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Abstract Optimal power flow (OPF) is one of the key

tools for optimal operation and planning of modern power

systems. Due to the high complexity with continuous and

discrete control variables, modern heuristic optimization

algorithms (HOAs) have been widely employed for the

solution of OPF. This paper provides an overview of the

latest applications of advanced HOAs in OPF problems.

The most frequently applied HOAs for solving the OPF

problem in recent years are covered and briefly introduced,

including genetic algorithm (GA), differential evolution

(DE), particle swarm optimization (PSO), and evolutionary

programming (EP), etc.

Keywords Heuristic optimization algorithm, Optimal

power flow, Multi-objective optimization, Constraint

optimization

1 Introduction

For the stable and economic operation of power systems,

optimal power flow (OPF) aims to find the optimal settings

of a given power system network that optimize a certain

objective function while satisfying its power flow equa-

tions, system security, and equipment operating limits [1].

The most commonly used objective is the minimization of

the overall fuel cost function. In addition, there are several

other objectives are to minimize the active power loss, bus

voltage deviation, emission of generating units, number of

control actions, and load shedding [2]. In practical power

system operation, the OPF problem adjusts the continuous

control variables (e.g. real power outputs and voltages) and

discrete control variables (e.g. transformer tap setting,

phase shifters, and reactive injections) to reach the optimal

objective function while satisfying a set of physical and

operational constraints. Therefore, it is a highly con-

strained, mixed-integer, non-linear and non-convex opti-

mization problem.

Conventional techniques such as linear programming

(LP), quadratic programming (QP), and non-linear pro-

gramming (NLP), were developed to solve the OPF prob-

lems with some theoretical assumptions, such as convexity,

differentiability, and continuity, which may not be suitable

for the actual OPF conditions. In addition, the convergence

to the global or local optimal solution is highly dependent on

the selected initial guess [3]. Moreover, continuous LP, QP,

and NLP formulations cannot accurately model discrete

control variables, such as transformer tap ratios or switched

capacitor banks. Mixed integer linear programming (MILP)

techniques were introduced to solve this problem [4].

However, the nonlinearity of the power system cannot be

fully represented by MILP formulations, and therefore cause

inherent inaccuracy. To overcome these drawbacks, HOAs

such as genetic algorithm (GA), evolutionary programming

(EP), simulated annealing (SA), tabu search (TS), particle

swarm optimization (PSO), differential evolution (DE), etc.,

have been employed for the solution of the OPF problem.

The results reported in previous literatures were promising

and encouraging for further research in this area.

This paper provides an extensive coverage of the major

research work that make use of HOAs to the OPF problem.
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The remainder of this paper is structured as follows. A brief

introduction of the most frequently used HOAs (GA, EP,

PSO, DE, etc) for the OPF problem is given in Section 2.

The generalized formulation of the OPF problem is

expressed in Section 3. Section 4 provides a detailed

investigation to OPF related research work applying

HOAs. Section 5 gives a discussion on the status and trend

of HOA application on OPF problem. Finally, this paper is

summarized in Section 6.

2 Modern heuristic optimization algorithms

The modern HOAs represent a group of intelligent algo-

rithms that either make analog of the natural evolution process

based on Darwinian principles or mimic a certain natural

phenomenon in searching for an optimal solution. They have

been successfully applied to a wide range of power system

optimization problems where non-differentiable regions exist

and the global solution are extremely difficult to be gauged.

The most popularly used HOAs in solving OPF problem are

compactly introduced as the follows.

1) Genetic algorithm: GA is one of the most popular and

famous approaches in evolutionary computation.

Founded on the mechanism of natural genetics and

Darwinian principles of evolution and natural selec-

tion, this novel algorithm showed strong capabilities

and advantages for solving a wide range of problems

as introduced in [5]. GA can be considered as a

population-based approach, the search process of

which is conducted by means of transforming a set

of points (individuals) to another set of points in the

search space. In the original GA, each individual is

represented via a fixed-length binary string. This

method maps the points in the search space into the

instances of artificial chromosome. Desired precision

can be simply approximated through tuning the length

of binary string. The strong preference to the binary

representation of GA probably derives from Schema

Theorem [6] which tries to investigate the mathemat-

ical foundation of GA.

2) Particle swarm optimization: PSO, which was intro-

duced in [7, 8] in 1995, is one of the most important

swarm intelligence paradigms. The PSO uses a simple

mechanism that mimics swarm behavior in birds

flocking and fish schooling to guide the particles to

search for globally optimal solution. As PSO is easy to

implement, it has rapidly progressed in recent years

and with many successful applications in solving real-

world optimization problems.

