stant-frequency (VSCF) control strategy. The pitch angle

control module consists of two parts, pitch control and pitch

compensation, as shown in Fig. 2. This module comes into
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Fig. 1 Schematic diagram of the wind farm module
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play, when the wind speed exceeds the rated speed or when

the wind farm suffers from serious transient faults.

3) Reactive control module

The voltage of point of interconnection (POI) and

reactive power are governed by closed-loop control strat-

egy in this module. Constant power factor, constant reac-

tive power and constant voltage control modules are

optional according to different reactive power reference.

The diagram is shown in Fig. A1 in Appendix A.

4) Wind farm interface module

The whole wind farm is considered as a controllable

current source in this module. However, the equivalent

generator is not particularly modeled, because the rotor

part and excitation system are separately included in the

two-mass shafting module and the reactive control module.

The impedances of the wind generators and the collection

system are all considered in a wind farm’s equivalent

impedance. The diagram is shown in Fig. 3.

Compared with the conventional reduced-order model in

[14, 15], the equivalent wind farm model composed of

almost all the basic control units is able to better simulate

the actual dynamic response, which will be verified by a

comparison given in Section 5.

3 Selection of dominant parameters

The wind farm model established in the Section 1 pre-

serves the response features to a great extent. However,

there are too many parameters needed to be identified. All

the parameters and their empirical values [20] are listed in

Table A2 in Appendix A. It is obvious that not all of them

have significantly effects on the model response. Those

parameters that dominate more in the model behaviors,

namely dominant parameters, should be set accurately.

Identifiability generally means that the model parame-

ters’ property of being recognized uniquely based on the

model’s input and output variables. Most conventional

parameter identifiability analysis approaches mainly rely

on analytics. They can provide accurate analytical solu-

tions based on linear models,but they are impractical for

high-complexity models. Researches in [21, 22] have found

that there is inner relationship between the identifiability

and sensitivity. Those parameters with high sensitivities are

easily to be identified. Hence the sensitivity analysis

method is employed in this paper to selected the dominant

parameters that easier to be identified as well.

The nonlinear model of wind farm can be expressed as

differential–algebraic equations

d

dt
x ¼ f ðx; y; u; hÞ

y ¼ gðx; u; hÞ

(

ð2Þ

where the vector x represents the state variables (such as

the q-axis subtransient electromotive force Eq
’’, rotor speed

xg etc.); vector u is the input variables (such as the wind

speed Vw, the POI bus voltage Vterm); vector h stands for

the parameters; vector y is the output of the wind farm

model.

The parameter sensitivity reflects the output variables’

level of sensitivity to the parameter variation. Thus the

parameter sensitivity in a certain state is defined as

Syi=hi
¼ oyi=yi

ohi=hi

¼ lim
Dhi!0

yiðhr ;hi0þDhiÞ�yi0ðhr ;hi0Þ
yi0ðhr ;hi0Þ
Dhi=hi0

ð3Þ

where Syi=hi
is the sensitivity of yi related to hi; yi0 is the

model output when the hi is hi0; Dhi is the change of hi; hr

represents the other parameters except hi.

The parameter sensitivity can be expressed as an ana-

lytical expression, only if the model on an operation point

is easy to be linearized. In this paper, a tiny disturbance is

added to the parameter to change the wind farm response

during a dynamic process. Then the parameter sensitivity is

approximatively calculated by (3). Note that the variable

y is a function of time, and the parameter sensitivities from

different instances form a trajectory sensitivity curve.

Compared with the sensitivity, the trajectory sensitivity

with dynamic features added, can be devoted to analyzing the

parameters’ relation. The parameters whose trajectory sensi-

tivity curves have same phases or contrary phases couple with

each other, and cannot be independently identified.

The procedure of selecting dominant parameters is

divided into two steps. First, the independent parameters
+-
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are selected by the phase of the trajectory sensitivity. Then,

the parameters with larger amplitudes of trajectory sensi-

tivity are treated as the dominant parameters. To make

comprehensive comparisons of those parameters’ magni-

tudes of trajectory sensitivity, the average of absolute

values of each parameter’s trajectory sensitivity in the

observed time is computed by

�Syi=hi ½t1;t2� ¼
1

N

XN

k¼0

S
yi=hi t1þk�t2�t1

Nð Þ
�
�
�

�
�
� ð4Þ

where �Syi=hi ½t1;t2� is the average sensitivity in the time

domain from t1 to t2; N is the number of samples;

S
yi=hi t1þk�t2�t1

Nð Þ stands for the sensitivity at time instance

t1 ? k(t2 - t1)/N.

