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Abstract Universal Generating Function (UGF) tech-

niques have been applied to Multi-State System (MSS)

reliability analysis, such as long term reserve expansion

of power systems with high wind power penetration.

However, using simple steady-state distribution models

for wind power and large generating units in reliability

assessment can yield pessimistic appraisals. To more

accurately assess the power system reliability, UGF

techniques are extended to dynamic probabilistic simula-

tion analysis on two aspects of modelling improvement.

Firstly, a principal component analysis (PCA) combined

with a hierarchal clustering algorithm is used to achieve

the salient and time-varying patterns of wind power, then

a sequential UGF equivalent model of wind power output

is established by an apportioning method. Secondly, other

than the traditional two-state models, the conventional

generator UGF equivalent model is established as a four

discrete-state continuous-time Markov model by Lz-

transform. In the construction process of such a UGF

model, the state values are transformed into the integral

multiples of one common factor by choosing proper

common factors, thus effectively restraining the expo-

nential growth of its state number and alleviating the

explosion thereof. The method is suitable for reliability

assessment with dynamic probabilistic distributed random

variables. In addition, by acquiring the clustering infor-

mation of wind power, the system reliability indices, such

as fuel cost and CO2 emissions through different seasons

and on different workdays, are calculated. Finally, the

effectiveness of the method is verified by a modified

IEEE-RTS 79 system integrated with several wind farms

of historical hourly wind power data of Zhangbei wind

farm in North China.

Keywords Multi-state system, Reliability, Universal

Generating Function (UGF), Probabilistic production

simulation, Wind power

1 Introduction

Compared with Monte Carlo simulation techniques [1–

4] and analytical methods [5–8], an Universal Generating

Function (UGF) technique [9, 10] is the most promising

analysis tool for the probabilistic production simulation of

power systems, and has been widely used in the probabi-

listic production simulation analysis of power systems.

However, the main restriction of this powerful technique

is that, theoretically it can only deal with random variables,

and can only obtain the steady-state performance distri-

butions of wind power and conventional generators. By

using a basic UGF technique, it is impossible to analyze the

dynamic probability distribution modes of reliability sys-

tems, including component aging reliability models, and

non-stationary stochastic process of wind power under

diurnal and seasonal pattern features, etc. Besides, there

has been a number explosion in states of large systems. In

this paper, two aspects of UGF modelling improvement are

presented. On UGF modelling aspect of wind power, a

hierarchal clustering method for constructing the time-

variance UGF is proposed according to the non-stationary

stochastic characteristics of wind power. Firstly, principal
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component analysis (PCA) [11] combined with a hierarchal

clustering algorithm [12] is adopted to obtain the typical

time-sequential samples of wind power output. An appor-

tioning method [13] is used to establish the sequential UGF

of the wind power output.

Besides the wind power output, the outputs of conven-

tional generating units are not uniformly distributed too.

Reference [14] proposed a multi-state Markov model for a

coal-fired power generating unit, and a technique for the

estimation of transition intensities between the various

generating capacity levels of the unit based on the actual

measurements. The technique can be used to estimate the

dynamic distributions of generating capacity distribution.

Based on the technique, the UGF of the conventional

generating unit is formulated as a sequential UGF with an

Lz-transform, which can express the time-varying multi-

state Markov process as an UGF equivalent model [15].

The sequential UGF models for conventional generators

reflect the impact of time-varying factors in operation and

repair after failures. As a result, each component in power

systems is formulated as a sequential UGF model, which

will extend the UGF technique applicability to dynamic

probabilistic production simulation analysis.

Furthermore, state values expressed as a multiple of the

common factor, can avoid the exponential growth of the

state combination number, thus the problem of number

explosion of states is avoided in the proposed method.

Finally, the proposed approach presents the ability to

quantify the impact of the temporal correlation between

wind power and load on the assessment of system reli-

ability indices, fuel cost and CO2 emissions.

The rest of the paper is organized as follows. The UGF

technique is briefly summarized in Section 2. The reliability

modelling of wind farms, conventional generating units,

loads and system is presented with UGF technique in Sec-

tion 3. The procedure of power system reliability assess-

ment based on the dynamic probability distribution of the

conventional generator and different patterns of wind farm

or loads is proposed in Section 4. Case studies are provided

in Section 5, followed by the conclusions in Section 6.