3) Differential evolution: The DE approach is firstly

proposed in a technical report in 1995 [9]. It is a

population-based method and is generally considered a

parallel stochastic direct search optimizer that is

simple yet powerful. DE is a stochastic population-

based optimization algorithm with real parameters and

real-valued functions. The core idea behind DE is a

scheme for generating trial parameter vectors. DE

generates new parameter vectors by weighing the

difference vector between two population members

and then adding that to a third member. If the resulting

vector yields a lower objective function value than a

previously determined population member, the newly

generated vector replaces the vector to which it was

compared. In comparisons to most other HOAs, the

DE algorithm is much simpler and more straightfor-

ward to implement. The main body of the algorithm

takes four or five lines of code in any programming

language. Despite its simplicity, the gross performance

of DE in terms of accuracy, convergence rate and

robustness makes it attractive for applications to

various real-world optimization problems [10–12],

where finding an approximate solution in a reasonable

amount of computational time is of considerable

importance. The spatial complexity of DE is lower

than that of some highly competitive real parameter

optimizers. This feature helps in extending DE to

handle expensive and large-scale optimization

problems.

4) Evolutionary programming: EP was first introduced in

the research of artificial intelligence [13]. In order to

achieve intelligent behavior, there came an idea of

defining the environment as a sequence of symbols (in

a finite alphabet) and evolving an algorithm to predict

the next symbol to appear based on the former

observed sequence of symbols. Finite state machine

(FSM) is chosen to be the form of individuals, as it

provides a meaningful representation for the required

behaviors in the environment. While the original form

of EP was applied in discrete problems due to the FSM

representation, EP was extended into the real-valued

continuous optimization problem [14]. Both the

mutation mode and the number of mutations per

offspring FSM are with respect to a probability

distribution, which means some individual may

mutates more than once in one generation.

In addition to the abovementioned HOAs, ant colony

optimization (ACO) [15], artificial neural network (ANN)

[16], simulated annealing (SA) [17], tabu search (TS) [18],

quantum-inspired evolutionary algorithm (QEA) [19, 20],

and artificial bee colony (ABC) [21] are also popular HOA

applications with regard to the OPF problem. Thus, cor-

responding literature reviews are also included in

Section 4.
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3 Problem formulation

This section provides a generalized OPF problem

description. It should be noted that OPF formulations differ

greatly depending on the different selection of variables,

objectives and constraints. Due to this aspect of OPF

problem, the formulation selected often has impacts for

both algorithm design and solution accuracy.

From the perspective of mathematics, the OPF optimize

a constructed objective subject to different sets of equality

and inequality constraints. Without loss of generality, the

problem can be formulated as follows:

Min f ðx; uÞ ð1Þ

Subject to

gðx; uÞ ¼ 0 ð2Þ
hðx; uÞ� 0 ð3Þ

where f( ) is the objective function to be minimized; x

denotes the dependent or state variables including active

power output of the slack bus PG1
, voltage of the load buses

VL (magnitudes and phase angles), generator reactive power

outputs QG, and transmission line flow Sl, expressed as

xT ¼ ½PG1
;VL1

� � �VLNL
;QG1

� � �QGNG
; Sl1 � � � Slnl

� ð4Þ

where NL, NG and nl denote the number of load buses,

generators and transmission lines, respectively; u

represents the independent variables, also known as

control variables consisting of voltages at generation

buses VG (magnitudes), active power generation PG at

PV buses, transformer tap settings T, and reactive power

injections QC by the shunt volt-amperes reactive (VAR)

compensations, represented as

uT ¼ ½PG2
� � �PGNG

;VG1
� � �VGNG

;QC1
� � �QCNC

; T1 � � � TNT �
ð5Þ

where NC and NT are the number of the VAR

compensators and regulating transformers, respectively.

The control variables can be divided into two categories,

discrete ud and continuous uc, given by

uT
d ¼ ½T1 � � � TN ;QC1

� � �QCN
� ð6Þ

uT
c ¼ ½PG2

� � �PGN
;VG2

� � �VGN
� ð7Þ

In practice, the OPF problem has two types of

constraints, i.e., the equality and inequality constraints.