4 Parameter identification based on IGA

4.1 Identification model

Essentially, model parameter identification is a proce-

dure of optimization. The goal is to minimize the total

square error of the actual output and the predicted output

by reasonable adjustment of equivalent parameter under

the constraints of state variables and structure

parameters.

Because of the extensive application of wide-area

measurements, the active and reactive power injection, as

well as the voltage at a terminal bus can be obtained

credibly. In terms of the identification model here, the

active and reactive power injection serve as the output

variables, while the terminal voltage and the equivalent

wind speed are chosen as the input variables. Note that the

equivalent wind speed is calculated with the consideration

of wake and tower-shadow effects, which is not the main

focus in this paper. There are more state variables than the

reduced-order models, owing to the complicated model

construction, such as the pitch angle hp, the generator rotor

speed xg, the wind turbine shaft speed xwt, and q-axis

subtransient electromotive force Eq
00. The dominant

parameters selected for identification will be discussed in

Section 5. Now they are represented as the vector h. The

model of parameter identification is given as

min

Z t2

t1

P̂ðtÞ � PðtÞ
�
�

�
�2þ Q̂ðtÞ � QðtÞ

�
�

�
�2

h i
dt

s.t.

hpmin � ĥp � hpmax;E
00
qmin � Ê

00
q �E

00
qmax

xgmin � x̂g �xgmax;xwtmin � x̂wt �xwtmax

hmin � ĥ� hmax

8
><

>:

ð5Þ

here the variables with hats mean estimation values. The

dominant parameters’ boundaries hmin and hmax are

determined by their empirical values, so as to guarantee the

reasonability of the results.

4.2 Identification algorithm

To deal with the problem that the high-order models are

too complex to perform efficient parameter identification,

the genetic algorithm (GA) that less relies on the internal

details of the model is taken into account in this paper. The

whole wind farm model is treated as a black box. Only the

input and output information is used to search for the

optimal parameter combination that matches the dynamic

response characteristic. Every parameter combination in

GA corresponds to a chromosome, and each parameter in

the combination is represented as a gene, as described in

Fig. 4. Each parameter to be identified is expressed with a

15-bit binary number, indicating a resolution of 0.001.

In order to enhance efficiency of identification, an

improved genetic algorithm (IGA) is proposed in this paper

based on the original version. Additionally, all the modi-

fications based on the original GA aim to achieve a better

balance between efficiency and reliability. The procedure

of IGA, mainly involving four aspects, is shown in Fig. 5.

1) Parameters initialization

Although the optimization results are less affected by

the initial values in the GA, the closer to the optimal values

the initial values are, the fewer iterations the optimization

procedure costs. The population size is set to 100. In

contrast to the original GA initializing parameters com-

pletely at random, here the IGA performs initialization

under the guidance of feasible region, making it more

probable to approach optimal states. In particular, the

feasible region of each parameter is divided into 10 parts.

Then 10 samples are randomly selected in each part. This

method can improve the probability of finding the range

including the optimal solution at first generation.

2) Good individuals selection

The fitness function is inversion of the objective func-

tion in (5). So the parameter combination that diminish the

objective function have larger fitness.

To avoid the loss of the optimal genes in the traditional

roulette selection strategy. The 10% parameters with lar-

gest fitness are directly inherited to the next generation.

 chromosome1

 chromosome2

 chromosomeM

Gen1

Gen1

Gen1

Gen2

Gen2

Gen2

GenN-2

GenN-2

GenN-2

GenN-1 GenN

GenN-1 GenN

GenN-1 GenN

Parameter combination Parameter N-1

Fig. 4 Representation of parameter combination in GA
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The remaining 90% individuals are chosen by the roulette

selection strategy.

3) Self-adaptive crossover and mutation

The individuals in a generation are randomly paired.

And the crossover operation is carried out on the individ-

uals in each pair to generate offspring. The crossover

probability Pc is used to control the frequency of crossover

operation. A bigger Pc can improve the search capability in

the space, while a smaller Pc can ensure the continuity of

the search around the optimal value. So a self-adaptive

technique is utilized in this paper, adjusting Pc during the

identification process by

Pn
c ¼ Pn�1

c þ ð0:5� P0
cÞ=N ð6Þ

where n means the current number of iterations; Pc
n is the

crossover probability at nth iteration; N is the maximum

number of generations, which is 100 here; Pc
0 is the original

value, which is set as 0.9 in this paper.

