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Abstract Distribution system planners usually provide

dedicated feeders to its different class of customers, each of

whom has its own characteristic load pattern which varies

hourly and seasonally. A more realistic modeling should be

devised by considering the daily and seasonal variations in

the aggregate load patterns of different class of customers.

This paper addresses a new methodology to provide inte-

grated solution for the optimal allocation of distributed

generations and network reconfiguration considering load

patterns of customers. The objectives considered are to

maximize annual energy loss reduction and to maintain a

better node voltage profile. Bat algorithm (BA) is a new

bio-inspired search algorithm which has shown an advance

capability to reach into the promising region, but its

exploration is inadequate. The problem is solved by

proposing the improved BA (IBA). The proposed method

is investigated on the benchmark IEEE 33-bus test distri-

bution system and the results are very promising.

Keywords Load pattern, Distributed generations,

Distribution network reconfiguration, Improved bat
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1 Introduction

The electric power industries have witnessed many

reforms in recent years. The rise of smart grid is a boon not

only to society as a whole but to all who are involved in the

electric power industry, its customers, and its stakeholders

[1]. The existing distribution systems are moving towards

smart distribution systems to achieve larger socio-eco-

nomic and other non-tangible benefits. Distributed gener-

ations (DGs) are now becoming essential components for

realizing the concept of smart distribution systems on

account of economic viability and strict environmental

laws. Optimal DG placement can improve network per-

formance in terms of better node voltage profiles, reduce

flows and system losses and improve power quality and

reliability of supply, but inappropriate DG placement may

increase system losses and network capital and operating

costs [2]. Due to unbundling rules, distribution network

operators (DNOs) cannot invest in generation facilities and

are meant to provide DG owners with cost-effective con-

nection means, irrespective of the technology or geo-

graphical location [3]. Therefore, future distribution

networks with the high DG penetration to be planned and

operated in order to improve their efficiency [4]. The

optimal allocation of DG units requires the determination

of their optimal sizing and sites to achieve desired objec-

tives while satisfying several constraints. Thus, DG optimal

allocation is a nonlinear complex combinatorial constraint

optimization problem and is one of the most important and

challenging task towards realizing smart grid objectives.

Crosscheck date: 19 October 2015

Received: 8 July 2015 / Accepted: 19 October 2015 / Published online:

16 November 2015

� The Author(s) 2015. This article is published with open access at

Springerlink.com

& Nikhil GUPTA

nikhil2007_mnit@yahoo.com

Neeraj KANWAR

nk12.mnit@gmail.com

K. R. NIAZI

krn152001@yahoo.co.in

Anil SWARNKAR

mnit.anil@gmail.com

1 Department of Electrical Engineering, Malaviya National

Institute of Technology, Jaipur, India

123

J. Mod. Power Syst. Clean Energy (2015) 3(4):475–484

DOI 10.1007/s40565-015-0169-0

http://crossmark.crossref.org/dialog/?doi=10.1007/s40565-015-0169-0&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40565-015-0169-0&amp;domain=pdf


Recently, some researchers have shown fruitful impact

of optimal DG allocation on the performance of distribu-

tion systems using meta-heuristic techniques by consider-

ing a variety of technical or techno-economic objectives.

Ref. [5] employed harmony search algorithm with differ-

ential operator to install multiple DG units with an objec-

tive of minimizing active power loss and improving

voltage profile. In Ref. [6], the problem is solved for

congestion management considering economic and finan-

cial issues. Two different methods, based upon locational

marginal price and congestion rent, are proposed in order

to mitigate transmission congestion and to increase security

in restructured power systems. Ref. [7] presented a quasi-

oppositional teaching learning based optimization

methodology to simultaneously optimize power loss,

voltage stability index and voltage deviation of radial

distribution network. Ref. [8] proposed a combined impe-

rialist competitive algorithm (ICA)-genetic algorithm (GA)

