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Abstract This paper presents the mean–variance (MV)

model to solve power system reactive power dispatch

problems with wind power integrated. The MV model con-

siders the profit and risk simultaneously under the uncertain

wind power (speed) environment. To describe this uncertain

environment, the Latin hypercube sampling with Cholesky

decomposition simulation method is used to sample uncer-

tain wind speeds. An improved optimization algorithm,

group search optimizer with intraspecific competition and

lévy walk, is then used to optimize the MV model by intro-

ducing the risk tolerance parameter. The simulation is con-

ducted based on the IEEE 30-bus power system, and the

results demonstrate the effectiveness and validity of the

proposed model and the optimization algorithm.

Keywords Mean–variance model, Reactive power

dispatch, Wind power, Group search optimizer with

intraspecific competition and lévy walk (GSOICLW)

1 Introduction

The optimal reactive power dispatch (ORPD) problem

has played significant influence on the economical and

secure operation of power system [1, 2]. It aims to seek

optimal settings of control variables to minimize a specific

objective function, while meeting a set of operational

constraints. The control variables consist of both continu-

ous and discrete variables, including generator voltage

magnitudes, discrete tap settings of transformers and out-

puts of reactive compensation devices. The operational

constraints are composed of equality and inequality con-

straints, presented in the power flow equations and the

limits of bus voltages, transformer tap-settings and reactive

power outputs. Therefore, the ORPD problem is a complex

non-linear constrained optimization problem with a mix-

ture of discrete and continuous variables [2].

Many conventional techniques based on mathematics

have been applied in dealing with the ORPD problem, such

as gradient-based searching method [3], interior point

method [4] and quadratic programming [5]. However, these

conventional methods cannot guarantee to find the global

optimum because of the non-convex, non-differential and

non-linear nature of the ORPD problem [6]. In the last

decades, many evolutionary algorithms (EAs) have been

used for the ORPD problem, such as genetic algorithm

(GA) [6], evolutionary programming (EP) [1].

Recently, a novel optimization algorithm, called group

search optimizer (GSO), was proposed in [7]. It is a swarm-

based algorithm and inspired by animal searching behavior.

GSO consists of three kinds of members, i.e., the producer,

scroungers and rangers. The producer with the best fitness

value acts as the leader and it adopts scanning mechanism to

find the optimal resource in the searching space. Scroungers

are always following the producer to enjoy the discovered

resource. On the other hand, rangers employ random walk

(RW) to perform ranging behavior to seek other distributed

resources. Therefore, it is the rangers that maintain the

group’s diversity to increase GSO’s possibility to escape

from local optima. In [7], it has been proved that GSO out-

performs other EAs, such as GA, PSO and EP, especially in

terms of optimizing multi-modal benchmark functions.
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However, GSO’s local searching ability is not satisfac-

tory, as shown in its modest performance on optimizing

unimodal functions [7]. In order to improve GSO’s local

searching ability while maintaining its merit in global

searching, we have proposed an improved GSO, group

search optimizer with intraspecific competition and lévy

walk (GSOICLW) [8], incorporating intraspecific compe-

tition (IC) [9] and lévy walk (LW) [10] into the GSO

model. IC makes the scroungers strengthen local searching

while stimulates more rangers to do global searching.

Moreover, LW stimulates rangers to perform more efficient

global searching than random walk (RW). In this paper,

GSOICLW is adopted for the first time to solve the ORPD

problem.

Recently, wind energy has been greatly utilized all over

the world. It is definite that it is a good alternative to the

traditional thermal power generation [11, 12]. However, its

inherent nature of uncertainty determines it is extremely

difficult to predict wind power [13–15]. Therefore, it is

difficult to solve power system dispatch problems (DPs),

including the ORPD problem, if large amount of wind

power is integrated into power systems [12, 16, 17]. To the

best of our knowledge, there have been mainly two

methodologies on DPs with wind power integrated, i.e., the

fuzzy and the probabilistic methods. In the fuzzy method,

the wind power is deemed as the fuzzy variable, and the

fuzzy set theory is used to model the corresponding DP

issue [17, 18]. However, this method may be subjected to

strong subjectiveness, although it can reflect dispatchers’

attitude to some extent [17, 18].

