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Abstract The active distribution network (ADN) is able

to manage distributed generators (DGs), active loads and

storage facilities actively. It is also capable of purchasing

electricity from main grid and providing ancillary services

through a flexible dispatching mode. A competitive market

environment is beneficial for the exploration of ADN’s

activeness in optimizing dispatch and bidding strategy. In a

bilateral electricity market, the decision variables such as bid

volume and price can influence the market clearing price

(MCP). The MCP can also have impacts on the dispatch

strategy of ADN at the same time. This paper proposes a bi-

level coordinate dispatch model with fully consideration of

the information interaction between main grid and ADN.

Simulation results on a typical ADN validate the feasibility

of the proposed method. A balanced proportion between

energy market and ancillary services market can be

achieved.

Keywords Active distribution network (ADN), Energy

market, Ancillary services market, Optimal dispatch,

Bidding Strategy

1 Introduction

Distributed energy resources (DERs) such as distributed

generators (DGs), active loads and storage devices are

effective ways for the sustainable development of energy

resources. With the integration of DERs into distribution

networks, the active distribution network (ADN) is pre-

sented [1–4]. ADN is defined as the distribution network

with the system controlling a combination of DERs [1].

ADNs are entitled with high dispatch autonomy right,

making it possible to provide ancillary services such as

spinning reserve service and peak regulation.

Various factors should be considered when making an

ADN dispatch plan. The scheduling of DERs as well as the

exchanged power between ADN and main grid should be

made for dispatch strategy. In addition, the bid price and

volume need to be decided for bidding strategy. Lots of

researches on the strategy of ADN have been carried out in

recent years. A coordinated method is presented to manage

ADN concerning the cost of DGs and purchasing electricity

in [5]. The scheduling procedure [6] is composed of two

stages: a day-ahead scheduler to reduce cost and an intra-

day scheduler to meet the operation requirements. Dynamic

optimal power flow is applied in active network manage-

ment [7]. An optimal schedule model is proposed for ADN

to minimize the operation cost of a complete dispatch cycle

[8]. A decentralized decision-making framework is pre-

sented to determine a secure and economical schedule in

[9]. The technical and economic effects of active man-

agement on distribution network are evaluated in [10].
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Most of the researches focus on the scheduling of DERs

and purchasing electricity when the market clearing price

(MCP) is given. However, few efforts have been made to

study the coordination between main grid and distribution

network. In fact, bidding strategy of ADN can influence the

MCP as well. Therefore, the information interaction should

be taken into consideration when making an ADN

strategy.

Although research work has been seldom conducted on

the market participation mechanism of ADN, there are

many existing researches focusing on the related concepts,

such as power plant, micro-grid and plug-in electric vehi-

cles (PEVs), which are of great meaning. Bidding strategy

is solved as a bi-level optimization problem in most

researches [11–13]. The upper level is a market clearing

problem, and the lower level is a dispatch model. Micro-

grid resembles ADN in many aspects and the market par-

ticipation mechanism is widely studied [14, 15]. When

ADN takes part in energy and ancillary services markets at

the same time, the balance between the two markets should

be considered [16–18].

This paper proposes an optimal dispatch and bidding

strategy of ADN considering the combination of energy

and ancillary services market. The scheduling of DERs and

bid volumes is determined to minimize the total cost.

Finally, the proposed method is applied to a typical ADN

and the impact of DERs on ancillary services market is

investigated.

The remaining sections of this paper are organized as

follows. The market framework is presented including

energy and ancillary services market clearing problem and

the bidding strategy is discussed in Section 2. Then, an

ADN dispatch model is proposed in Section 3. A case

study is tested to illustrate the validity of the proposed

method in Section 4. Section 5 concludes this paper.

2 Market framework

Though a fixed electricity market mechanism for ADN

does not exist, a competitive market environment can be

helpful to the exploration of ADN activeness in optimizing

dispatch and bidding strategy. This paper utilizes a pool

based bilateral electricity market mechanism, which

enables ADN to schedule in response to price signals.

Compared with traditional power systems, ADN has more

flexibility in dispatch. ADN can not only purchase elec-

tricity in energy market, but also provide ancillary services.

Specifically, conventional load, storage devices and inter-

mittent resources such as wind energy can participate in

energy market, while active load can be utilized in

ancillary services market. Controllable DGs such as micro-

turbine can be applied in both markets.

2.1 Energy market

In the bilateral electricity market environment, buyers

and suppliers both offer bid volume and price to indepen-

dent system operator (ISO). MCP is the uniform marginal

cost represented as kt. The objective of energy market

clearing problem is to maximize the surplus of buyers and

suppliers considering the security of power systems.