method in which first, ICA is used to find the allocations of

DGs and then GA operators are employed to refine these

solutions. Ref. [9] proposed a multi-objective index-based

approach for optimally determining the size and location of

multi-DG units in distribution systems using particle

swarm optimization (PSO) with different load models. A

novel approach based on cuckoo search is applied for

optimal DG allocation to improve voltage profile and

reduce power loss of the distribution network in [10]. In

most of the reported articles DGs have been treated as

essentially the source of active power generations. How-

ever, from a purely operational perspective, DG plants

could also be encouraged to provide reactive power support

if that is of concern for the DNO or the regional trans-

mission network [3]. Ref. [11] employed artificial bee

colony algorithm to solve optimal DG allocation problem

where DGs are capable to generate both active and reactive

power. They have shown a substantial improvement in

voltage profile and power loss reduction. Very recently,

heuristic curve fitting technique [12], PSO [13] and ana-

lytical approach [14, 15] are also reported to investigate

this problem with different types of DG units. It has been

concluded in [14] that among different DG types, the DG

capable of delivering both real and reactive power reduces

losses more than that of DG capable of delivering real

power only.

Distribution network reconfiguration (DNR) is one of

the effective operational strategies to achieve high perfor-

mance of distribution systems. Distribution networks are

reconfigured frequently with changing operating condi-

tions. Smart grid requires integrated solutions that reflect

coexistence of strategies to achieve higher energy effi-

ciency and good quality power supply. Some researchers

[16–20] have employed DNR in conjunction with the

optimal allocation of DGs and acknowledged that this

strategy is more useful. But this approach is not realistic

since the solution obtained can demand an alteration in

both network topology and sites of DGs. In practice, the

network topology can be altered, but not the locations of

DGs with variations in load demand. Ref. [21] employed

different combinatorial strategies of DGs allocation and

DNR. But, according to their strategy, DNR should be

carried out before DG addition. In fact, the problem of

planning horizon should be dealt before optimizing any

operational strategies, otherwise it may leads to erroneous

results. Moreover, they have not taken into consideration

the node voltage deviations and thermal limits of distri-

bution feeders in the problem formulation, although both

DNR and DGs can play crucial role to decide the voltage

profiles and line flows of distribution systems.

The load demand of the system is a major source of

uncertainty in power system planning [22], and is origi-

nated owing to the diversity of load demand among dif-

ferent class of customers. In practical situations, loads are

mixtures of different load types, depending on the nature of

the area being supplied, therefore, a load class mix of

residential, industrial, and commercial loads is to be

investigated too, in which every bus of the system has a

different type of load connected to it [9]. Usually, distri-

bution system planners provide dedicated feeders to its

different class of customers, each of whom has its own

characteristic load pattern which varies hourly and sea-

sonally. A more realistic modeling should be devised by

considering the daily and seasonal variations in the

aggregate load patterns of different class of customers.

Therefore, the modeling of annual load profile should be

made more realistic by considering customer-wise dedi-

cated feeders and their characteristic load patterns while

dealing with resource allocation problems of distribution

systems.

Bat Algorithm (BA) is a new bio-inspired optimization

technique proposed in [23]. The algorithm is inspired by

the social behavior of bats and the phenomenon of

echolocation to sense distance. BA mimics the variations of

pulse emission rates and loudness of bats when searching

for prey and has shown a typical quick start. It is simple,

robust, easy to implement and also significantly faster than

other optimization techniques. It has been successfully

applied to solve diverse engineering optimization problems

such as power system stabilizer [24], uninhabited combat

air vehicle (UCAV) path planning [25], economic dispatch

[26], load frequency control [27], planning the sports

training [28], fuel arrangement optimization of reactor core

[29], feature selection [30], etc. The algorithm obtained

good results when dealing with lower-dimensional opti-

mization problems, but may become problematic for

higher-dimensional problems because it tends to converge

very fast initially [31]. The standard BA is usually quick at
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the exploitation of the solution though its exploration

ability is relatively poor [25].

In the light of the above discussion, an improved BA

(IBA) algorithm is proposed for optimal allocation of DGs

in distribution systems to maximize annual energy loss

reduction and to improve node voltage profiles. A realistic

methodology has been adopted to formulate the problem

considering dedicated feeders to various classes of cus-

tomers and also considering the daily and seasonal varia-

tions in their characteristic load patterns. The distribution

network is reconfigured for each operating state after

placing optimal DGs which are capable to inject both

active and reactive power. Some modifications are sug-

gested in IBA to enhance the convergence, accuracy and

efficiency of the standard BA. The proposed method is

investigated on the benchmark IEEE 33-bus test distribu-

tion system and the application results obtained are very

promising.