2 UGF technique

UGF technique is to find MSS reliability measures by

using Ushakov’s Universal generating Operator (UGO) Xf

acting on the collection of the individual UGFs expression

of all the individual random variables [10].

2.1 UGF expression

The basis of the UGF technique is to express the random

variables as UGF expressions after z transform. Supposing

that there are two discrete random variables X1 and X2, the

corresponding probability function is:

PrfX1 ¼ x1ig ¼ p1i; 1� i� k1

PrfX2 ¼ x2ig ¼ p2i; 1� i� k2

(
ð1Þ

where x1i is the i-th state of X1, and the corresponding

probability is p1i; x2i is the i-th state of X2, and the

corresponding probability is p2i; k1 and k2 are the state

numbers of X1 and X2. After z transform, the corresponding

UGF becomes:

z x1f g ¼ ux1
ðzÞ ¼

Xk1

i¼1

p1iz
x1i ¼ p11zx11 þ p12zx12 þ � � � þ p1k1

zx1k1

z x2f g ¼ ux2
ðzÞ ¼

Xk2

j¼1

p2jz
x2j ¼ p21zx21 þ p22zx22 þ � � � þ p2k2

zx2k2

8>>>>><
>>>>>:

ð2Þ

where ux1
zð Þ and ux2

zð Þ are the UGFs of X1 and X2; z has no

substantial meaning.

The UGF expression provides a way to distinguish the

values of random variables from the corresponding prob-

ability with z transform. The z transform can be extended to

the UGO Xf for a function that concludes random

variables.

Supposing that Y is an arbitrary function of x1 and x2, so

Y = f(x1, x2). The z transform uY(z) for Y can be formally

obtained as a product of individual z transforms of x1 and

x2 by the UGO Xf:

z Yf g ¼ uYðzÞ ¼
XK

j¼1

qjz
yj ¼ Xf fu1ðzÞ; u2ðzÞg

¼
Xk1

j1¼1

Xk2

j2¼1

p1j1 p2j2 zf ðx1j
1
;x2j

2
Þ ð3Þ

where qj ¼ fq1; q2; . . .; qKg and yj ¼ fyj1; yj2; . . .; yjKg are

the resulting probability mass function and the i-th state of

random variable Y, respectively.

2.2 Sequential UGFs for time-varying process

For a function YðtÞ ¼ f ðx1ðtÞ; x2ðtÞ; . . .; xmðtÞÞ, which

concludes discrete-state continuous-time random variables

x1ðtÞ; x2ðtÞ; . . .; xmðtÞ, z transform is extended to Lz-trans-

form as [15]:

Lz YðtÞf g ¼ uYðz; t; p0Þ ¼
XK

j¼1

qjðtÞzyjðtÞ

¼ Xf fux1ðz; tÞ; ux2ðz; tÞ; . . .; uxmðz; tÞg

¼
Xkm

jm

. . .
Xk2

j2¼1

Xk1

j1¼1

p1j1ðtÞp2j2ðtÞ � � � pmjmðtÞzf ðx1j1
ðtÞ;x2j2

ðtÞ;...;xmjm ðtÞÞ

ð4Þ
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where p1iðtÞ; p2iðtÞ; . . .; pmiðtÞ are the probability of

x1ðtÞ; x2ðtÞ; . . .; xmðtÞ at period t for any given initial states

probability p0.

Straightforward computation of the probability mass

function (p.m.f.) of Y(t) using (4) is based on an enumer-

ative approach. This approach is extremely resource con-

suming. Fortunately, there are two effective ways to reduce

the computational burden: similar-terms collection and a

recursive procedure [10].

The UGFs inherit the essential property of regular

polynomials: they allow for collecting similar terms. If a

UGF representing the p.m.f. of a random variable X

contains the terms phzxh and pmzxm for which xh = xm, the

two terms can be replaced by a single term ðph þ pmÞzxm .