Multi-point mutation strategy is adopted in the mutation

procedure. The purpose of mutation operation is to produce

new individuals and expand the searching scope. Increas-

ing the value of mutation probability Pm can avoid falling

into local optimum, while may destroy the optimum solu-

tion space. The recommended value range of Pm is 0.001 to

0.1. The Pm is also adjusted in (7), according to the search

results.

Pn
m ¼ Pn�1

m þ ð0:001� P0
mÞ=N; if s ¼ 0

Pn
m ¼ P0

m; if s ¼ 1

�

ð7Þ

where Pm
n is the mutation probability at nth iteration; Pm

0 is

set as 0.1; s is the flag variable that decides whether to reset
the Pm

n as the original value. When the situation that

incensement of the best fitness value of the current gen-

eration is less than 1% of the last generation occurs ten

times continually, s is equal to 1. This means that the

search range will change, if better values cannot be found

after repeatedly search.

4) Iterative identification

The model simulation is incorporated in the IGA. Every

new parameter combination created by the genetic

manipulation is passed to the model simulation to calculate

its object function value and fitness. Then good individuals

are selected to be renew in a new round of genetic

manipulation. The optimal parameter combination is

obtained in the process of iterative identification.

The algorithm process will stop when the output error is

in the range of the allowable error or the number of iter-

ations reaches its maximum limit. In the latter situation, the

optimum results,the optimal parameter combination in the

last interaction probably is not the global optimum, con-

sidering the influence of crossover and mutation. So the

best parameter combination must be selected from the

optima in all generations.

5 Simulation and verification

5.1 Model test based on the benchmark system

A model simulation test is conducted on a simple system

to verify the dynamic response of the model, as shown in

Fig. 6. The test system is a benchmark system proposed by

the WECC’s Wind Generator Modeling Group [23]. There

are 20 DFIGs that are rated at 1.5 MW in the wind farm.

The standard capacity of this system is 33 MVA. The

power grid is represented by an infinite voltage source. The

parameters of lines and transformers are given on per unit

value (p.u).

Different forms of disturbances are imposed to test the

response characteristics of the electrical control parts and

Fig. 5 Procedure of parameter identification based on IGA
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the mechanical transmission parts. Several comparisons are

made among the G.E. standard model (model 1), the

equivalent model in this paper (model 2) and the traditional

reduced-order model (model 3).

1) Test with grid voltage disturbance

A small step change of the grid voltage is carried out to

test the control effects of reactive power and voltage con-

trol. The setting is that the voltage of grid drops from

1.05 p.u. to 0.97 p.u. at 1.0 s. The voltage and the reactive

power at Bus 2 (POI) are shown in Fig. 7.

The test results show that the equivalent model can

timely increase reactive power to provide assistance for the

voltage recovery, which is as same as the standard model,

when the model is under constant-voltage control mode.

While, the traditional model always uses constant reactive

power control modes by setting the reactive power refer-

ence. So it’s helpless for the voltage drop. It is obvious that

the property of DFIGs is lost, although the model is

simplified.

2) Test on the wind speed disturbance

The pitch angle control and regulation of active power

are tested in this part by a wind ramp. The wind farm works

under the rated condition. A wind ramp starts from 11.8 m/

s at 10.0 s, and reaches 17.8 m/s. Then, the wind speed

remains steady for 30.0 s. Its rise time and fall time are

both 30.0 s. The pitch angle and active power are shown in

Fig. 8.

It is evident that the traditional reduced-order model that

ignores the pitch angle control exhibits some undesirable

characteristics in the period of wind disturbance. However,

the equivalent model has almost the same features as the

standard model, which can approximately maintain the

output power approximate as a constant. The results

demonstrate that the active control and pitch angle control

are effective and more tally with the practical conditions.

5.2 Validation of the identification algorithm

The identification algorithm based on the IGA is verified

on the CEPRI 36 bus system, as shown in Fig. 9. The wind

farm containing 240 9 1.5 MW DFIGs is connected to the

system at Bus8. A PMU is installed at the Bus31 to mea-

sure the dynamic information. The simulation data

including amplitudes and phase angles of bus voltages,

active power and reactive power outputs, are acquired to

simulate PMU measurements. The standard capacity of this

system is 100 MVA. Bus1 is treated as a slack point.