The equality constraints, defined by (2), are a set of non-

linear power flow equations, represented as

PGi
� PDi

� PBi
ðVÞ ¼ 0 ð8Þ

QGi
� QDi

� QBi
ðVÞ ¼ 0 ð9Þ

where PGi
and QGi

are active and reactive power generated

at bus i, respectively; PDi
and QDi

represent the load

demand at the same bus; and PBi
and QBi

denote the total

sending and receiving power at each bus.

The inequality constraints, represented in (3), are a set

of continuous and discrete constraints that define the sys-

tem operational and security limits, including:

1) Generation constraints:

To ensure stable operation, generation bus voltages,

active power and reactive power outputs are restricted

by their lower and upper limits as

Vmin
Gi

�VGi
�Vmax

Gi
; i ¼ 1; � � � ;NG ð10Þ

Pmin
Gi

�PGi
�Pmax

Gi
; i ¼ 1; � � � ;NG ð11Þ

Qmin
Gi

�QGi
�Qmax

Gi
; i ¼ 1; � � � ;NG ð12Þ

2) Transformer constraints:

The discrete transformer tap settings are restricted by

their limits as

Tmin
i � Ti � Tmax

i ; i ¼ 1; � � � ; TN ð13Þ

3) Shunt VAR constraints:

The discrete reactive power injections due to capacitor

banks are restricted by their lower and upper limits

defined as

Qmin
Ci

�QCi
�Qmax

Ci
; i ¼ 1; � � � ;CN ð14Þ

4) Security constraints:

The constraints of voltages at load buses as well as the

transmission lines loading should be ensured as

Vmin
Li

�VLi
�Vmax

Li
; i ¼ 1; � � � ;NL ð15Þ

Sli � Smax
li

; i ¼ 1; � � � ; nl ð16Þ

4 Modern heuristic algorithms for the OPF

This section provides a detailed survey on the OPF

related research works with the applications of GA, PSO,

DE, EP, and some other commonly used HOAs.

4.1 Genetic algorithm based approach

GA was successfully used for optimal reactive power

planning in [22] to search for a global optimal solution. It

has been verified on practical 51-bus and 224-bus systems

to indicate its feasibility and capability. An improved

genetic algorithm (IGA) with the dynamical hierarchy of

the coding system was developed to solve the OPF problem

[23]. The IGA demonstrate the ability to code a large

number of control variables in a practical system. It was

tested on the IEEE 30-bus system with both normal and

contingent operation states. OPF problem for a multi-node

auction market was studied by means of GA in [24] to

maximize the total participants’ benefit at all nodes in the

power system. In [25], a self-adaptive real coded genetic
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algorithm (SARGA) was developed to solve OPF problem,

where the self-adaptation in real coded genetic algorithm

was reached through simulated binary crossover operator.

A novel evolutionary algorithm was developed combing a

new decoupled quadratic load flow (DQLF) solution with

enhanced genetic algorithm (EGA) to solve the multi-

objective OPF problem [26]. A strength pareto evolution-

ary algorithm (SPEA) based approach was employed to

obtain the Pareto-optimal set. The proposed multi-objective

evolutionary algorithm demonstrates superiority in com-

parisons to PSO–Fuzzy approach. An adaptive genetic

algorithm (AGA) was developed to solve OPF problems

and voltage control [27], where the probabilities of cross-

over and mutation were adjusted in terms of the fitness

values of the solutions and the normalized fitness distances

between the solutions in the evolution process. In [28], a

refined genetic algorithm (RGA) was developed for solving

OPF problem. This GA can code a large number of control

variables and has less sensitivity to starting points. GA was

also used to deal with power system security enhancement

based OPF in [29] considering the actions to possible

overloads in the network due to contingencies. An

enhanced genetic algorithm (EGA) with advanced and

problem-specific operators was introduced for solving OPF

with both continuous and discrete control variables [30].