On the other hand, the probabilistic method usually

assumes that wind speed, wind power or wind forecast

error follows a specific probabilistic distribution. The wind

speed is often assumed to follow the Weibull distribution

[19, 20]. However, the period of DP and ORPD is very

short, thus it is not suitable to use the Weibull distribution

[19]. Ref. [19] indicates that the wind speed forecast error

follows the Gaussian distribution in a short time, which

demonstrates that this kind of distribution can be applied in

DPs. Therefore, in this paper, the Gaussian distribution is

applied to describe the uncertain wind speed in dealing

with ORPD.

It is noted that the Monte Carlo (MC) simulation is often

applied to generate wind power samples to conduct sto-

chastic optimization in the probabilistic method [21–23].

However, the MC method is notorious for its heavy com-

putation burden. Thanks to the Latin hypercube sampling

with Cholesky decomposition (LHS-CD) simulation

method, it obtains reliable results with a much smaller

sample size, compared with the MC method [24]. More-

over, in terms of the stochastic optimization based on the

probabilistic method, the objective function is usually the

expected value. In this way, the final dispatch solution can

obtain the best average value. However, the risk brought

about by the solution is not considered under the uncertain

environment. Thanks to the mean-variance (MV) model,

which was proposed by Markowitz in the portfolio opti-

mization problem, it can well measure both the profit and

the risk brought a portfolio [25] in the uncertain environ-

ment. Therefore, we can use this model and LHS-CD to

deal with the ORPD problem under the wind power

environment.

Therefore, in this paper, the MV model and the sampling

method LHS-CD are used to solve the ORPD problem with

uncertain wind power integrated, and GSOICLW is applied

to optimized the MV model to determine the dispatch

solution. The modified IEEE 30-bus power system is

employed for carrying out the simulation study to dem-

onstrate the effectiveness of the MV model and the pro-

posed optimization algorithm, GSOICLW.

The rest of the paper is organized as follows. Section 2

introduces the ORPD problem and the MV model. Sec-

tion 3 presents the algorithm of GSO and GSOICLW.

Section 4 carries out the experiments and discusses the

simulation results. In the end, Sect. 5 draws conclusions.

2 Mean and variance model for optimal reactive power

dispatch

2.1 Optimal reactive power dispatch (ORPD)

The ORPD problem aims to minimize an objective

function, usually the transmission loss, by adjusting control

variables while satisfying a set of equality and inequality

constraints. As a result, the ORPD problem can be pre-

sented in the following formulation:

min
u

J ¼ f ðu; xÞ

s.t
gðu; xÞ ¼ 0

hðu; xÞ� 0

ð1Þ

where J represents the objective function; x stands for the

vector of state variables, including load-bus voltage VL,

generator reactive power QG and apparent power flow Sk;

the vector of control variables u comprises generator

voltage VG, transformer tap setting T, reactive power out-

put of compensative reactive power sources QC.

The objective function of the ORPD problem is trans-

mission loss, which can be expressed as the following.

PL ¼
XNE

k¼1

gkðV2
i þ V2

j � ViVjcos(hijÞÞ ð2Þ

where gk represents the conductance of branch k; Vi and Vj

are the voltage magnitude at bus i and j; hij is the voltage

angle difference between bus i and j; and NE is the total

number of power system network branches.
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As for constraints, g(u,x) represents the must of power

balance in power systems, i.e., the generated active and

reactive power must be balanced with their corresponding

parts in consuming load.

PGi ¼ PDi þ Vi

X

j2Ni

VjðGijcoshij þ BijsinhijÞ

QGi ¼ QDi þ Vi

X

j2Ni

VjðGijsinhij � BijcoshijÞ

8
>><

>>:
ð3Þ

where PGi and PDi are the injected and demanded active

power at bus i; QGi and QDi are the injected and demanded

reactive power; Bij and Gij are the transfer susceptance and

conductance between bus i and j; Ni stands for the total

number of buses adjacent to bus i, including bus i. h(u,x)

represents working limits of generators, power transform-

ers and reactive power sources, and emphasizes power

system security constraints, such as limits on bus voltages

and branch apparent power flow. The details can be

referred to [8].

The most common method used to deal with constrained

optimization problem is adopting penalty function [2, 6].