Due to the feature, a reasonable common capacity factor

Dc is chosen; and then, all of the state values, including

wind generators, conventional generators and loads, are

chosen as integer multiples of Dc; finally, the identical

states are merging. Therefore, the number of states is

prevented from increasing exponentially with the

improved UGF technique for the reliability assessment of

power systems.

3 Reliability modelling with UGF technique

3.1 Reliability model for wind farms

3.1.1 Feature extraction technology of wind power

and clustering algorithm

The transformation of wind speed to wind power

involves a cubic relationship, if there is an error in the

construction of wind speed model, the error in the con-

struction of wind power model will be three times greater

[16]. And then the wind power output model of wind farms

is established by using wind power data. By a principal

component feature extraction technology [11] and a hier-

archical clustering algorithm [12], it shows that the repre-

sentative samples of wind power from historical time

series, and then the UGF equivalent of wind farms is

expressed as time variant according to the patterns after

clustering.

According to [12], a day can be taken as a clustering

time unit. Because of inhomogeneities in the measurement

data, this hierarchical clustering algorithm combined with

PCA feature extraction technology is applied to achieving

the patterns of wind power. PCA can be used to identify the

patterns from the data, and to express the data in a way that

highlights their similarities and differences. PCA is a useful

tool for dealing with large data sets, in which extracting the

features becomes an important step.

PCA method is suitable for feature extraction of wind

power output. Supposing that there are p variables in the time

series of wind power: x1; x2; . . .; xp. A p-dimensional random

vector x constituted by p variables as x ¼ ðx1; x2; . . .; xpÞ.
Supposing x can be linearizedly transformed as follows:

y1 ¼ l11x1 þ l12x2 þ l1pxp

y2 ¼ l21x1 þ l22x2 þ l2pxp

..

.

yp ¼ lp1x1 þ lp2x2 þ lppxp

8>>><
>>>:

ð5Þ

where y1; y2; . . .; yp are linear combinations of x1;x2; . . .; xp.

In (5), every vector li ¼ ðli1; li2; . . .; lipÞ is a unit vector.

And y1 has the largest variance of linear combinations of

x1; x2; . . .; xp; y2 exhibits the largest variance of linear

combinations unrelated to y1; yp has the largest variance

of linear combinations unrelated to y1; y2; . . .; yp�1. So

y1; y2; . . .; yp are called the first, second, . . ., p-th main

components of the original variables.

According to the significances of the main components,

the weaker component (i.e., those with smaller variance) can

be removed. Supposing that we obtain q(q B p) main com-

ponents, i.e., q orthogonal variables, so the original wind

power output is mapped into a much smaller space, thus

resulting in a concomitant dimension reduction. The value of

main component q is determined by cumulative contribution

rate. If the cumulative contribution rate exceeds 85%, the

information in the original variables can be sufficiently

reflected, and the corresponding q refers to the main com-

ponents extracted in q. Firstly, the wind power data are

clustering after feature extraction and each object forms a

separate group. Secondly, similar groups are merging until

only one group is left or the termination conditions are met.

The similarity, which is the basis of similar measurement

clustering, is performed by using the Euclidean distance:

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXq

k¼1

ðPwiðkÞ � PwjðkÞÞ2

s
ð6Þ

where Pwi and Pwj are wind power vectors containing

q main components.

Let D be the number of days studied, and Rw be the number

of wind power output patterns, denoted by 1; 2; . . .;

rw; . . .;Rw. The number of wind power outputs of pattern rw is

Nrw, so the probability of pattern rw is arw
¼ Nrw

=D:

The Rw wind power patterns is obtained using a hier-

archical clustering algorithm combined with principal

component-feature extraction technology with probability

arw
, denoted by ðrw; arw

Þðrw 2 f1; 2; . . .;RwgÞ.