Mathematically, it can be formulated as
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where T is the total numbers of hours; Nb and Ns are the

numbers of buyers and suppliers, respectively; Cbj
t , CDN

t

and Csi
t are the bid prices of jth buyer, ADN and ith supplier;

Pbj
t , PDN

t and Psi
t are the bid volume of jth buyer, ADN and

ith supplier; Ui
t is the status of ith supplier (0 is OFF, 1 is

ON); Psi
min and Psi

max are the lower and upper bound of ith

supplier’s bid volume; Pdj
max is the upper bound of jth

buyer’s load demand.

2.2 Ancillary services market

With the deregulation of power systems, competition

mechanism is introduced into the ancillary services market

[19, 20]. The ancillary services market mechanism pro-

posed in this paper is a bid-based auction model, and the

reserve market is taken into account. The participants of

reserve market submit two types of bids: capacity bids and

energy bids. All bidders are paid capacity price whether

reserve capacity is dispatched or not. However, only the

dispatched part will be paid energy price. Ancillary ser-

vices market clearing problem aims to achieve social cost

minimization subject to the required reserve capacity and

limits of suppliers.
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where Cr,i
t and Ce,i

t are reserve capacity and energy bid

price of ith supplier, respectively; Cr,DN
t and Ce,DN

t are bid

reserve capacity and energy price of ADN, respectively; Rsi
t

and RDN
t are reserve capacity bid volume of ith supplier and

ADN; Rt is the required reserve capacity of the system; RUi

is the limit of ramp-up rate; x is the probability that reserve

capacity is assumed to be 20 % in this paper. ISO presets

the probability x and informs ancillary services market

participants in advance.

2.3 Bidding strategy of ADN

ADN can provide ancillary services in addition to pur-

chasing energy. In day-ahead market, ADN submits pur-

chasing electricity bid to ISO in energy market and reserve

capacity bid in ancillary services market. The market

framework is shown in Fig. 1.

Load demand would be satisfied if the bid price is

slightly higher than the MCP in energy market. Similarly,

bid volume would be accepted if the bid price is marginally

lower than the MCP in ancillary services market. There-

fore, only bid volumes need to be determined when

designing the strategy of ADN. In order to obtain the MCP,

other bidding strategies of market participants are required

in advance. It is assumed that there is a simple linear

relationship between the bid price and bid volume, i.e.,

Ci = aiPi ? bi, where ai and bi are bidding coefficients

which can be estimated based on historical data [21].

3 Dispatch strategy of ADN

3.1 Objective function

The optimal dispatch problem is defined as the sum of

electricity purchasing cost, ancillary services market rev-

enues and cost of DGs. The objective function can be

formulated as

f ¼
XT
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where NDG is the total number of DGs; Pi
t and Rgi

t are the

output and reserve capacity of ith DG in the tth period,

respectively; ai, bi and ci are the coefficients of production

cost function; Csi is the start-up cost of ith DG.

3.2 Constraints

1) Power balance

If reserve capacity is not dispatched, Eq. (10) should be

satisfied. Otherwise, Eq. (11) holds.
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where Pw
t is the wind power; Pch

t and Pdis
t are the charge

and discharge power of storage device, respectively; PL
t is

the load demand of ADN; Rshift
t is the shiftable load (pos-

itive and negative indicate shifting out and shifting in).

2) DGs constraints

Pmin
i �Pt

i �Pmax
i ð12Þ

Pt�1
i � RDi �Pt

i �Pt�1
i þ URi ð13Þ

ADN

ISO

Energy market Ancillary service market

Storage
devices

Active
loadDGs

SuppliersBuyers

Power flow; Information and cash flow

Fig. 1 Market framework
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where Pi
min and Pi

max are the minimum and maximum

power output of ith DG; RUi and RDi are the limits of ramp-

up and ramp-down rates, respectively; Ti
on and Ti

off are the

continuous up and down time, respectively; Xi
on and Xi

off

are the minimum continues up and down time,

respectively.

3) Constraints for active load

Active load can fulfill the target of peak load shifting

and hence achieve considerable electricity purchasing cost

reduction. Equation (15) ensures that total load demand

over the scheduling horizon is satisfied.

XT

t¼1

Rt
shift ¼ 0 ð15Þ

Rmin
shift �Rt

shift �Rmax
shift ð16Þ

where Rshift
min and Rshift

max are the minimum and maximum

bounds of shiftable load; respectively, and Rshift
min \ 0.

