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Abstract A novel multi-dimensional scenario forecast

approach which can capture the dynamic temporal-spatial

interdependence relation among the outputs of multiple wind

farms is proposed. In the proposed approach, support vector

machine (SVM) is applied for the spot forecast of wind

power generation. The probability density function (PDF) of

the SVM forecast error is predicted by sparse Bayesian

learning (SBL), and the spot forecast result is corrected ac-

cording to the error expectation obtained. The copula func-

tion is estimated using a Gaussian copula-based dynamic

conditional correlation matrix regression (DCCMR) model

to describe the correlation among the errors. And the multi-

dimensional scenario is generated with respect to the esti-

mated marginal distributions and the copula function. Test

results on three adjacent wind farms illustrate the effec-

tiveness of the proposed approach.

Keywords Wind power generation forecast, Multi-

dimensional scenario forecast, Support vector machine

(SVM), Sparse Bayesian learning (SBL), Gaussian copula,

Dynamic conditional correlation matrix

1 Introduction

The wind power has been developing very fast in China

since 2006. Within the mainland, the total installed ca-

pacity of wind power had reached up to 91424 MW by the

end of 2013 [1]. Since many wind farms are centrally

constructed in the wind-rich zones, some regional power

grids in China have already had a relatively high wind

power penetration [2].

To improve the operating security and economics of the

power grid which is integrated with large-scale wind

power, a project named as collaborative optimization of the

thermal power, hydro power and wind power in extremely

cold areas was carried out by Shandong University and

Heilongjiang Electric Power Company. Developing a

short-term wind power forecast program is the main and

fundamental research objective of this project.

Heilongjiang power grid has 45 integrated wind farms,

and the installed capacity reaches up to 3153 MW which

accounts for 14.8% of the total installed capacity in that

region. Because of the rapid growth of wind power and

relatively slow expansion of the transmission networks,

transmission congestion happens from time to time in the

grid. To consider the transmission constraints during the

scheduling process, forecast is required to be performed for

each single wind farm as well as the whole region. More-

over, the cross-correlation among the outputs of multiple

wind farms is expected to be estimated to make full use of

the adjustable capacity of the power grid.

Although great efforts have been made to improve the

forecast accuracy, it is still hard to predict the wind power

generation precisely. As a result, estimating the uncertainty

of the forecast result is believed to be crucial for the op-

eration of power systems [3, 4]. By now, several parametric

or non-parametric approaches, e.g., the quantile regression

approaches [5], the interval estimation approaches [6, 7],

CrossCheck date: 3 December 2014

Received: 4 July 2014 / Accepted: 4 March 2015 / Published

online: 7 May 2015

� The Author(s) 2015. This article is published with open access at

Springerlink.com

M. YANG, Y. LIN, X. HAN, H. WANG, Key Laboratory of

Power System Intelligent Dispatch and Control of Ministry of

Education, Laboratory of Electric Vehicles Engineering of

Shandong Province, Shandong University, Jinan 250061, China

(&) e-mail: myang@sdu.edu.cn

S. ZHU, Zaozhuang Power Supply Company,

Zaozhuang 277800, China

123

J. Mod. Power Syst. Clean Energy (2015) 3(3):361–370

DOI 10.1007/s40565-015-0110-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s40565-015-0110-6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40565-015-0110-6&amp;domain=pdf


and the probability density forecast approaches [8, 9], have

been proposed to achieve this aim. These approaches can

provide end-users with forecast uncertainty information in

various ways.

Temporal-spatial dependence relation among the out-

puts of wind farms is the valuable information for the

power system operation [10, 11]. In [12], a short-term joint

probability density function (JPDF) forecast approach was

proposed to include the temporal correlation of forecast

errors into the distribution forecast results. The errors were

assumed to follow a joint Gaussian distribution and the

correlation matrix was estimated by the recursive statistic

estimation. Reference [13] introduced an approach to

consider the temporal interdependence structure in the

quantile regression based probabilistic forecast approach.

In the approach, the interdependence structure was sum-

marized by a unique covariance matrix through the con-

version of the prediction errors to a multivariate Gaussian

random vector. The approaches mentioned in [12, 13] are

instructive. However, the spatial dependence structure is

ignored in the approaches.