1) Parameters selection and classification

It is known that different dynamic modes may be

stimulated by different disturbances [24]. In the model

verification, it can be seen that the voltage and reactive

power control may significantly affect the dynamic process

when a transient disturbance occurs. Analogously, the same

relationship exists between the pitch angle control and the

wind disturbances. So the parameters may have different

observability under different disturbances.
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There will be two kinds of disturbances in this paper to

classify and select the dominant parameters. One kind

disturbance is a three-phase short-circuit fault at the Bus31

that lasts for 0.1 s (Case 1). The other kind disturbance is a

gust that starts at 2.0 s with an initial speed of 14 m/s and

lasts for 20 s. The maximum of the speed is 20 m/s (Case

2). The parameters’ trajectory sensitivity curves under both

kinds of disturbances are given in Fig. A2 and Fig. A3 in

Appendix A. The parameters of PI controllers are assumed

to be similar to individual wind turbines. And they are also

less affected by the wind farms’ operating conditions,

service life, etc. So they are preset and regarded as

unchanged. Only the parameters that are sensitive and

variable, such as Xeq, EIQmax, EIQmin, Tg, Twt, Ktg and Dtg

are analyzed in this paper. The parameters Xeq, EIQmax and

EIQmin that are more associated with electrical response

characteristics are referred to as electrical parameters.

Meanwhile, the parameters Tg, Twt, Ktg and Dtg are referred

to as mechanical parameters.

From the results, it is found that those parameters are

uncoupled to each other except that some parameters’ sen-

sitivities are too small to identify. In order to compare the

identifiability of those parameters, the average sensitivities

are listed in Table 1. Every number in the table represents

the corresponding sensitivity with respect to P or Q.

It indicates that the parameters playing an important role

at the voltage and reactive power controls such as Xeq and

EIQmax are easier to be identified under the transient fault.

The parameters such as Tg, Twt and Ktg have some identi-

fiable degrees in both cases. But they are relatively more

sensitive under the gust disturbance. However, it is difficult

to identify EIQmin and Dtg in either case. Therefore, Xeq and

EIQmax are identified under the transient fault, while Tg, Twt

and Ktg are under the gust disturbance.

2) Parameter identification

The parameter identification method can play an effec-

tive role, when there is a disturbance in the wind farm

operation. Different parameters are identified under dif-

ferent situations. The simulation experiment is also in the

CEPRI 36 bus system with the same disturbances in the

Case 1 and Case 2.

The POI bus is probably not equipped with PMU, just as

this case in the Fig. 9. If the resistance and ratio of the

transformer between bus 8 and bus 31 is known, the

information of the wind farm can be calculated from the

PMU measurements by some state estimation methods.

The identified values of those parameters based on IGA

are compared with the actual values in Table 2. It is

obvious that the identified values are rather close to the

actual values. The relative errors are all within the range of

the errors permitted. The results verify the effectiveness of

the method.

Furthermore, the identification results are shown in

Fig. 10 and Fig. 11, where the response results of mea-

sured data, identified data and the outputs based on

empirical parameters are comprehensively compared.

The comparisons show that the response based on

identification is in general agreement with the practical

measurement results, whereas the response based on

empirical parameters are greatly different. It further sug-

gests that power system security analysis using empirical

parameters of wind farm models is likely to deviate from

the actual situation. Moreover, it reveals the parameter

identified from measurement data of WAMS is of desirable

reliability.

Table 1 Average sensitivities of the parameters

Case Xeq EIQmax EIQmin Tg Twt Ktg Dtg

Case 1 P 0.363 0.441 0.006 0.077 0.049 0.016 0.001

Q 0.101 0.011 0.003 0.019 0.006 0.003 0.000

Case 2 P 0.001 0.000 0.000 0.088 0.140 0.034 0.000

Q 0.009 0.000 0.000 0.165 0.261 0.064 0.000
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Table 2 Comparisons of parameter identification results

Parameter Xeq EIQmax Tg Twt Ktg

Actual value 0.500 0.400 1.500 8.600 1.420

Identified value 0.489 0.387 1.519 8.608 1.437

Relative error 2.20% 3.25% 1.27% 0.12% 1.20%
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To validate the advantages of the IGA related to the tra-

ditional GA, the iterative process of the two kinds algorithms

in both identification cases are shown in the Fig. 12, where

the objective function values are given at same iterations.

It is shown that the convergence rate of the errors is

greatly improved in the IGA with the adaptive crossover

operator and mutation operator. Therefore, the IGA pro-

posed in this paper is effective to enhance the global search

capability of genetic algorithm during the procedure of

both identification cases.

To prove that the sensitivity is a good index for the

identifiability, the parameters with small sensitivities, such

as EIQmin and Dtg, were added into the parameter set for

identification. The fitting degrees of active power and

identified results of Xeq and EIQmin in five experiments are

listed in Table 3.