4) Constraints for storage units

Equation (21) ensures that the state of storage units at

the end of scheduling period remains the same with that at

the beginning.
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where Pch
maxand Pdis

max are the maximum charging and dis-

charging power, respectively; St is the storage state at time

t; Smin and Smax are the lower and upper bounds of storage

capacity, respectively; gch and gdis are the charge and dis-

charge efficiency, respectively.

5) Reserve constraints

DGs and active load are utilized for energy and ancillary

market.

Rt
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gi þ Rt
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6) Security constraints

Voltage levels and line limits are taken into account.

Vmin
i �Vt

i �Vmax
i ð24Þ

Sti
�� ��� Smax

i ð25Þ

where Vi
t is the voltage amplitude at bus i; Vi

min and Vi
max

are the maximum and minimum voltage amplitude,

respectively; Si
t is the power flow of brunch i; Si

max is the

transmission capacity.

Security constraints are satisfied by adding penalty

terms to the objective function in this paper.
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i
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i
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where Nbus and Nbran are the number of buses and branches,

respectively.

DVi
t and DSi

t can be computed by

DVt
i ¼
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max Vmin
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Therefore, the original objective function is modified

into fnew.

fnew ¼ f þ xvPenv þ xsPens ð30Þ

where xv and xs are the penalty factors and are assumed to

be 107 in this paper.

4 Case study

4.1 Solution procedure

The solution procedure of ADN strategy is shown in

Fig. 2. The behaviors of other participants are estimated

and the initial values are set in advance. Then bid volume

and price, which are obtained by solving the ADN dispatch

model, are applied to market clearing problem to get the

updated value of MCP. This iterative process ends till the

convergence of MCP. The ADN dispatch model is a non-

linear mixed integer program, and particle swarm
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optimization (PSO) algorithm is applied to solve the

problem. Simulation process shows that the algorithm has a

fast convergence speed.

4.2 Results and analysis

The method proposed in this paper is tested on a system

comprised of four suppliers, a buyer and an ADN. The

bidding information of market participants is shown in

Table 1. The maximum and minimum output of Supplier 1

and 3 are 200 MW and 15 MW, respectively. The maxi-

mum and minimum output of Supplier 2 and 4 are

300 MW and 25 MW, respectively. The ratio of required

reserve capacity to system load demand is 20 %. Reserve

energy bid price is assumed to be the same with energy

market.

As shown in Fig. 3, the proposed ADN consists of two

DGs at Bus 2 and Bus 5, a wind turbine at Bus 6 and a

storage device at Bus 6. Four active loads are connected to

ADN through Bus 3, Bus 4, Bus 5 and Bus 6. The load

percent of L1, L2, L3 and L4 are 20 %, 30 % 40 % and

10 %, respectively. Load power factor is assumed to be

0.95. The distribution network is connected to main grid

through an interconnecting line with a maximum capacity

of 200 MW. Voltage limits are taken to be ±10 % of

nominal.

The parameters of distribution network and DGs are

shown in Table 2 and Table 3. The minimum up/down

time are 2 h. The limit of ramp up/down is 30 MW/h. It is

assumed that 3 % load can be shifted and additional 10 %

load can be accepted. The upper and lower bounds of

storage capacity are 100 MWh and 10 MWh, respectively.

The maximum charging and discharging power are 5 MW

and 10 MW, respectively, and the efficiency is 90 %. The

hourly load demand and wind power output of a typical day

are shown in Fig. 4.

Accordingly, the schedule of DERs, bidding strategy

and MCP can be obtained through the solution procedure

above. This paper fully considers the coordination between

the main grid and ADN. A case study is carried out to show

the effectiveness of the coordinate dispatch model, com-

pared with dispatch model without information interaction.

If ADN makes dispatch and bidding strategy independently

Start

Estimate the behaviors of other participants 

Is the MCP convergent?

Y

Stop

Solve ADN dispatching model to obtain bidding 
strategy

Update the value of MCP

Set the initial values of MCP and DERs

Solve energy market clearing problem 
to obtain MCP

Solve ancillary services market clearing 
problem to obtain MCP

N

Fig. 2 Solution procedure of ADN strategy

Table 1 Bidding information

Participant Energy market Ancillary services market

ai ($/MW) bi ($) ai ($/MW) bi ($)

Supplier 1 0.20 4 0.5 6

Supplier 2 0.12 5 0.3 4

Supplier 3 0.25 4 0.4 4

Supplier 4 0.10 6 0.3 5

Buyer -0.15 30

DG1

Bus 6

DG2

WT

Bus 1

Bus 2

Bus 3                          Bus 4

Bus 5

L1

L2

L3

L4

ADN

Main grid

Fig. 3 Distribution network

Table 2 Parameters of distribution network

From To Resistance Reactance Flow limit (MW)

Bus 1 Bus 2 0.02 0.08 200

Bus 2 Bus 3 0.04 0.15 120

Bus 2 Bus 4 0.03 0.12 120

Bus 3 Bus 5 0.03 0.09 80

Bus 4 Bus 6 0.04 0.12 100
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without consideration of market clearing process, elec-

tricity price needs to be forecasted in advance. The ana-

lyzed cases are as follows.