2 Load patterns of customers

Several earlier works reported have employed three-

stepped load profile of distribution system for its piecewise

linearization. However, power demand of a distribution

network is stochastic in nature and is primarily depends

upon the category of customers. Each class of customers

has its characteristic load pattern which varies hourly and

seasonally. Distribution system planners usually provide

dedicated feeders for each class of customers. In this paper,

distribution feeders are assumed to be divided into resi-

dential, industrial and commercial categories. Therefore,

the diversity available among different customers is taken

into account while determining aggregate annual load

profile of the distribution system.

For each category, the aggregate daily load pattern of

the customer is usually approximated by piecewise lin-

earization into three or four levels. However, they may

have different load durations. Therefore, the system load

profile for a given season may have several load levels as

shown in Fig. 1. The figure shows that there are total nine

load levels for an individual season called spring-fall sea-

son. Similarly, the load pattern for other seasons, e.g.

summer and winter seasons can be determined by consid-

ering seasonal variations in the demand of each category of

customers. The aggregate annual load profile of the system

can be obtained by the summation of load patterns being

generated for all seasons of the year. For the illustration,

the annual load profile will be composed of 27 load levels

while considering three seasons.

3 Problem formulation

The problem is formulated by considering dedicated

feeders being assigned to various customers and by con-

sidering hourly and seasonal variations in the load patterns

of each class of customers to determine the annual load

profile of the system. However, whatever the particular

driver is for a DNO, e.g., to allow the connection of more

DG capacity, to reduce energy losses, or to increase net-

work reliability, these DG planning tools must take into

account essential network constraints such as voltage and

thermal limits [3]. The objective function O is therefore

designed to minimize annual energy loss reduction while

enhancing node voltage and feeder current profiles using

penalty function approach as below.

O ¼ B Ebase
loss � EDG

loss

� �
ð1Þ

where Ebase
loss and EDG

loss are the annual energy losses without

and with DG placement and can be determined using

following equation assuming piecewise linearized load

profile of the system.

Eloss ¼
XNs

s¼1

Ds

XL

j¼1

Hj;s

XNr

r¼1

Pr
loss þ

XNi

i¼1

Pi
lossþ

XNc

c¼1

Pc
loss

 !

ð2Þ

where Pr
loss;P

i
loss;P

c
loss are the power losses in rth

residential, ith industrial and cth commercial feeder,

respectively at jth load level of the sth season. Hj,s and Ds

are the load duration for jth level of sth season and

number of days in a season, respectively. Ns denotes the

number of seasons in a year and Nr, Ni, Nc are the set of

nodes lies along residential, industrial and commercial

feeders, respectively. The penalty function PF is defined

as:

Fig. 1 Aggregate daily load patterns of customers and the system
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B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vpf � Ipf

p
ð3Þ

where voltage and current penalty functions are given by

Vpf ¼
1

1þ Max DVr;j;s; DVi;j;s; DVc;j;s

� �� � 8i 2 N; 8j 2 L

ð4Þ

Ipf ¼
1

1þ Max DIr;j;s; DIi;j;s; DIc;j;s
� �� � 8i 2 N; 8j 2 L

ð5Þ

where DVr,j,s, DVi,j,s, DVc,j,s are the maximum node voltage

deviations of rth residential node, ith industrial node and cth

commercial node at jth load level of the sth season.

Similarly, DIi,j,s, DIi,j,s, DIc,j,s are the maximum branch

current deviations of rth residential node, ith industrial node

and cth commercial node at jth load level of the sth season.

N and L denote the set of system nodes and load levels.