Therefore, by adopting this method, the objective function

in (1) can be expressed as

F ¼ J þ
X

i2N lim
V

kVi
ðVi � V lim

i Þ2 þ
X

i2N lim
Q

kGi
ðQi � Qlim

Gi
Þ2

þ
X

i2Nlim
E

kSi
ð Sij j � Slim

i Þ2

ð4Þ

where kVi
, kGi

and kSi
are penalty factors, and the limited

value xi
lim(x 2 ðPG; V; QG; SkÞ) can be defined as the

following:

xlim
i ¼ xmax

i ðxi [ xmax
i Þ

xmin
i ðxi\xmin

i Þ

�
ð5Þ

2.2 Mean and variance model for optimal reactive

power dispatch

The mean-variance (MV) model was firstly proposed by

Markowitz in the portfolio optimization problem, which

aimed to both maximize the profit and minimize the profit

[25]. The MV model has also been used in power systems,

Refs. [26, 27] have applied this model to solve the self-

scheduling problem under uncertain electricity markets.

The effect of risk has been explicitly modelled taken the

variance of the market-clearing prices into consideration to

address the trade-off of maximum profit versus minimum

risk [26, 27]. In [28], the MV model has also been used to

deal with the stochastic optimal power flow (OPF) problem

with uncertain power demands. As the uncertain wind

power is increasingly integrated into power system, it is of

great difficulty to solve the DPs [19]. Therefore, in this

paper, we use the MV model to analyze the ORPD

problem.

Inspired by the MV model, we can use this model to

consider both the profit and risk brought by a dispatch

solution under the uncertain wind power environment, and

determine the optimal dispatch solution by analyzing the

trade-off relationship between the profit and risk. However,

how to introduce the concept of profit and risk into the

ORPD problem? The profit means that a dispatch solution

in the uncertain wind power environment brought about a

less averaged transmission loss; in other words, we should

minimize the profit as small as possible. On the other hand,

the risk means that a robust dispatch solution should be

obtained, which can adjust to different uncertain wind

power samples. Therefore, the MV model applied in ORPD

can be expressed as

Fexp ¼ EW1;W2;...;WM

XNS

i¼1

Fi � PðFiÞ
( )

ð6Þ

where E(�) is the expectation operator, computing the

average value of the profit function; M is the number of

wind farms integrated to a power system, and

ðW1;W2; . . .;WMÞrepresent power outputs of these wind

farms; NS is the number of wind power samples corre-

sponding to each Wj (j = 1,2,���,M) obtained by the LHS-

CD method [24]; Fi is the transmission loss when the ith

wind power sample of all wind farms has integrated to the

power system; and P(Fi) describes the probability of the

transmission loss Fi�
Then, the variance function is formulated as

V ¼ VarW1;W2;...;WM

XNS

i¼1

Fi � PðFiÞ
( )

ð7Þ

where Var(�) is the variance operator.

Once a dispatch solution is determined, then the mean

and variance of the profit function can be calculated.

Moreover, if the value of variance is high, the transmission

loss corresponding to different wind power samples devi-

ates far from the expected value, which means the dispatch

solution cannot well adjust the uncertain wind power

environment. For example, the transmission loss as for

some wind power samples maybe much more than its mean

value. Therefore, it is quite necessary for power system

dispatchers to take both profit and risk into consideration.

Refs. [26, 27] optimize these two indexes by adopting the

risk tolerance parameter, in the perspective of the single-

objective optimization problem. However, the risk toler-

ance parameter is difficult to set. Therefore, Ref. [26] uses

different risk tolerance parameters to obtain the expected

profit and the profit standard deviation, and Ref. [27]

analyses the relationship of the risk tolerance parameter

and the expected profit, computing different expected
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profits regarding to different risk tolerance parameters. In

this paper, we also use the risk tolerance parameter, k, to

study the MV model. Then the objective function becomes

min
u

Fexp þ kV

s.t. gðu; x;WÞ ¼ 0

hðu; xÞ� 0

ð8Þ

where W consists of PW and QW, which stand for the vector

of wind farms’ uncertain active and reactive power outputs.

It is noted that W mainly affects ORPD on power flow

equations, which will be presented in the next subsection.

2.3 Wind power

The Weibull distribution is often used to describe the

uncertainty of wind speeds within a long period of time,

[29–31]. The ORPD is usually conducted within a short

term; therefore, it is not suitable to use the Weibull distri-

bution when solving ORPD with wind power integrated

[19]. The actual wind speed can be regarded as the sum of

the forecast speed and its error, and the wind speed forecast

error follows the Gaussian distribution [19]. Moreover, the

Gaussian distribution has been used to depict the wind

speed forecast error to solve DP problems [19, 20]. There-

fore, in this paper, we adopt the Gaussian distribution:

Dv�Nð0; r2
vÞ ð9Þ

where Dv represents the wind speed forecast error, N(0, rv
2)

stands for the Gaussian distribution with the mean value 0

and the standard deviation rv.