In this paper, a novel multi-dimensional scenario fore-

cast approach which can capture the dynamic temporal-

spatial interdependence relation among the outputs of

multiple wind farms is proposed. The advantages of the

proposed approach are as follows.

1) The temporal-spatial dependence relation of the fore-

cast errors is included into the probabilistic forecast

result, and the approach can provide more useful

information for the system operation.

2) By using the kernel based sparse learning approaches

and the error correction strategy, the accuracy of the

spot and probabilistic forecast results is guaranteed.

3) The dependence structure of the forecast errors is well

represented by the Gaussian copula, and it is not

necessary to make any assumption on the distributions

of the errors.

4) The multi-dimensional scenario is generated with

respect to the error distributions and the copula

function.

2 Overviews of the proposed approach

The work is carried out on three wind farms located in

the same region. The relative location of the wind farms is

shown in Fig. 1.

Wind speed and direction of the forecast target period

are provided by the commercial numerical weather pre-

diction (NWP) service, and the wind power generation data

are collected from the supervisory control and data acqui-

sition (SCADA) system. The time span of the data is from

July 1st 2009 to December 31th 2010. In the forecast

models, the wind speed and wind power generation are

normalized according to the maximum wind speed and the

installed capacity respectively. And the wind direction is

presented by its sinusoidal and cosinusoidal values.

The samples are divided into a training set, a test set and

a validation set. The training data set is used to train the

support vector machine (SVM) models for the spot fore-

cast. The test data set is used to produce SVM forecast

error samples which are applied to train the sparse Baye-

sian learning (SBL) models and estimate the parameters of

the copula-based dynamic conditional correlation matrix

regression (DCCMR) model. The validation data set is

used to evaluate the performance of the proposed

approach.

In the proposed approach, the wind power generation of

each wind farm is treated as a random variable. The fore-

cast result is the possible trajectories of the outputs of the

wind farms which are referred to as the multi-dimensional

scenarios. Assuming L wind farms and T look-ahead hours

are considered, the dimension of one multi-dimensional

scenario is K = LT. The framework of the proposed ap-

proach is shown in Fig. 2.

The approach includes two main parts, i.e., the training

part and the forecast part. In the training part, K SVMs are

trained using the data of the training set. Then, a virtual

spot forecast is performed on the test data set and the

forecast error samples are collected. After that, K SBL

models are trained using the SVM forecast results and the

corresponding NWP data. In parallel, the parameters of the

copula-based DCCMR model are estimated. The outputs of

the training part are K SVM models for the spot forecast,

K SBL models for the error distribution forecast, and one

copula-based DCCMR model describing the temporal-s-

patial interdependence structure of the errors.

The forecast part of the approach has three main mod-

ules, i.e., the spot forecast module using the SVMs, the

probability density function (PDF) forecast module using

the SBLs, and the scenario sampling module. The outputs

of this part include the expected wind power generation

trajectory of each wind farm, the joint cumulative

C

B
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42 km
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 km

Fig. 1 Relative location of wind farm A, B and C
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distribution function (JCDF) of the forecast errors, and the

corresponding multi- dimensional scenarios.

3 Spot forecast and error distribution

3.1 Spot forecast based on SVM

SVM is an effective statistical machine learning ap-

proach which is suitable for the high-order non-linear re-

gression problem [14, 15]. SVM regression model can be

expressed by:

youtput ¼
XM

i¼1

wiK xinput; xi
� �

þ w0 þ e ð1Þ

where youtput is the random variable to be predicted; xinput is

the input vector; xi is the input vector corresponding to the

ith training sample; K(�) is the kernel function (Gaussian

kernel function); wi is the ith weight coefficient; and e is the

residual term.

SVM is used to predict the output of each wind farm in

the forecast target period. The detailed training and fore-

cast procedures have been explained in [15]. Based on the

correlation analysis result, wind speed, wind direction and

historical generation data are selected as the input data of

the model.

3.2 Statistical analyses of forecast errors

Statistical analysis is essential for choosing a reasonable

forecast strategy. The statistical properties of the SVM

forecast error will be explained in this subsection.