Node voltage deviation and feeder current deviations at rth

residential feeder for jth load level of the sth season are

defined as:

DVr;j;s ¼
1� Vr;j;s

�� �� VminS\Vr;j;s\Vmin

0 Vmin �Vr;j;s �Vmax

1010 else

8
<

:
ð6Þ

DIr;j;s ¼
Irmax S � Ir;j;s Irmax\Ir;j;s � Irmax S

0 Ir;j;s � Irmax

1010 else

8
<

:
ð7Þ

where minimum and maximum bounds for node voltages

and feeder currents are denoted by the subscript min and

max, respectively. VminS denotes specified node voltage

suggested for better capacity allocation with the due con-

sideration for network reconfiguration and ImaxS is thermal

limit of feeders after considering maximum tolerance,

usually taken as 10 % above the rated value. Similarly,

DVi,j,s, DVc,j,s, DIi,j,s and DIc,j,s can also be defined. The

different constraints used to solve O are defined as below.

3.1 Power flow equations

The sum of the power purchased from utility grid and

the total power generated by the different sources in the

distribution system must be balanced by the local load

demand and the power loss in the lines. For a radial net-

work, a set of recursive equations are used to model the

power flow in the network as shown by (8)–(12).

Pnþ1 ¼ Pn � Rn

P2
n þ Q2

n

V2
n

� pnþ1 8n 2 N ð8Þ

Qnþ1 ¼ Qn � Xn

P2
n þ Q2

n

V2
n

� qnþ1 8n 2 N ð9Þ

V2
nþ1 ¼ V2

n � 2 RnPn þ XnQnð Þ þ R2
n þ X2

n

� �P2
n þ Q2

n

V2
n

8n 2 N

ð10Þ

pnþ1 ¼ pLnþ1 � pDGnþ1 8n 2 N ð11Þ

qnþ1 ¼ qLnþ1 � qDGnþ1 8n 2 N ð12Þ

The active and reactive nodal power flows are expressed

by the upper case notations P and Q, R and X denotes

resistance and reactance of the feeder whereas the active

and reactive power injections are denoted by the lower case

notations p and q, respectively. V denotes the voltage of the

bus of the distribution system.

3.2 Node compensation limit

The total complex power injected by DG at each node

must be within their permissible range as defined by (13).

SDG;min � SDG;n � SDG;max 8n 2 N ð13Þ

3.3 System compensation limit

The sum of total complex power injected by DGs at all

candidate nodes should be less than nominal complex

power demand SD of the distribution system. For Loc

number of candidate locations of DGs the system com-

pensation limit is defined as

XLoc

n¼1

SDG;n � SD 8n 2 N ð14Þ

Equation (15) prohibits repetition of candidate sites for

DGs. Discrete dispatches of DGs are modeled as (16) for

DS unit size of DG.

NDG;a 6¼ NDG;b a; b 2 N ð15Þ

SDG � kdDS kd ¼ 0; 1; 2; . . .; ndg ð16Þ

where ndg denotes DG penetration limit for each system

node. First optimizing (1), the solution obtained provides the

optimal sizes and sites of DGs, while considering the annual

load profile. Next, (1) is optimized again, but for each load

level separately, to determine the optimal power dispatches

of these installed DGs. However, the sites for DGs are kept

freeze and their sizing is restricted to that provided by the

obtained solution. The additional constraint defined for

optimal dispatches of DGs is given below:

SDG ¼ kmdDS kmd ¼ 0; 1; 2; . . .; SDG=DS ð17Þ

The distribution networks are reconfigured frequently to

optimize energy efficiency and to maintain power quality.

Therefore, the distribution network is reconfigured at each

load level after placing respective dispatches of DGs. The
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reconfiguration problem is formulated to minimize feeder

power losses while satisfying various network operational

constraints. The mathematical formulation for the network

reconfiguration problem to minimize power losses is

considered as:

Min Ploss;j ¼
XE

n¼1

Rn

P2
n;j þ Q2

n;j

Vn;j

�� ��2
8n 2 N; 8j 2 L ð18Þ

subject to the following constraints.

3.4 Radial topology constraint

The reconfigured network topology must be radial, i.e.

with no closed path. Therefore, for the rth radial topology,

UjðrÞ ¼ 0 8j 2 L ð19Þ

3.5 Node voltage constraint

A hard voltage constraint is employed during the net-

work reconfiguration as it is one of the important network

operation strategies. All node voltages of the system must

be maintained within the following limits during the opti-

mization process.