Then the actual wind speed is expressed as:

v ¼ vf þ Dv ð10Þ

where vf indicates the forecast value of the wind speed.

The active power generated by the wind turbine, Pwt, is

determined by the wind speed [32], which is formulated as:

Pwt ¼

0 0� v\vci

a þ bv3 vci � v\vra

Pra vra � v\vco

0 v [ vco

8
>>><

>>>:

where a ¼ Prav3
ci

v3
ra � v3

ci

b ¼ Pra

v3
ra � v3

ci

ð11Þ

where v, vci, vra, vco are the wind speed, the cut-in wind

speed, the rated wind speed, the cut-out wind speed,

respectively, and Pra is the rated active power of the wind

turbine.

If a wind farm consists of Nwt wind turbines, evidently,

the total amount of active wind power is Pwt 9 Nwt.

However, the reactive power generated by wind farms is

determined by the control strategy of the farm (turbine)

[32]. In this paper, we choose the doubly-fed induction

wind power generator with a constant power factor, so the

wind farm is a PQ bus [32]. Then the active and reactive

power of the wind farm can be expressed as

Pfarm ¼ Pwt � Nwt

Qfarm ¼ Pfarm

cosu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � cos2u

p
�

ð12Þ

The wind power mainly affects the dispatch solution of

ORPD by power flow equations at the power system bus

(e.g., bus i) connected to a wind farm, as shown in the

equation constraints:

PGi ¼ PDi � Pfarm þ Vi

X

j2Ni

VjðGijcoshij þ HijsinhijÞ

QGi ¼ QDi � Qfarm þ Vi

X

j2Ni

VjðGijsinhij � HijcoshijÞ

8
>><

>>:

ð13Þ

3 Group search optimizer with intraspecific

competition and lévy walk

3.1 Group search optimizer

GSO is a swarm-based optimization algorithm, con-

sisting of three kinds of members, i.e., the producer,

scroungers and rangers. In each generation, the member

with the best fitness value is chosen as the producer, and a

number of members except the producer are randomly

selected as scroungers, then the rest of members are

rangers. The producer is always located in the most

promising area and adopts animal scanning to seek the

optimal resource. Scroungers perform area copying to join

the resource found by the producer, and perform local

searching around it. Meanwhile, rangers employ ranging

behavior by random walk (RW) in the searching space to

increase the GSO’s chance to escape from local optima.

Therefore, GSO performs much better on multi-modal

optimization problems than other EAs, such as GA, PSO,

EP [7].

In GSO, each member has its current position Xi
k 2 Rn and

a scanning angle uk
i ¼ uk

i1;u
k
i2; � � � ;uk

iðn�1Þ

� �
2 R

n�1 in the

kth bout, and the corresponding unit vector

Dk
i ðuk

i Þ ¼ dk
i1; dk

i2; � � � ; dk
in

� �
2 R

ncan be calculated [7]. The

searching mathematical models regarding to producer,

scroungers and rangers can be shown as follows, respectively.

3.1.1 Producer

The member with the best fitness value is chosen as the

producer, whose position is Xp
k. Afterwards, it will scan

randomly by sampling three points: one is at zero degree,

the other two points are at the right and left degrees,
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respectively. As a result, the producer’s searching formu-

lations can be expressed as

Xz ¼ Xk
p þ r1lmaxDk

pðukÞ
Xr ¼ Xk

p þ r1lmaxDk
pðuk þ r2hmax=2Þ

Xl ¼ Xk
p þ r1lmaxDk

pðuk � r2hmax=2Þ

8
><

>:
ð14Þ

where up
k is scanning angle of the producer, hmax 2 R

n�1and

lmax 2 R
1 are maximum pursuit angle and distance.

r1 2 R
1is a normally distributed random number with mean

0 and standard deviation 1 and r2 2 R
n�1 is a uniformly

distributed random sequence in the range of (0,1).

If the producer finds a better position, it will fly to there.

Otherwise, it will stay in the same position and take a new

random scanning angle

ukþ1 ¼ uk þ r2amax ð15Þ

where amax 2 R
1 is the maximum turning angle.

Moreover, if the producer cannot find a better position

after a constant number of iterations, its scanning angle

will go back to zero degree

ukþa ¼ uk ð16Þ

where a 2 R
1 is a constant.