An efficient real-coded mixed-integer genetic algorithm

(MIGA) was presented in [31] to solve non-convex OPF

problems with security constraints. According to the

numerical studies on 26-bus and the IEEE 57-bus systems,

the MIGA performs better than the EP. A novel hybrid

method integrating a GA with a nonlinear interior point

method (IPM) was proposed for OPF problem [32]. In the

hybrid approach, GA was responsible for solving the dis-

crete optimization with the continuous variables, and the

IPM is responsible for solving the continuous optimization

with the discrete variables. Numerical simulations were

implemented on IEEE 30-bus, IEEE 118-bus and realistic

Chongqing 161-bus test systems. Reference [33] discussed

the effects of various combination of control variables on

the convergence of simple genetic algorithm. Statistical

parameter based study was conducted to visualize the

effects of the selection of control variables on OPF con-

vergence in terms of the computation time and the accu-

racy improvement. The experiment results proved that the

set of control variables with the voltage of slack bus, the

active/reactive power outputs of generators, and the reac-

tive power outputs of controllable buses can be the most

effective in obtaining the global solution under normal and

contingent conditions. In [34], it was claimed that the main

disadvantages of GAs was the high CPU execution time

and the qualities of the solution deteriorate with practical

large-scale OPF problems. An efficient parallel GA was

developed for the solution of large-scale OPF problem with

the consideration of practical generators constraints. The

length of the original chromosome was reduced on basis of

the decomposition level and adapted with the topology of

the new partition. Partial decomposed active power

demand was added as a new variable and searched within

the active power generation variables of the new decom-

posed chromosome. The strategy of the OPF problem was

decomposed into two sub-problems, of which the first sub-

problem was related to active power planning to minimize

the fuel cost function and the second sub-problem was

designed to make corrections to the voltage deviation and

reactive power violation in an efficient reactive power

planning of multi static var compensator (SVC). Numerical

results on three test systems IEEE 30-bus, IEEE 118-bus

and 15 generation units with prohibited zones were pre-

sented and compared with results of stochastic search

algorithms, enhanced GA, ant colony optimization, and

GA-fuzzy system approach.

4.2 Particle swarm optimization based approach

A novel particle swarm optimization approach based on

multi-agent systems (MAPSO) was presented [35] to solve

OPF problems. Each agent, representing a particle to PSO,

in MAPSO competes and cooperates with its neighbors.

Experiment results prove that the proposed MAPSO

approach can reach better solutions much faster than the

mature approaches. A multi-objective PSO technique was

developed to deal with the highly nonlinear and non-con-

vex multi-objective OPF problem [36]. In addition to the

conventional objective generation cost, another conflicting

objective environmental pollution is formulated and mini-

mized simultaneously. A fuzzy based hybrid PSO approach

for solving OPF problem considering the forecasting

uncertainties of wind speed and load demand in power

systems was proposed in [37]. A comprehensive learning

PSO (CLPSO) was developed to reactive power dispatch to

reduce grid congestions [38]. A new multi-objective PSO

(MOPSO) technique for solving OPF problem was pro-

posed in [39]. The proposed MOPSO methodology is for-

mulated via the redefinition of global best and local best

individuals in multi-objective optimization domain. Ref-

erence [40] presented a hybrid particle swarm optimization

algorithm (HPSO) to solve the discrete OPF problem.

Newton-Raphson algorithm for the minimization of the

mismatch of the power flow equations was integrated to the

proposed HPSO algorithm. PSO technique was applied for

the transient-stability constrained OPF (TSCOPF) problem

modeled as an extended OPF with additional rotor angle

inequality constraints [41]. Reference [42] proposed a PSO

algorithm with reconstruction operators to solve the OPF

problem with embedded security constraints (OPF-SC),

represented by a mixture of continuous and discrete control
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variables. The major objective is to minimize the total

operating cost, taking into account both operating security

constraints and system capacity requirements. The recon-

struction operators guarantee searching the optimal solu-

tion within the feasible space, reducing the computation

time and improving the quality of the solution. An

improved PSO algorithm was developed for multi-objec-

tive OPF problem. The improved PSO that profits from

chaos queues and self-adaptive concepts was used to

improve the quality of the solution, particularly to avoid

being trapped in local optima. In addition, a new mutation

strategy combining different mutant rules was proposed to

increase the search ability of the proposed algorithm. The

proposed multi-objective OPF considers the fuel cost, loss,

voltage stability and emission impacts involved in the

objective functions. A fuzzy decision-based mechanism

was used to select the best compromise solution of Pareto

set obtained by the proposed PSO. In [43], PSO and group

search optimizer (GSO) were used to solve the OPF

problem with distributed generator failures in power net-

works. An OPF problem considering controllable and

uncontrollable distributed generators was formulated, and

cases with single and multiple generator failures were

addressed.

4.3 Differential evolution based approach

A multi-agent based differential evolution (MADE)

based on multi-agent systems was developed for dealing

with OPF problem with non-smooth and non-convex gen-

erator fuel cost curves in [44]. A novel robust differential

evolution algorithm (RDEA) with new recombination

operator was introduced to solve multi-objective OPF

problem including two objective functions of generation

cost and voltage stability margin, for OPF problem [45].