Case 1: Coordinate dispatch model proposed in this

paper.

Case 2: Dispatch model without information interaction,

and forecasted electricity price is 1.2 times of MCP.

Case 3: Dispatch model without information interaction,

and forecasted electricity price is 0.8 times of MCP.

The cost and benefit of ADN under different cases are

shown in Table 4, from which we can see the proposed

coordinate dispatch model costs the least. The forecasted

electricity price of Case 2 is relatively higher, so ADN

prefers to generate electricity using DGs rather than pur-

chase from main grid. As a consequence, generation cost

increases and DGs spare less capacity for ancillary services

market. Instead, a lower forecasted electricity price will

lead to the increase of electricity purchasing cost as shown

in Case 3. Above all, optimal economic benefit can be

achieved through information interaction between main

grid and distribution network.

In order to analyze the impact of DERs on the economic

efficiency of ADN, three different cases are considered as

follows.

Case 1: ADN with active load and storage device.

Case 2: ADN only with storage device.

Case 3: ADN only with active load.

Table 5 shows the cost and benefit of ADN in three

different cases. The results show that DERs are beneficial

to cost reduction. Electricity purchasing cost reduction can

be achieved through load shifting from high price period to

low price period by active load and storage device. Addi-

tionally, benefit can be made through providing reserve

capacity in ancillary services market.

The bid volumes in energy and ancillary services market

are shown in Fig. 5. It can be observed that the trend of bid

volume in energy market and load demand is roughly

consistent. Hence ADN bidding strategy is mainly

Table 3 Parameters of DGs

DG Upper limit of

output (MW)

Lower limit of

output (MW)

ai ($/MW2) bi (MW) ci ($) Start cost ($)

1 70 10 0.18 4 100 120

2 110 30 0.12 3 70 150

Fig. 5 Bids for energy market and ancillary services market

Table 4 Cost and benefit of ADN under different cases

Case Electricity

purchasing

cost ($)

Ancillary services

market evenues ($)

Generation

cost ($)

Total

Cost ($)

1 84447 6088 39084 117443

2 74591 3214 47217 118594

3 96259 6717 28537 118079

Table 5 Cost and benefit of ADN under different cases

Case Electricity

purchasing

cost ($)

Ancillary services

market revenues ($)

Generation

cost ($)

Total

cost ($)

1 84447 6088 39084 117443

2 85745 5459 38022 118308

3 84844 5467 38353 117730

Fig. 4 Load demand and wind power output for one day
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determined by energy market. Bid volume is relatively

higher during 1:00–3:00, because DGs are shut down due

to low economic efficiency, making purchasing electricity

become the only energy source. The bid volume in ancil-

lary services market is influenced by the limit of dis-

patchable reserve capacity as well as MCP. DGs are in the

state of nearly full capacity operation during peak hours, so

the corresponding bid volume is relatively less.

The component of reserve capacity is shown in Fig. 6.

The total demand of reserve capacity is supplied by DGs and

active load. It can be found that DG2 with a larger capacity

works as the main source of reserve capacity. Active load

mainly provide reserve capacity during 1:00–9:00 and

21:00–24:00, when MCP and load demand are low.

The bid volume in ancillary services market is proportional

to system required reserve capacity shown in Fig. 7. This is

mainly because MCP increases with the reserve capacity

demand when other conditions keep constant. Therefore,

ADN would adjust the ratio of bid volume between two

markets to achieve benefit maximization accordingly.

5 Conclusion

In this paper, a dispatch and bidding strategy of ADN in

energy and ancillary services market is introduced to

enhance economic efficiency. A typical ADN is studied to

demonstrate the effectiveness of the proposed model.

Results show that ADN can reduce electricity purchasing

cost in energy market and get revenue from ancillary ser-

vices market through flexible dispatch of DERs. In addi-

tion, the obtained strategy can proportion the bid of the two

markets according to MCP and security constraints.
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