3.1.2 Scroungers and rangers

Except the producer, a number of group members are

randomly selected as scroungers. Scroungers employ the

producer-scrounger (PS) model [7] to perform area copying

to join the resource found by the producer; in other words,

each scrounger keeps moving towards and searches the

area around the producer. At the kth iteration, the area

copying behavior of the ith scrounger can be modeled by:

Xkþ1
i ¼ Xk

i þ r3 � ðXk
p � Xk

i Þ ð17Þ

where r3 2 R
n is a normally distributed random number

with mean 0 and standard deviation 1 and ‘‘�’’ is the

Hadamard product.

Aside from the producer and scroungers, the rest of GSO

members are rangers. They perform RW in the searching

space to resort to other resources, which increases the

GSO’s chance to escape from local optima. At the kth

iteration, each ranger generates a random head angle ui
k and

a random distance lmax, then it moves to a new position:

Xkþ1
i ¼ Xk

i þ a � r1Dk
i ðukþ1Þ ð18Þ

It should be noted that the members’ roles can be

switched between one another in GSO group. For instance,

if a better resource is found by a scrounger or a ranger in

the next bout compared with the current producer, the

scrounger or the ranger will be switched to be the producer;

on the other hand, the producer in the previous searching

bout will perform scrounging strategies as a scrounger or

RW as a ranger.

3.2 Group search optimizer with intraspecific

competition and lévy walk

3.2.1 Intraspecific competition

Intraspecific competition (IC) is a particular form of

competition in which members of the same species struggle

for the same resource in an ecosystem [9]. IC is divided into

two components, contest competition and scramble compe-

tition [9]. In the former competition, each successful com-

petitor obtains all resources it needs for survival while the rest

of competitors are deprived of such resources. However, in

terms of scramble competition, it happens when competitors

are crowded around limited resources, which are not

monopolized by successful competitors. This sort of IC

stimulates animals to compete for resources seriously [33].

As for GSO, group members are always hunting for the

optimal resource which is definitely scarce. Therefore, IC

exists inevitably in the form of scramble competition in

GSO’s searching process and it happens if GSO members

are crowded around the producer. In [34], an index is

proposed that can well describe the population’s crowd-

edness in some evolutionary algorithms (EAs) dominated

by the leading member with the best fitness value, e.g.,

PSO and GSO. The detailed calculation steps are expressed

as follows.

1) Compute the mean distance di of each particle i with

its position xi to all the other particles

di ¼
1

N � 1

XN

j¼1;j6¼i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XD

k¼1

ðxk
i � xk

j Þ
2

vuut ð19Þ

where N is the population size and D is the number of

particles’ dimensions.

2) Denote di of the leading particle as dg, determine the

maximum distance dmax and minimum distance dmin by

comparing all di in (9). Therefore, f can be determined as

f ¼ dg � dmin

dmax � dmin

2 0; 1½ � ð20Þ

It can be easily seen that the leading member is surrounded

closely by other members if f is small [34]. Therefore, the

index f can be used to describe the population’s crowdedness.

If f is small, it means that GSO members are crowded around

the producer. Then IC happens, and r3 ¼ ðr31
; r32

; . . .; r3D
Þ,

presented in (21), is suggested to be a random vector with

higher value ranged in (0.8,1) for scroungers to manifest this

serious competition. Here r3 is called scrounging coefficient.

In GSOICLW, we suggest if f is less than 0.2, IC happens, then

the value of r3 can be determined by the index f as follows.
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r3i
¼

randomð0:8; 1Þ f \0:2

randomð0; 0:8Þ f 	 0:2

(
i ¼ 1; 2; . . .;D ð21Þ

3.2.2 Diversifying effect of intraspecific competition

As mentioned above, IC occurs when animals from one

species in crowdedness directly compete for a limited

resource. Moreover, Richard has proposed that IC will

drive the diversifying effect within a population, i.e., the

increasing population density leads to reduced prey avail-

ability, in this way, some individuals will resort to alter-

native prey types [35]. Furthermore, he has pointed out that

more intense competition caused by increasing population

density compel more members to choose to seek another

food resource [35]. Similar phenomena caused by IC have

also been observed by other biologists [36, 37].