Auto-correlation function (ACF) indicator is employed

to test the auto-correlation property of the SVM forecast

error, which can be expressed by [16]:

q að Þ ¼ E et � lð Þ et�a � lð Þð Þ
h

ð2Þ

where q(a) is the value of ACF at lag a; et is the tth sample

of the series; l is the mean value of the series; and h is the

variance of the series.

Figure 3 shows the ACF values of the 1-h-ahead fore-

cast error series at lag a, a ¼ 1; 2; � � � ; 16. In this figure, the

red dotted line represents the upper confidence limit of the

ACF values. It is observed from the figure that the SVM

forecast error has significant auto-correlation at the first

several lags, which suggests that the historical forecast

errors can be applied as the explanatory variables when

predicting the error distribution.

Cross-correlation function (CCF) [16] is applied to ex-

plore the temporal and spatial dependence relation among

the forecast errors. CCF between two forecast error series

is defined by:

qi;j að Þ ¼
E ei;t � li
� �

ej;t�a � lj
� �� �
ffiffiffiffi
hi

p ffiffiffiffi
hj

p ð3Þ

where i and j are the indices of the error series.

Figure 4 describes the CCF values between the 1-h-a-

head forecast error series and the forecast error series from

2-h-ahead to 48-h-ahead. In this figure, the red dotted lines

represent the upper and lower confidence limits of the CCF

values. It can be seen from the figure that the dependence

Input training
set data

Train K SVMs

SVMs

Train K SBLs

Spot forecast using SVMs;
Forecast error calculation

Input test set
data

Error samples

Estimate the parameters of
copula-based DCCMR

model

SVMs

SBLs Copula
function

NWP data
Historical

wind power
data

Historical
SVM forecast

data

Spot forecast using SVMs Error PDF forecast using SBLs

Error correction

Expectation of wind
power generation

Multivariate samplingOutput multi-
dimensional scenarios

Spot forecast results Variances of errors
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Fig. 2 Framework of the proposed approach
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Fig. 3 ACF values of SVM forecast error series

Multi-dimensional scenario forecast 363

123



relation is strong between the 1-h-ahead and 2-h-ahead

forecast error series, and the CCF value decreases rapidly

when the lag increases.

The CCF values between the error series corresponding

to different wind farms are depicted in Fig. 5 to test the

temporal-spatial dependence relation of the forecast errors.

In the figure, A1-B stands for the CCF values between the

1-h-ahead forecast error series of wind farm A and the error

series from 1-h-ahead to 48-h-ahead of wind farm B. So do

A1-C and B1-C. The relatively large CCF values verify the

existence of the temporal and spatial dependence relation

among the forecast errors.

The PDF of the spot forecast error is predicted by SBL

in this paper. SBL is a parametric forecast approach which

assumes that the wind power generation forecast error at

each moment follows a Gaussian distribution. Sometimes

this assumption is criticized because the usual statistical

distribution of the forecast error is non-Gaussian [17].

Taking a recorded 1-h-ahead forecast error series shown in

Fig. 6a as an example, the sharp peak of its statistical

distribution distinguishes the error variable from a Gaus-

sian random variable, as shown in Fig. 6b.

The criticism seems reasonable. However, the statistical

distribution should not be identified as the distribution at

each moment considering the non-stationary feature of the

error series [8]. To confirm the validity of this argument,

Fig. 6c shows the forecasted PDFs corresponding to the

error samples described in Fig. 6a using SBL. In the figure

the parameters of the forecasted Gaussian distributions are

time-varying, which reflects the non-stationary nature of

the error series. The mixture distribution [18] of the

Gaussian distributions, which represents the realizations of

all the Gaussian variables as one random variable, is cal-

culated according to (4) and is shown in Fig. 6d. By

comparison, the mixture distribution is very similar to the

statistical distribution, which illustrates that SBL is able to

capture the non-Gaussian statistical feature of the SVM

forecast error even it assumes that the error at each moment

follows a Gaussian distribution.