Vmin �Vn;j �Vmax 8n 2 N; 8j 2 L ð20Þ

The radial constraint imposes the biggest hurdle while

solving the problem of network reconfiguration. In the present

work, the codification proposed in [32] is used to solve the

problem. This is a rule-based codification to check and correct

infeasible radial topologies. According to this codification,

three following rules are formed which are based on graph

theory to identify and correct infeasible individuals whenever

appeared in the computational process.

1) Each candidate switch must belong to its correspond-

ing loop vector.

2) Only one candidate switch can be selected from one

common branch vector.

3) All the common branch vectors of a prohibited group

vector cannot participate simultaneously to form an

individual. The definitions of loop vector, common

branch vector and prohibited group vector may be

referred from [32].

4 Bat algorithm

Bats are fascinating animals. They have advanced

capability of echolocation [23]. In BA, the velocity and

position of each bat are updated with iterations as in PSO.

However, an intensive local search is also combined which

is very similar to simulated annealing. It is governed by the

loudness and pulse emission rate assigned to each bat and

are allowed to vary with iterations. The different phases

used in standard BA can be summarized as below.

4.1 Random fly

Each bat is defined by its position xi(t), velocity vi(t),

frequency fi, loudness Ai(t) and the pulse emission rate ri(t)

at the time step t in a d-dimensional problem search space

fi ¼ fmin þ fmax � fminð Þ � b ð21Þ
vi tð Þ ¼ vi t�1ð Þ þ xi tð Þ�x�ð Þ � fi ð22Þ
xi tð Þ ¼ xi t�1ð Þ þ vi tð Þ ð23Þ

where b is a random number in the range [0, 1].

4.2 Local random walk

For the local search part, once a solution is selected

among the current best solutions x*, a new solution for

each bat is generated locally using random walk as defined

below:

xnew;i ¼ xold;i þ e\A tð Þ[ rand [ ri tð Þ ð24Þ

where e is a scaling factor in the range [–1, 1] and rand is a

random number in the range [0, 1].\A(t)[ is the average

loudness of all bats. The loudness and the pulse emission

rate of each bat are updated with iteration using following

relations.

Ai t þ 1ð Þ ¼ aAi tð Þ ð25Þ

ri t þ 1ð Þ ¼ ri 0ð Þ 1�e�ct½ � ð26Þ

where a and c are constant, each of them is usually taken as

0.9 [23].

5 Proposed IBA

BA has very good exploitation potential, but the explo-

ration potential is inadequate. Therefore, it has legacy of lack

in diversity which eventually leads to local trappings and

thus the convergence degrades. Therefore IBA is proposed as

an optimizing tool after suggesting several modifications in

the standard BA algorithm, viz. revised loudness and pulse

emission rate, improved local random walk and diversity to

improve performance of the standard BA.

5.1 Revised loudness and pulse emission rates

The loudness and pulse emission rates essentially pro-

vide a mechanism for automatic control and auto zooming
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into the region with promising solutions [33]. The gradual

switching of exploration to exploitation is governed by the

relative values assigned to loudness and the pulse emission

rate. In BA, both are allowed to vary too quickly, which

may lead to stagnation after some initial stage [33].

Therefore, the loudness and pulse emission rates are

revised as below.

Ai tð Þ ¼ atAi ð27Þ
ri tð Þ ¼ 1�Ai tð Þ ð28Þ

where a ¼ ð1=2AiÞ1= k�itrmaxð Þ
, and k is the desired fraction

of maximum iteration count itrmax at which loudness and

pulse emission rate equalizes. In this way, these two

parameters become self-adjustable.

5.2 Improved local random walk

In standard BA, the term e\A(t)[ remains ineffective

for most of the bats, especially during later portion of the

computational process while considering e [ [–1,1] and the

initial loudness A[[0,1]. As a consequence, the local ran-

dom walk also becomes ineffective while solving an opti-

mization problem with discrete decision variables. This

adversely affects the exploitation potential of the algo-

rithm. Therefore, an improved local random walk of the

best bat is proposed as described below.

First of all, Mc, number copies of the best bat are gen-

erated and each of them is mutated over the randomly

selected Mn dimensions in the range [–M, M]. The choice

of Mc, is decided by the usual tradeoff between accuracy

and CPU time of the algorithm. The higher the value ofMc,

the better will be the exploration, but at the cost of more

CPU time. Usually, Mc([4) provides satisfactory results.