Therefore, when the group members in GSO are in IC,

the diversifying effect will happen, i.e., some members are

going to seek another food, acting as the role of rangers to

escape this serious competition. In addition, it is noted that

the IC become more intense, the more rangers will emerge

[35]. In the above subsection, we have introduced the index

f describing the crowdedness of population in GSO group,

and it can be easily seen that when f becomes smaller, it

means GSO members are more crowded, then IC become

more intense, leading more individuals to become

rangers.

According to the basic GSO algorithm, the ratio of

rangers is set as a constant (20%) during the whole

searching process. But in practical process of seeking food

resources, as mentioned above, the proportion of rangers

should vary in accord with the intensity. More specifically,

the smaller index f, the more intense of IC; thus the bigger

ratio of rangers. Therefore, we propose the ratio of rangers

cf in the proposed algorithm is the function of the index f

when the searching group is in IC, otherwise a constant

ratio, i.e., 20%, as employed in GSO. Therefore, the for-

mulation of cf is expressed as follows.

cf ¼
1

2:8571þ2:5357�sin(f Þ f \0:2

0:2 f 	 0:2

�
ð22Þ

3.3 Lévy walk

In GSO, ranging animals perform searching strategies

by means of RW, which are thought to be one of the most

efficient searching method for randomly distributed

resources [7]. It can be seen that rangers choose random

searching distance in (18), where r1 is a normally distrib-

uted random number with mean 0 and standard deviation 1.

As a result, it can be seen rangers in GSO are performing

the classical random walk because its variance of step

length distribution is finite [38].

However, Viswanathan has claimed that LW is more

efficient than classical random walk, because LW owns an

inverse square power-law distribution of fight lengths. He

has proved his claim by analyzing experimental foraging

data on selected insect, mammal and bird species, and

found that they were consistent with the predicted inverse

square power-law distributions [10]. What is more, Andrew

has conducted experiments on honey bees, and proved that

the LW constitutes an optimal searching strategy for food

resources [39].

Therefore, the LW is chosen as the strategy of ranging

behavior in GSOICLW, and its walking length, r, can be

drawn from a probability distribution function with a

power-law tail as follows [10]

PðrÞ� r�l ð1\l\3Þ ð23Þ

It is noteworthy to mention that when l B 1, the

distribution function cannot correspond to probability

distributions that can be normalized; on the other hand,

the function will become Gaussian distribution function if

l C 3. Therefore, here we choose l = 2.

In this way, (14) should be changed by replacing the

normal random number r1 with the random number r from

lévy distribution function. Then the ith member acting as a

ranger moves to a new position

Xkþ1
i ¼ Xk

i þ a � rDk
i ðukþ1Þ ð24Þ

In conclusion, GSOICLW incorporates IC and LW into

GSO, as illustrated in Fig. 1. In GSO, most members,

acting as scroungers, who scrounges the producer, and

rangers perform RW to seek other resources. However,

when other members are crowding around the producer, IC

happens. It leads to more intense scrabble for the resource

lying in the position of the producer and more rangers who

will disperse with longer step by LW in the searching

space. In [8], it has been proved that IC makes the

scrounging coefficient and rangers’ ratio vary adaptively to

balance local and global searching, and LW stimulates

rangers to perform more efficient global searching than

RW. In other words, GSO achieves better performance than

GSO in that it improves GSO’s local searching ability

while maintaining its global searching performance.

4 Latin hypercube sampling with Cholesky

decomposition

To deal with the uncertainty of wind speed or wind

power, the MC simulation combined with simple random

sampling (SRS) has been widely used in power system

dispatch problems [11, 15]. However, the SRS sampling

method is inefficient for its heavy computational burden

due to the need of a large number of repeated calculations
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to obtain a specified accuracy. It has been proved in Ref.

[24] that the sampling method of Latin hypercube sampling

with Cholesky decomposition (LHS-CD) can obtain more

reliable results with relatively small sample size, compared

with SRS. Therefore, in this paper, LHS-CD is used to

sample wind speed forecast errors, which folllow the

Gaussian distribution.

Then the wind speed samples can be obtained to cal-

culate the corresponding power flows to compute the mean

and variance of the profit function mentioned above. The

detailed LHS-CD calculation steps for power flow can be

found in [24], and the calculation flowchart is shown in

Fig. 2.

5 Experimental studies

The MV model and the algorithm of GSOICLW have

been tested on the IEEE 30-bus test system. This test

system consists of 48 branches, 4 transformers, 6 genera-

tor-buses, and 22 load-buses. The total system demand is

283.4 MW. The locations for the wind farms are on buses

7, 10, 16, 24 and 30, and predicted wind speeds and

number of wind turbines operated in the wind farms are

given in Table 1. The standard deviation of the wind speed

forecast error is set to be 8% of its corresponding forecast

wind speed.