~f ðxÞ ¼
XN

i¼1

1

N
fiðxÞ ð4Þ

where ~f ðxÞ is the PDF of the mixture distribution; fi(x) is

the PDF of the ith Gaussian distribution; N is the number of

the Gaussian PDFs. In Fig. 6, N = 100.

Additionally, the cross-correlation between the spot

forecast error and the corresponding wind speed is tested.

According to the test result, the cross-correlation is sig-

nificant. Therefore, the wind speed data provided by NWP

should be incorporated into the input data of the SBL

model.

3.3 PDF forecast based on SBL

The distribution of the spot forecast error is estimated by

SBL in this paper. SBL is a kernel-based sparse learning

model which has significant generalization capability. The

parameters of the SBL model are estimated by the maximal

posteriori probability estimation according to the Bayesian

inference [19, 20]. SBL can provide reliable PDF forecast

result, which has been fully verified in [8] and [12].

Fig. 4 CCF values between 1-h-ahead forecast error series and error

series from 2-h-ahead to 48-h-ahead

Fig. 5 CCF values between 1-h-ahead forecast error series and all the

forecast error series of another wind farm
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Thorough descriptions of the SBL model and the cor-

responding forecast procedure have been given in [8]. The

historical forecast data, wind speed and wind direction are

selected as the input data of the SBL model in this paper.

The outputs of the model are composed of the expectation

and variance of the spot forecast error.

4 Multi-dimensional scenario forecast

Multi-dimensional scenarios can be generated from the

JCDF of the random variables. To avoid making

assumptions on the type of the joint distribution, copula-

based DCCMR is applied here to estimate the JCDF of the

spot forecast errors.

4.1 Copula-based DCCMR for modeling the time-

varying temporal-spatial dependence structure

1) Basic concepts of the copula function

Copula function is a bridge connecting the marginal and

joint distributions of the random variables [21]. Multi-di-

mensional copula function can be expressed as:

F e1; e2; � � � ; eKð Þ ¼ C F1 e1ð Þ;F2 e2ð Þ; � � � ;FK eKð Þð Þ ð5Þ

where ek is the kth random variable; Fk(�) is the cumulative

distribution function (CDF) of the kth random variable; F(�)
is the JCDF of the random variables; K is the number of the

random variables; and C(�) is the copula function.

According to Sklar’s theorem [22], if all the CDFs are

continuous, the copula function C(�) is unique. Therefore,

the dependence structure of the random variables can be

uniquely represented by the corresponding copula

function.

2) Selection of the copula function

Many categories of copulas, e.g., Gaussian copulas,

Archimedean copulas and extreme-value copulas can be

used to model the dependence structure of random vari-

ables according to the statistical properties of the variables.

Scatter plot, which is able to reveal the relationship be-

tween two random variables, is applied here for the copula

selection.

Figure 7 provides the scatter plot analysis result corre-

sponding to the wind power generation spot forecast errors.

Figure 7a shows the scatter plot between the 10-h-ahead

and 11-h-ahead spot forecast error series of wind farm A.

The CDFs of the two series are shown in Fig. 7b. And the

scatter plot between the transformed error series which are

obtained according to the probability integral transform

rules [23] is shown in Fig. 7c. In the figure, all the scatter

plots have an obvious symmetrical dependence structure,

which implies that the dependence relation among the er-

rors can be modeled by the Gaussian copula appropriately

[24].

Therefore, a K-dimensional Gaussian copula is selected

to model the dependence structure of the spot forecast er-

rors. Gaussian copula has an explicit formula and its

computational complexity is moderate. The K-dimensional

Gaussian copula can be defined by [24]:

F e1; e2; � � � ; eK ;Rð Þ ¼ C F1 e1ð Þ;F2 e2ð Þ; � � � ;FK eKð Þ;Rð Þ
¼ UR U�1 F1 e1ð Þð Þ;U�1 F2 e2ð Þð Þ;

�

� � � ;U�1 FK eKð Þð Þ
�

ð6Þ
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where U-1 is the inverse of the one-dimensional standard

Gaussian CDF; U-1(Fk(ek)) is a random variable following

the standard Gaussian distribution; and UR stands for a K-

dimensional Gaussian JCDF with zero means, unit mar-

ginal variances and the covariance matrix/correlation ma-

trix R.