Higher value ofMn([0.6) causes much higher diversity and

may diverge solutions. With M[ 2, it will cause unnec-

essarily larger search space for the local random walk. The

best bat is replaced if a better bat is available after this

improved local random walk.

5.3 Diversity

BA has inheritance in lack of diversity. This may causes

poor exploration as the bats are exploring extensively the

region in the near vicinity of the current best bat. The

mutation operator is capable to identify unexplored areas of

the search space. Since BA has very strong exploitation

potential, a very high mutation rate is desired to makes it

effective. Therefore, the algorithm is reinitialized using

single-point random mutation. The Fitness of all mutated

bats is evaluated and the current best bat is updated if the

better one is found.

5.4 Structure of individuals

The for the proposed method is shown in Fig. 2 which is

composed of candidate nodes NDG and sizing SDG for the

candidate DGs. The candidate nodes and DG sizing are

selected randomly within their respective predefined

bounds as described by (13)–(15). When determining

optimal power dispatches of the installed DGs, for each

load level, the algorithm again runs with the same structure

of individuals. However, the DGs locations are now freeze

to those values that obtained by the optimal solution. Also

the limit of sizing is restricted to the installed capacities

that provided by the optimal solution.

5.5 Elitism and termination criterion

Elitism is used to preserve the best bat during the evo-

lutionary process. The termination criterion may be selec-

ted by defining maximum iteration count or accuracy of

solutions, etc. However, in the proposed method, when

either the maximum iteration count is exhausted or all

candidate solutions acquire the same fitness, the iterative

computation stops.

The Pseudo code of the proposed IBA is presented as

below:

Objective function O

Initialize the bat population xi, vi and fi,d; i = 1, 2, …,

Nb, d = 1, 2, …, D

Initialize pulse rate ri and loudness Ai

While (t\ itrmax)

Generate new solutions by adjusting frequency, and

updating velocities and locations/solutions

if (rand[ ri)

Select the current best solution

Generate a local solution (F1) around the current best

solution

else if

Make Mc copies of the current best solution

Apply improved local random walk

Select best solution (F2) among Mc solutions after

single-point random mutation

Select best solution F out of F1 and F2

end if

Generate a new solution by flying randomly

if (rand\Ai and O\F)) then

Accept the new solutions

Fig. 2 Structure of Individuals

480 Neeraj KANWAR et al.

123



Increase ri and reduce Ai

end if

Rank the bats and find the current best x*

t = t ?1;

Apply diversity and preserve elite solution

end while

Post-processing the results and visualization.

6 Simulation results and discussion

The proposed method is applied to IEEE 33-bus test

distribution system [34]. The initial data of this test system

can be referred from Table 1. The hourly and seasonal

variations in the load factors considered for different

varieties of customers are presented in Table 2. In the

table, L, Hj, R, I, and C denote load level, load duration in

hours, load factor for residential, industrial and commercial

customer in p.u., respectively. The table shows load factors

and corresponding load durations for the aggregate daily

load patterns of the given season-wise customers. The load

levels 1-9, 10-18 and 19-27 are used for spring/fall, winter

and summer seasons, respectively. Table 3 shows design

parameters selected for this problem.

The best solution is obtained after 100 trial runs of

proposed IBA method. The optimal sites of DGs to be

installed in the distribution network are 13, 24 and 30,

whose corresponding optimal sizes are 565kVA, 1049kVA

and 958kVA, respectively. After placing optimal DGs,

their optimal active and reactive power dispatches are

determined at each load level separately as shown in

Table 4. The distribution network is reconfigured at each

load level after optimally placing DGs. The optimal net-

work configurations are also shown in the table. After

providing this integrated solution, feeder power losses and

minimum node voltage are determined for each load level

as shown in Figs. 3 and 4, respectively.

It can be observed from these figures that the power

losses are substantially reduced and the minimum node

voltage is significantly enhanced using optimal DG allocation. The performance of the distribution system is

further enhanced by network reconfiguration. It happens at

all load levels.