Similarly, DE was used to solve OPF problem with mul-

tiple and competing objectives [46]. The OPF problem was

divided into two sub-problems, i.e, active power dispatch

and reactive power dispatch were considered. A DE-based

approach to solve the OPF problem was developed in [47].

In their formulation, different objective functions that

reflect fuel cost minimization, voltage profile improve-

ment, and voltage stability enhancement were examined.

Non-smooth pricewise quadratic cost function was also

been considered. Reference [48] proposed a similar for-

mulation of OPF with non-smooth and non-convex gen-

erator fuel cost curves. They employed a modified DE with

a more exploitative mutation strategy and a random mutant

factor. For testing purpose, the authors adopted a six-bus

and the IEEE 30 bus test systems with three different types

of generator cost curves. Comparisons were made among

EP, PSO, typical DE, and results were in favor of the

proposed modified DE. In [49], DE was comprehensively

studied in terms of concept, mechanism, and parameter

setting for solving OPF problems. The effectiveness of

parallel computing technology for speeding up the com-

putation was also analyzed. It has been concluded that DE

requires relatively large populations to avoid premature

convergence for medium-size test systems. In order to

overcome this disadvantage, a decomposition and coordi-

nation method was proposed by the same authors based on

the cooperative co-evolutionary architecture and the volt-

age-var sensitivity-based power system decomposition

technique and incorporated with DE in [50]. The frame-

work was implemented with a three-level parallel com-

puting topology. Basu has used DE to minimize the

generator fuel cost in OPF with flexible AC transmission

systems (FACTS) devices including thyristor-controlled

series capacitor (TCSC) and thyristor-controlled phase

shifter (TCPS) [51]. Comparisons among DE, EP, and GA

were conducted, indicating that the DE approach can

obtain better solution and less computational complexities.

Considering the transient stability constraints in OPF, In

[52], DE was used to find the optimal setting for power

system operation. To deal with the large-scale system and

speed up the computation, DE was parallelized and

implemented on a Beowulf PC-cluster. Reference [53]

proposed a hybrid algorithm combining sequential qua-

dratic programming (SQP) and DE for the solution of the

OPF problem. In this hybrid method, SQP was used to

generate an individual, which is a member of an initial

population, for DE algorithm. This manipulation made DE

more effectively to reach the optimal solution.

4.4 Evolutionary programming

In [54] and [55], an efficient and reliable EP algorithm

was developed to solve OPF problem using the gradient

information. The proposed algorithm has been successfully

tested on IEEE 30-bus system with different highly non-

linear curves of generator performance. An improved EP

and its hybrid version combined with the nonlinear interior

point technique were proposed in [56] to solve the optimal

reactive power dispatch problems, indicating the superi-

ority of computational efficiency and optimality. The

common practices in regulating reactive power were inte-

grated in modifying the mutation direction of control

variables of EP to improve its speed. The interior point

method was applied to reach a fast initial solution which

assisted the initial population of the improved EP method.

An improved EP with multiple subpopulations and parallel

search for solving OPF with non-smooth and non-convex

generator fuel cost curves was proposed in [57]. Gaussian

and Cauchy mutation operators have been included in

different subpopulations to improve the search diversity

and avoid the local optimum. In [58], EP was applied for
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solving security constrained optimal power flow (SCOPF)

problem, where contingency-case security constraints were

involved in the optimization of the defined objective

function. The EP based OPF in deregulated electric market

environment was used and validated in [59]. In [60], EP

algorithm was proposed to solve the OPF problem of

generator units with ramp rate limits and non-smooth fuel

functions such as quadratic, piece-wise, valve point loading

and combined cycle cogeneration plants.

4.5 Other techniques

In [61], artificial neural networks (ANNs) have been

employed to model stability and security constraints in OPF

to formulate the system security boundary (SB). The key

novelties of the proposed algorithm include that a NN is

trained to derive the SB model and a differentiable mapping

function obtained from the NN is used as a constraint in the

formulation of OPF problem. This approach ensures that the

operating points resulting from the OPF solution process are

within a feasible and secure region, comparing with typical

security-constrained OPF models. A new ANN memory

model-based algorithm was proposed to online implement

for solving the unified OPF [62]. The ANN memory model

was used to store the load patterns and their related optimal

schedules. The proposed algorithm maximizes voltage sta-

bility margin while minimizing two other objectives gen-

eration cost and transmission loss.