It can be seen from (6) that the JCDF F ðe1; e2; � � � ; eK ;
R) of the forecast errors can be obtained by estimating the

CDFs of the forecast errors and the corresponding corre-

lation matrix R.

In this paper, the CDFs are forecasted according to the

process mentioned in Section 3, and the matrix R is esti-

mated using the following copula-based DCCMR

model.

3) Copula-based DCCMR model

In (6) the random vector [U-1(F1(e1)), U-1(F2(e2)), …,

U-1(FK(eK))] follows the K-dimensional Gaussian distri-

bution N (0, R) where the correlation matrix R can be es-

timated dynamically as follows [25]:

Rt ¼ diag Qtð Þ�
1
2 Qtdiag Qtð Þ�

1
2 ð7Þ

where Rt is the time-varying correlation matrix; t is the

index indicating the time to estimate the correlation matrix;

Qt can be expressed by

Qt ¼ 1 �
XI

i¼1

ai �
XJ

j¼1

bj

 !
�Qþ

XI

i¼1

aimt�im
T
t�i

þ
XJ

j¼1

bjQt�j ð8Þ

where ai and bj are the parameters need to be identified;

I and J are the orders of the model; vt-i is the realization

of the random vector [U-1(F1(e1)), U-1(F2(e2)),…,

U-1(FK(eK))] at time period t - i; Qt-j is the covariance

matrix estimated at time period t - j; and �Q can be

expressed as

�Q ¼ 1

X

XX

k¼1

mkm
T
k ð9Þ

where X is the number of the samples of the random vector

[U-1(F1(e1)), U-1(F2(e2)),…, U-1(FK(eK))].

The parameters ai and bj in the above equations are es-

timated using the composite maximum likelihood approach,

and the detailed estimation process is explained in [25].

4.2 Generate multi-dimensional scenarios

According to the spot forecast result, PDF of the spot

forecast error, and the correlation matrix of the errors, V

groups of K-dimensional wind power generation scenarios

can be generated by taking the following steps.

Step 1: Generate V groups of K-dimensional random

samples according to the Gaussian copula described in (6).

And the ith group of the samples is represented by [ui,1,1,

ui,1,2,…, ui,1,T,…, ui,L,1, ui, L,2,…, ui, L,T], in which L is the

number of the wind farms and T is the number of the look-

ahead periods.

Step 2: Generate V groups of error samples through the

inverse transform process [24]. With respect to the fore-

casted marginal distribution functions, the ith error sample

vector can be transformed from the samples obtained in

Step 1 as:

ei ¼ F�1
1;1 ui;1;1
� �

;F�1
1;2 ui;1;2
� �

; . . .;F�1
1;T ui;1;T
� �

; . . .;
h

F�1
L;1 ui;L;1
� �

;F�1
L;2 ui;L;2
� �

; . . .;F�1
L;T ui;L;T
� �i ð10Þ

Step 3: Generate V groups of multi-dimensional

scenarios of wind power generation. And the ith scenario

can be generated by:

si ¼ gþ ei ð11Þ

where g ¼ p̂1;1; p̂1;2; � � � ; p̂1;T ; � � � ; p̂L;1; p̂L;2; � � � ; p̂L;T
� �

is

the generation predicted by the spot forecast module.

5 Test results and discussions

5.1 Performance evaluation indicators

The following indicators are applied to evaluate the

performance of the proposed approach.

1) Indicator for the expectation forecast result

Normalized mean absolute error (NMAE) [8] is em-

ployed here to evaluate the accuracy of the forecasted

expectation of wind power generation. The indicator can be

expressed by:

NMAE ¼ 1

N

XN

i¼1

eij j ð12Þ

where ei is the ith forecast error sample and N is the number

of the samples.

2) Indicators for the distribution forecast result

Indicators including the distortion rate (DR), marginal

calibration, sharpness, and the continuous ranked prob-

ability score (CRPS) are applied to evaluate the distribution

forecast performance of the proposed approach.