Suppose the doubly-fed induction generator (DFIG)

with a constant power factor is used in wind farms. The

rated active power is set to be 2 MW, and the rated, cut-in

and cut-out wind speed are set to be 12.5 m/s, 4 m/s and

20 m/s, respectively. As for the sampling method of LHS-

CD, we set the number of wind speed samples to be 400.

Moreover, in order to demonstrate the effectiveness of

GSOICLW, it is tested and compared with GSO, PSO and

the algorithm of primal-dual interior point (PDIP) based on

the modified IEEE 30-bus test system, considering the

predicted wind speeds. In addition, 50 independent runs

have been used for GSOICLW, GSO, PSO and PDIP to test

their average performances on the ORPD problem. The

population sizes of GSOICLW and GSO are set as 47, and

the total iterations during each run are both 300, respec-

tively. Therefore, the total number of fitness evaluation is

15,000. The parameters of IC and LW in GSOICLW are

listed in Sect. 3. Moreover, we also set the total number of

fitness evaluation in terms of PSO and PDIP are the same

as that of GSOICLW. Please note that PDIP is sensitive to

the initial searching point, which is difficult to select, and

we randomly choose it when conducting the 50 indepen-

dent runs.

In order to further assess the performance of the pro-

posed algorithm in a stochastic search process, the Mann-

Whitney U-test is adopted. It is a non-parametric test for

comparing two populations, assessing whether the two

groups of results are statistically different from each other

[40].

Therefore, we conduct two simulation cases: one aims to

test the performance of GSOICLW and the other is

designed to prove the effectiveness of the MV model.

Case 1: Minimization of the transmission loss with

predicted wind speeds.

Fig. 1 Illustration of IC and LW in GSOICLW

Fig. 2 Calculation flowchart of LHS-CD for power flow

Table 1 The forecast wind speeds and number of wind turbines in

wind farms

Node 7 10 16 24 30

Predicted wind speed (m/s) 9.3 15 7.6 8.7 6.5

Number of turbines 20 20 20 20 20
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Case 2: Minimization of the transmission loss with

uncertain wind speeds.

5.1 Minimization of the transmission loss

with predicted wind speeds

In this case, it aims to minimize transmission loss only

based on IEEE 30-bus system, which focuses on optimiz-

ing the objective function J1 in (2). The best results, worst

results, average results and standard deviations of trans-

mission loss gained by GSOICLW, GSO and PSO from 50

runs are presented in Table 2. It is shown that GSOICLW

can find more accurate and robust solution than GSO and

PSO because the average result and standard deviation

obtained by GSO are 1.3404 and 0.0081, much better than

that of GSO, PSO and PDIP. In particular, the average

transmission loss obtained by GSOICLW is superior to the

best results gained by GSO, PSO and PDIP, which are

1.3590 MW/h, 1.3592 MW/h and 1.3602 MW/h, respec-

tively. As for PSO and PDIP, the worst results

(1.7134 MW/h and 3.0459 MW/h) and standard deviations

(0.0581 and 0.5963) of transmission loss, much worse than

that of GSOICLW, indicate PSO and PDIP easily entrap in

local optima during the searching process. Moreover, the

gained p-values and h-values using the Mann-Whitney

U-test are shown in Table 2, which prove that the results

obtained by GSOICLW are significantly different from that

of GSO, PSO and PDIP.

Fig. 3 shows the convergence results in 50 trials in this case

for GSO and GSOICLW, respectively. It can be easily seen

that GSOICLW can find better solution than GSO. Although

GSO can find good results in some trials (i.e., the 16th trial),

but in the rest trials the optimized costs are even close to

1.40 MW/h. Consequently, the standard deviation corre-

sponding to GSO is 0.0121, lager than that of GSOICLW.

5.2 Minimization of the transmission loss

with uncertain wind speeds

The MV model shown in (7) is solved for different

values of the risk tolerance parameter, which allows

assigning different weights to the fuel cost term Fexp

(representing the profit term) versus the risk term V in the

objective function. It can be easily seen that the risk tol-

erance parameter will put a great impact on the final

optimized results. The smaller risk tolerance parameter is,

the more emphasis on the profit. Suppose, k varies from 0.0

to 0.5, and this range is considered wide enough to reflect

the variety of risk that power system dispatchers are willing

to assume.