The annual energy loss, percentage annual energy loss

reduction and the minimum node voltage among all the 27

load levels considered is presented in Table 5. It can be

observed from the table that annual energy loss reduction is

about 85 %usingDG allocationwhich is further enhanced to

about 89 % by network reconfiguration. Thus proposed

integrated solution provides substantial reduction in annual

energy losses occurred in distribution feeders. Also a better

node voltage profile with a minimum node voltage of 0.9542

p.u. is obtained during the peak load hours. This shows that

Table 1 Initial data of IEEE 33-bus system

Particular Value

Line Voltage (kV) 12.66

Nominal Active Demand (kW) 3715

Nominal Reactive Demand (kVA) 2300

Base Configuration 33 to 37

Residential Feeders 1–15

Industrial Feeders 22–29

Commercial Feeders 16–21, 30–33

Table 2 Load factors and load duration for different seasons

L R I C Hj L R I C Hj

1 0.40 0.80 0.40 7 15 0.48 0.48 0.48 1

2 0.40 1.00 0.40 1 16 0.48 0.60 0.60 1

3 0.60 1.00 0.40 3 17 0.60 0.60 0.60 2

4 0.60 1.00 0.60 3 18 0.60 0.48 0.24 1

5 0.80 1.00 0.80 5 19 0.56 1.12 0.56 7

6 0.80 0.80 0.80 1 20 0.56 1.40 0.56 1

7 0.80 1.00 1.00 1 21 0.84 1.40 0.56 3

8 1.00 1.00 1.00 2 22 0.84 1.40 0.84 3

9 1.00 0.80 0.40 1 23 1.12 1.40 1.12 5

10 0.24 0.48 0.24 7 24 1.12 1.12 1.12 1

11 0.24 0.60 0.24 1 25 1.12 1.40 1.40 1

12 0.36 0.60 0.24 3 26 1.40 1.40 1.40 2

13 0.36 0.60 0.36 3 27 1.40 1.12 0.56 1

14 0.48 0.60 0.48 5 – – – – –

Table 3 Design parameters for optimally placing DGs

Particular Value

VminS/Vmin/ Vmax (p.u.) 0.9/0.95/1.05

SDG (MW) 2

PFDG 0.85

SD (kVA) 7000

NDG 1–33

DS (kVA) 1

Loc 3

Inmax(n) 400(1,2), 250(3–5, 18–20, 22–29),

150(6–17, 21, 30–37)

fmin/fmax 0/2

c 0.9

Mc 5

Mn 0.6

M -2/2
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all node voltages maintained above the permissible limit

during any load condition throughout the year.

A set of convergence characteristics for the best andmean

fitness obtained after subsequently applying each modifica-

tion in BA is shown in Fig. 5. In the figure, B1 represents the

standard BA with revised loudness and pulse emission rates,

B2 is B1 with improved local random walk and IBA, i.e. B2

with diversity. It can be observed from the figure that there is

an improvement in the convergence of BA with each sub-

sequent modification. As a result, there is a consistent

improvement in the convergence of IBA. In IBA, the pro-

posed loudness and pulse emission rates are made self-

adaptive for all bats. This possibly enhances the exploration

potential of BA to certain extent. As a result, IBA finds the

promising region which keeps more patience than BA. The

application of improved local random walk is quite intense

and it enables IBA to avoid many local trappings. The pro-

posed diversity searches new solution points in the search

space by re-initializing the algorithm. It plays a crucial role to

cope against the extreme exploitation potential of BA. The

diversity provides marked improvement in the convergence

as can be seen from the figure where it shows a chain to avoid

very fine local trappings.

Similar conclusions may be drawn from Fig. 6 which

shows the comparison for mean convergence. It is note-

worthy that the proposed diversity causes the mean fitness

of the population to fluctuate and also tends to maintain it

at a poor value during the evolutionary process though it

enhances convergence for the best fitness. It happens as the

population is re-initialized at the end of each iteration.