In some high fitting degree situations, the values of Xeq

are relative steady, while the values of EIQmin are randomly

distributed in its feasible regions, which shows that those

parameters with small sensitivities are difficult to be

accurately identified. So they are usually specified as

empirical values. It also implies that the parameters

selection based on sensitivity can effectively remove those

intractable parameters and improve the identification

efficiency.

3) Parameter validation

However, there may exist several sets of parameters that

produce similar responses from the model. So the param-

eters identified by the IGA need to be further selected by

the responses under stochastic wind that frequently appears

in practice (Case 3).

To validate the effectiveness of the optimized model

parameters, a new set of parameters (Set B, Table 4)

producing comparable responses as the previously identi-

fied parameters (Set A, see Table 2) is obtained from

identification processes by expanding the feasible regions

of parameters, as listed in Table A1 in Appendix A.

The measured results and the responses based on the

parameter Set A and Set B are compared in Fig. 13.

The fitting degree of active power based on the

parameters of Set A is 98.55%, while the counterpart based

on Set B is 92.15%. Meanwhile, the fitting degrees of

reactive power corresponding to Set A and B are 97.32%

and 91.08%, respectively. It is obvious that the results

based on parameter Set A stay much closer to the practical

measurements than the parameter Set B in Case 3. So the

parameters of Set A are selected as the optimal parameters.

Such a verification also reveals that the optimal parameters

should be well adaptive under other disturbance occasions.

6 Conclusion

In this paper, a wind farm modeling and parameter

identification approach based on measured data of PMUs is

proposed to solve the problem of unreliable models and the

inaccurate parameters. An equivalent wind farm model

involving basic structural characters and control principles

is built to effectively simulate the actual response of the

wind farm. Dominant parameters are selected and classified

by trajectory sensitivity analysis under two kinds of dis-

turbances, which helps to tackle the intricate and laborious

identification issue of multiple parameters. Besides, an

improved generic algorithm, enhancing the capability of

globally and efficiently searching optimal parameters, is

developed. In particular, the genetic manipulation is opti-

mized with the self-adaptive cross and selection operators,

attempting to find a balance between efficiency and

reliability.

Table 3 Identified values of parameters and fitting degrees

Number 1 2 3 4 5

Xeq 0.489 0.491 0.486 0.498 0.501

EIQmin -0.481 -0.205 -0.303 -0.428 -0.187

Fitting degree of P 98.7% 98.9% 98.6% 99.4% 99.2%

Table 4 Values of parameter Set B

Parameter Xeq EIQmax Tg Twt Ktg

Set B 0.779 0.317 1.676 7.602 1.358
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The test on the WECC benchmark system under voltage

steps and wind ramps demonstrates that the response of this

model is coincided with the standard model, which can

reflect the real dynamic characteristics better than the tra-

ditional model. In addition, the validation of the identifi-

cation algorithm is carried out on the CEPRI 36-bus

system, which suggests the model response with identified

parameters based on WAMS are more accurate and rea-

sonable than with the empirical parameters. Then the IGA

is compared with the traditional GA. which validates the

better global search capability of this method. Finally, the

optimal parameters are selected and validated under the

stochastic wind condition in case of multi-solution

situations.

This paper has provided a reliable modeling method

based on WAMS for wind farms. In relevant future work,

further validations using field data will be necessary to

demonstrate the effectiveness in the real system.

Additionally, the modeling method can be also employed

to assist power system analysis and control strategies with

large-scale wind power integrated in the future.
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Appendix A

See Tables A1, A2 and Figs. A1, A2 and A3.

Table A1 Model parameters adopted by wind farms in a regional power network simulation

Area Area 1 Area 2 Area 3 Area 4

Total number of models 34 72 94 151

Number of models with unified parameters 33 72 89 125

Table A2 Parameters of the wind farm model and their common empirical values in p.u

Equivalent reactance (Xeq) 0.55 Pitch angle PI control (Kpp) 150

Integral coefficient of Q (KQi) 0.05 Pitch angle PI control (Kpi) 25.0

Integral coefficient of V (KVi) 30.0 Inertia coefficient of generator (Tg) 1.14

Upper bound of Eq
00 change (EIQmax) 0.30 Inertia coefficient of turbine (Twt) 7.64

Lower bound of Eq
00 change (EIQmin) -0.35 Stiffness coefficient of shaft (Ktg) 1.25

Control mode of Q (Qflag) Constant-voltage Damping coefficient of shaft (Dtg) 1.50
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Fig. A1 Reactive control module
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