Different ant colony optimization (ACO) algorithms

were proposed to handle optimal reactive power dispatch

problem in [63], including Ant system (AS), elitist ant

system (EAS), rank-based ant system (ASrank) and max-

min ant system (MMAS). The problem was modeled as a

combinatorial optimization problem involving nonlinear

objective function with multiple local minima. The pro-

posed ACO algorithms have been compared to conventional

mathematical methods, i.e. genetic algorithm, evolutionary

programming, and particle swarm optimization to demon-

strate the effectiveness and efficiency. An ant colony sys-

tem (ACS) method for constrained load flow problem was

proposed in [64]. The proposed ACS is a distributed algo-

rithm consisting of a set of cooperating ants to collabora-

tively search an optimum solution of the constrained load

flow problem. In addition, the ACS algorithm was also

applied to the reactive power control problem with network

operating constraints to minimize real power losses.

Simulated annealing (SA) technique was proposed for

solving OPF in [65]. It has been demonstrated that SA is

able to solve the OPF problem as well as the load flow and

the economic dispatch problem simultaneously. In [66], a

novel HOA algorithm, called biogeography based optimi-

zation (BBO) was employed to solve constrained OPF

problems in power systems with the consideration of valve

point nonlinearities of generators. The simulation results of

the proposed approach have been compared with EP, GA,

PSO, mixed-integer particle swarm optimization (MIPSO)

and sequential quadratic programming (SQP) to indicate its

effectiveness for the global optimization of multi-con-

straint OPF problems. In [67], a quantum-inspired evolu-

tionary algorithm (QEA) based on quantum computation

was developed for bid-based active and reactive OPF

problems. In [68], artificial bee colony (ABC) algorithm

based on the intelligent foraging behavior of honeybee

swarm was proposed for optimal reactive power flow

(ORPF) problem.

4.6 Hybrid approach

A hybrid tabu search and simulated annealing (TS/SA)

approach was proposed in [69] to deal with OPF control

with FACTS devices including two types TCSC and TCPS.

Test results on IEEE 30-bus system demonstrate that the

proposed hybrid TS/SA approach can perform better than

GA, SA, or TS alone. A hybrid approach integrating fuzzy

systems with GA and PSO algorithm was proposed for the

application for OPF problem [70]. A hybrid algorithm of

DE and EP (DEEP) was proposed for solving ORPF

problem [71]. The proposed DEEP algorithm reduces the

required population size by using the advantages of DE and

EP. In order to overcome the limits of DE and artificial bee

colony (ABC), a hybrid DE and ABC technique (DE-ABC)

was developed for solving the ORPF problem [72].

Numerical tests indicate the robustness of the DE-ABC

approach. A hybrid evolving ant direction differential

evolution (EADDE) algorithm was developed to deal with

the OPF problem with non-smooth and non-convex gen-

erator fuel cost characteristics in [73].

5 Discussion

HOAs are typically very versatile with respect to OPF

problem format. In addition, most HOAs are able to escape

local optima which is critical for solving OPF problem.

However, all the HOAs discussed tend to be computa-

tionally intensive, yielding impractically long execution

times for OPF problems involving large scale systems. To

overcome this, parallel processing was executed by most of

the reviewed population based HOAs, therefore, the com-

putational time can be significantly reduced.

Furthermore, the reviewed HOAs possess several

parameters which must be tuned to ensure good perfor-

mance. Consideration of the tuning of pre-determined

parameters of HOAs and the time limitation of online OPF

operation will make these algorithms less robust. Hence,

one of the most challenging aspects for HOAs lies in how
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to consistently converge to a feasible solution that provides

an acceptable objective value within a limited function

evaluations.

In the reviewed literatures, on the premise of a proper

pre-defined parameter choices, almost every HOA method

is claimed as being more robust or can converge to a better

solution compared with other HOAs. However, compari-

sons between different HOAs are difficult, as the selection

of pre-defined parameters for each HOAs dominates the

results. Moreover, according to the no-free-lunch (NFL)

theorem, there cannot exist any algorithm for solving all

problems that is generally superior to its peers [74].

Therefore, the authors suggest that HOAs should be

designed with respect to solving a specific aspect or for-

mulation of OPF problem, i.e. MINLP formulation, so as

the comparisons being made.

6 Conclusions

This paper presents relevant research work applying

HOAs for solving the OPF problem. It highlights the dif-

ficulties of deterministic methods facing i.e. non-continuity

and non-differentiability of the OPF objective function.

The reviewed articles are organized according to different

categories of HOAs. A brief discussion of the limitations

and trends of HOA applications with respect to OPF

problem is presented in addition to the corresponding lit-

erature reviews.
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