DR [8] of a forecasted PDF is defined by:

DR ¼ 1

2N

XH

i¼1

Ni;a � Ni;f

�� ��� 100% ð13Þ

where Ni,a is the actual times that the wind power gen-

eration sample falls into the ith probability interval; Ni,f is

the expected times that the wind power generation sample
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should fall into the ith probability interval according to the

forecasted PDF; and H is the number of the probability

intervals.

Marginal calibration is an indicator concerning about

the equality of the observed CDF and the forecasted CDF

[26]. To calculate the indicator, the observed CDF is

represented by the average value of the indicator

functions:

�GN pð Þ ¼ 1

N

XN

i¼1

1 pi � pf g ð14Þ

where 1{�} is a {0, 1} indicator function which takes value

1 when the condition is satisfied; p is the normalized wind

power generation; and pi is the ith sample of the wind

power generation.

The corresponding forecasted CDF is represented by the

average forecasted CDF:

�FN pð Þ ¼ 1

N

XN

i¼1

Fi pð Þ ð15Þ

where Fi(�) is the forecasted CDF corresponding to the ith

wind power generation sample.

The marginal calibration, which is a function of p,

measures the difference between the forecasted CDF and

the observed CDF:

MC ¼ �FN pð Þ � �GN pð Þ ð16Þ

Sharpness is another important performance indicator

for evaluating the forecasted PDF. Obviously, the sharper

the forecasted distribution is, the better the probabilistic

forecast approach will be, since a sharper distribution

means less volatility of the forecast result. In this paper, the

sharpness of the forecasted PDF is assessed by the

coverage of the central probability intervals.

Moreover, in order to measure the overall performance

of the probabilistic forecast approach, the CRPS, which can

address the calibration and sharpness simultaneously [26],

is calculated by:

CRPS ¼ 1

N

XN

i¼1

Z 1

0

Fi pð Þ � 1 pi � pf gð Þ2
dp

� 	
ð17Þ

3) Quality evaluation of multi-dimensional scenarios

Energy score (ES), which is a multivariate verification

tool for the forecasted scenarios, is applied to evaluate the

quality of the generated multi-dimensional scenarios [27].

The indicator is a negatively-oriented score. The lower the

indicator is, the better the forecast result will be. ES is

defined by:

Es ¼
1

V

XV

i¼1

p� sik k2 �
1

2V2

XV

i¼1

XV

j¼1

si � sj


 



2
ð18Þ

where �k k2 is the Euclidean norm; si and sj are the predicted

scenarios; V is the number of the scenarios; and p is the

measured wind power generation series.

5.2 Performance evaluation of the proposed approach

Data collected from the three adjacent wind farms are

used to illustrate the effectiveness of the proposed ap-

proach. 5000 times forecast tests are implemented on the

wind farms and each test will forecast the PDFs of wind

power generation for the further 48 hours. An example of

the PDF forecast result is shown in Fig. 8, where the black

solid line with circles and the asterisked red line stand for

the forecasted wind power generation curve and the actual

wind power generation curve respectively. The central 0.65

and 0.95 confidence intervals are represented in the figure

by two different colors.

In Fig. 8, most of the actual wind power generation

samples fall into the 0.65 confidence interval and very few

samples fall outside the 0.95 confidence interval. The result

indicates that the forecasted wind power generation dis-

tribution can reflect the real distribution appropriately.

The persistence (PER) model [12], the common SVM

model and the linear quantile regression model are selected

as the competitive models to evaluate the expectation

forecast accuracy of the proposed approach.

Table 1 shows the average NMAE of 48 look-ahead

time periods. It can be seen from the table that the SVM

model has a remarkable superiority to the PER model, and

the accuracy of the SVM forecast result is improved sig-

nificantly by using the error correction strategy proposed in

this paper. Also, the proposed approach has better perfor-

mance than the linear quantile regression model.

Figure 9 depicts the NMAE values corresponding to the

forecast results of wind farm A for the 48 look-ahead time

periods. It can be seen from the figure that the proposed

approach is much better than the other three benchmark

approaches on the expectation forecast accuracy. Similar

conclusions can be found from the test results of the other

two wind farms.
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Fig. 8 An example of PDF forecast result
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Empirical distribution estimation is a popular non-

parametric distribution estimation approach, which esti-

mates the probability distribution of a random variable by

analyzing its historical realizations [28]. The empirical

approach and the linear quantile regression approach are

applied here as benchmarks to evaluate the probabilistic

forecast performance of the proposed approach.