Table 3 illustrates dispatching differences for the cases

of the maximum risk (k = 0) and a low level of risk

(k = 0.5). Moreover, Fig. 4 depicts transmission loss’

expected value and standard deviation versus the risk tol-

erance parameter. It can be observed that the expected

transmission loss increases as variance decreases. The

expected transmission loss achieved by a conservative

dispatch solution (k = 0.5) is 2.2045 MW/h whereas the

expected fuel cost with the maximum risk is equal to

1.4431 MW/h (k = 0), corresponding to the aggressive

dispatch solution.

It can be easily seen that different levels of risk imply

different dispatching solutions, and ultimately, different

transmission loss under the uncertain wind power environ-

ment. It is noted that different risk tolerance parameters cor-

respond to different dispatch solutions. To demonstrate the

different effectiveness in terms of the dispatch solutions

obtained in Table 3, Fig. 5 shows transmission loss corre-

sponding to different wind speed samples among the LHS-CD

simulation, in terms of the dispatch solutions A (k = 0.5),

B (k = 0.2) and C (k = 0).

It is clear that if solution C is adopted by power system

dispatchers, the expected transmission loss among the 400

wind samples is 1.4431 MW/h, much lower than that of

B and C. However, the deviation regarding to solution C is

much higher, which demonstrates that this solution cannot

adjust all the wind samples well. For instance, the trans-

mission loss regarding to many wind samples are even

Table 2 Results from GSOICLW, GSO and PSO in Case 1

Algorithms Best

result

Worst

result

Average

result

Standard

deviation

p-value

(h-value)

GSOICLW 1.3297 1.3701 1.3404 0.0081 N/A

GSO 1.3590 1.4020 1.3780 0.0121 1.99E-12

(1)

PSO 1.3592 1.7134 1.5142 0.0581 1.25E-14

(1)

PDIP 1.3602 3.0459 2.4269 0.5963 2.13E-19

(1)

Fig. 3 Convergence results of Case 1 obtained by GSOICLW and

GSO in 50 runs
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more than that of the solution B, and the transmission loss

corresponding to the 323th and 361th wind power samples

are even more than that of the solution A, although the

expected transmission loss of solution C is smaller than

B and much smaller than A.

On the other hand, although the deviation of solution

A is much smaller, which proves it can adjust all the

uncertain wind samples well, the average transmission loss

is too high, which is 2.2045 MW/h. It may not be advisable

for power system dispatchers to choose this solution for the

consideration of economic aspects. In essence, the final

dispatch solution is determined mainly by the dispatchers’

attitudes toward the trade-off between profit and risk. How

to make decision based on dispatchers’ attitudes is one of

our further research directions.

6 Conclusion

This paper presents the mean-variance (MV) model to

solve power system reactive power dispatch (RPD) prob-

lems with wind power integrated. The MV model considers

the profit and risk simultaneously under the uncertain wind

power (speed) environment. To describe this uncertain

environment, the Latin hypercube sampling with Cholesky

decomposition (LHS-CD) simulation method is used to

sample uncertain wind speeds. An improved optimization

algorithm, group search optimizer with intraspecific com-

petition and lévy walk (GSOICLW), is then used to opti-

mize the MV model by introducing the risk tolerance

parameter. To test the performance of GSOICLW and the

effectiveness of the MV model, simulation studies have

been carried out on the IEEE-30 bus system in two cases:

one is minimization of the transmission loss with predicted

wind speeds, and the other intends to minimize the trans-

mission loss with uncertain wind speeds. In the first case,

the obtained results have proved that GSOICLW can obtain

more accurate and robust optimal solution, in comparison

with GSO and PSO. In the second case, simulation results

have proved that the expected transmission loss and the

corresponding standard deviation vary in different direc-

tion with the change of different risk tolerance parameters,

which demonstrates the effectiveness and validity of the

proposed model.

Table 3 Mean and variance values with different risk tolerance

parameters

k 0.0 0.1 0.2 0.3 0.4 0.5

Mean 1.4431 1.4786 1.5645 1.7236 1.9421 2.2045

Variance 0.6013 0.4356 0.2693 0.2031 0.1539 0.0989

Fig. 4 Mean and variance values with different risk tolerance

parameters

Fig. 5 Transmission loss corresponding to 400 wind speed samples in terms of different dispatch solutions
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