In order to further investigate the effectiveness of each

modification in the proposed IBA, the statistical quality

indices such as standard deviation (SD), coefficient of

variation (COV), error from the best (EFB) and CPU time

have been determined for the sampled solutions obtained

Table 4 Optimal dispatches of DGs and optimal configuration at

different load levels (pf 0.85)

Load

level

Optimal dispatches

of DGs (kVA)

Optimal

configuration

1 352,874,656 7, 8, 9, 21, 25

2 359,1049,701 7, 8, 9, 21, 26

3 480,1049,752 7, 9, 21, 25, 36

4 528,1049,943 7, 9, 21, 22, 25

5 565,1049,958 7, 8, 23, 34, 35

6 565,1037,958 7, 8, 25, 34, 35

7 565,1049,958 7, 8, 28, 34, 35

8 565,1049,958 7, 9, 28, 34, 35

9 565,1000,853 7, 8, 9, 21, 37

10 215,525,390 7, 8, 9, 21, 25

11 219,643,420 7, 9, 21, 26, 36

12 293,659,439 7, 9, 21, 25, 36

13 316,663,553 7, 8, 9, 21, 25

14 413,686,705 7, 8, 9, 21, 25

15 410,571,677 7, 8, 9, 21, 25

16 438,692,821 7, 8, 9, 21, 25

17 511,708,849 7, 8, 9, 21, 25

18 428,591,469 7, 9, 16, 21, 25

19 502,1049,938 7, 9, 21, 22, 26

20 552,1049,958 7, 8, 21, 27, 34

21 565,1049,958 7, 8, 27, 34, 36

22 565,1049,958 7, 9, 28, 34, 35

23 565,1049,958 7, 9, 12, 28, 34

24 565,1049,958 7, 8, 9, 12, 28

25 565,1049,958 7, 9, 12, 28, 34

26 565,1049,958 7, 9, 12, 28, 34

27 565,1049,958 7, 8, 9, 23, 26

Table 5 Comparison of network performance

Particulars Base case DG

allocation

DG allocation

and network

reconfiguration

Annual energy loss (kWh) 984630.15 143,248 108,378

Percentage annual energy

loss reduction

– 85.45 88.99

Minimum node voltage

(p.u.)

0.8528 0.9340 0.9542

Fig. 3 Feeder power losses at different load levels

Fig. 4 Minimum node voltage at different load levels
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by 100 independent trials of BA variants. The comparison

results are presented in Table 6. The smaller the value of

these indices, the better the solution quality will be. The

table shows a continuous improvement in the solution

quality when all proposed modifications are sequentially

applied in the standard BA. The table also presents the

solution quality obtained while GA, PSO and cat swarm

optimization (CSO) are also applied to this system with

same population size and maximum iteration count as that

of BA. It can be observed from the table that proposed IBA

is more efficient and accurate than other related techniques.

However, IBA is found to be more computationally

demanding. It is obvious due to re-initialization of the

population in order to maintain sufficient diversity which

was essential to cope against the inherent tendency of BA

to quickly approach in the promising region and then the

algorithm trapped in local optima owing to extreme

exploitation potential. Thus IBA generates better quality

solutions, but at the cost of more CPU time.

7 Conclusions

This paper addresses a more realistic methodology for

optimal allocation of DGs in radial distribution systems to

maximize annual energy loss reduction while maintaining

better node voltage profiles. A more realistic scenario of

distribution network is considered by assuming dedicated

feeders to its different class of customers and their specific

load profiles that varies hourly and seasonally. The distri-

bution network is reconfigured after placing optimal DGs.

The application results in a standard test distribution system

shows that a significant improvement in the desired objec-

tives is achieved using proposed integrated approach for DG

allocation and network reconfiguration. It is noteworthy that

using the proposed approach, the peak load demand and its

duration becomes more realistic on account of the diversity

of load among various classes of customers. This reflects in

the solution with positive sense. Nevertheless, more DG

capacity installation or less improvement in node voltage

profile, or both may be expected. The problem is solved by

proposing an improved bat algorithm (IBA). The effective-

ness of each suggested modifications in IBA has been thor-

oughly investigated. It has been observed that each

modification is actively contributing towards improving the

convergence, accuracy and efficiency of the algorithm. The

proposed IBA can serve as a promising tool to solve hard

combinatorial engineering optimization problems. The pre-

sent approach can be extended for asset management in

microgrids with DGs having intermittent power generations.
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