To calculate the DR indicator of the PDF forecast result,

six probability intervals have been specified according to

the variance of the Gaussian distribution r. The prob-

abilities corresponding to the intervals are given in

Table 2. And the number of the theoretical falling points

for each interval in the 5000 times forecast tests is also

presented in the table.

Table 3 summaries the average DR values of 48 look-

ahead time periods according to the forecast results. It can

be seen in the table that the proposed approach has lower

average DR values for all the three wind farms than the

other two approaches.

The marginal calibration curves corresponding to the

6-h-ahead distribution forecast results are shown in Fig. 10.

In the figure the proposed approach has relatively lower

marginal calibration values, which means the CDF fore-

casted by the proposed approach is much closer to the real

CDF.

The coverage of the 50% and 90% central probability

intervals corresponding to the results of the two approaches

is described in Fig. 11. It can be seen from the figure that

the coverage of the proposed approach is almost always

Table 1 Average NMAE of 48 look-ahead time periods

Wind farms Average NMAE (%)

PER Quantile

regression

SVM Proposed

approach

Wind farm A 23.18 12.16 11.36 9.20

Wind farm B 29.37 15.27 11.18 8.85

Wind farm C 21.99 16.39 10.70 9.06

Table 2 Information of the probability intervals

Intervals Corresponding probability Theoretical falling points

(-?, -2r] 0.0228 114

(-2r, -r] 0.0228 680

(-r, 0] 0.3413 1706

(0, r] 0.3413 1706

(r, 2r] 0.1359 680

(2r, ?] 0.0228 114

Table 3 Average DR of 48 look-ahead time periods

Approaches Average DR (%)

Wind farm A Wind farm B Wind farm C

Empirical approach 19.67 13.50 13.09

Quantile approach 15.84 19.35 15.23

Proposed approach 13.57 10.64 11.25
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Fig. 10 Marginal calibration curves of 6-h-ahead forecast results
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Fig. 11 Coverage of 50% and 90% central probability intervals
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smaller than that of the other two approaches, suggesting

that the proposed approach can provide less volatile fore-

cast results.

The CRPS values of the three approaches are depicted in

Fig. 12. This figure shows that the proposed approach has

lower CRPS values in almost all the periods, meaning that

the proposed approach has better overall distribution

forecast performance.

A set of 50 multi-dimensional scenarios corresponding

to the predicted PDF and the estimated Gaussian copula is

depicted in Fig. 13. In the figure, it can be seen that the

actual wind power generation curve is well covered by the

scenarios, which means that the scenarios can reflect the

real wind power generation properly.

At the same time, a set of 2000 scenarios is generated

for the quantitative evaluation. Table 4 summarizes the ES

values corresponding to the generated 2000 scenarios.

According to the table, the ES indicator is lower when the

correlation information is included in the forecast result.

The test result indicates that the temporal-spatial correla-

tion information has positive effects on improving the

quality of the forecasted scenarios.

6 Conclusions

A multi-dimensional scenario forecast approach is pro-

posed in this paper. In the proposed approach, SVM is used

to perform the spot forecast of wind power generation. The

expectation and variance of the spot forecast error are es-

timated by SBL. Then the SVM forecast result is corrected

using the estimated error expectation. The dependence

structure of the forecast errors is reflected by the Gaussian

copula, which is estimated using the copula-based DCCMR

model. Therefore, the multi-dimensional scenarios of wind

power generation are produced with respect to the spot

forecast result, PDF of the spot forecast error, and the

Gaussian copula. The proposed approach is tested on three

adjacent wind farms, and the test results illustrate the ef-

fectiveness of the approach.
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Fig. 13 Generated multi-dimensional scenarios

Table 4 ES values corresponding to the forecasted scenarios

Approaches ES values (%)

Wind

farm

A

Wind

farm

B

Wind

farm

C

Without considering correlation

information

0.5634 0.6722 0.8879

Considering correlation

information

0.5572 0.6654 0.8798
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