3.1.2 UGF equivalent of wind farm

Each pattern of wind power is partitioned into H sub-

periods, and an hourly resolution (H = 24) is adopted.
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Modelling UGF for wind power in different sub-periods

with apportioning method [13], supposing that all wind

power output curves of wind power pattern rw are shown in

Fig. 1, and the number of curves is Nrw
, so each interval has

Nrw
wind power values. We can obtain state values and the

corresponding probabilities of each interval using the

apportioning method. Supposing that the i-th wind farm has

kw states in pattern rw in sub-period t, the UGF becomes:

uw
i ðz; tÞ ¼

Xkw

jw¼1

pw
i;jw

ðtÞzWPi;jw ðtÞ ð7Þ

where WPi;jw
ðtÞ and pw

i;jw
ðtÞ are wind power output and the

corresponding probability of the i-th wind farm in state jw,

respectively.

From (7), it can be seen that the UGF equation of wind

power is expressed as timing variations form, so the

improved UGF can reflect the dynamic probabilistic dis-

tribution of wind power.

3.2 Reliability model for conventional generation units

A reliability model for the traditional conventional

generators is established according to historical statistical

data, but in actual systems, the failure rate is time-varying.

The reliability model of the conventional generation unit is

presented as a discrete-state continuous-time Markov pro-

cess in this paper. Supposing that the states of the i-th

conventional generator can be represented as the following

polynomial [14]:

Pm
i ðtÞ ¼ hpm

i;jm
;Am

i ; pm
0 i ð8Þ

where pm
i;jm

is the probability of a conventional generator i

in state jm, Am
i is the transition probability intensities

matrix, and p0
m is the initial state probability vector of the

conventional generator i.

Lz-transform of a discrete-state continuous-time Markov

process of (8) is a UGF defined as [15]:

Lz Pm
i tð Þ

� �
¼ um

i ðz; t; p0Þ ¼
Xkm

jm¼1

pm
i;jm

tð ÞzPi;jm ðtÞ ð9Þ

where Pi;jmðtÞ and pm
i;jm

ðtÞ are the available power of

conventional generator i in state jm and the corresponding

probability at sub-period t for given probability distribution

of initial states p0. The total state number of the generator i

is km. Four-state Markov model is used for the units.

Considering that a unit has four states 1, 2, 3, and 4 with

corresponding performance level P1 = 0, P4 = Pnom and

the values of P2, P3 can be obtained by the apportioning

method [13], pjmðtÞ is a probability and the process is in

state jm at time instant t C 0. The transition intensity matrix

Am
mi

¼ ajmqm

� �
ð jm; qm ¼ 1; 2; . . .; 4Þ can be obtained as the

following polynomial [14]:

TP
jm
¼

Xkjm

m¼1

T
ðmÞ
jm

ð10Þ

ajmqm
¼ kjmqm

TP
jm

; jm 6¼ qm ð11Þ

ajmjm ¼ �
XN

qm¼1
qm 6¼jm

ajmqm
þ 1 ð12Þ

where kjm is the accumulated number of the unit residence

in state jm during observation period T, T
ðmÞ
jm

is the time of

the m-th unit residence in state jm during observation period

T, TP
jm

is the accumulated time of the system residence in

each state jm during observation period T, kjmqm
is the

accumulated number of the unit transition from state jm to

state qm during observation period T.

With the differential equations in [14], state-probabili-

ties pjmðtÞ can be obtained under given initial conditions.

Therefore, dynamic reliability measures for generating

units can also be obtained.

3.3 Reliability model for load model

The historical data of load, such as wind power data, are

handled by using a hierarchical clustering algorithm and

principal component feature extraction technology. The

UGF model of load i in pattern rL at sub-period t is

described as follows:

uL
i ðz; tÞ ¼

XkL

j
L
¼1

pL
i;jL
ðtÞzDi;jL

ðtÞ ð13Þ

where Di;j
L
ðtÞ and pL

i;j
L
ðtÞ are the load capacity and prob-

ability, respectively, kL is the total state number of loads.

3.4 System UGF considering transmission network

System UGF combines UGFs of all power system

components, including UGF of transmission network
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Fig. 1 Four-state wind power in pattern rw
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which is formulated as system states. For a N-bus system

with kn system states, the system UGF can be obtained by

the optimal power flow operator XUOPF:

usðz; tÞ ¼ XUOPFfuL
i ðz; tÞ; uw

i ðz; tÞ; um
i ðz; tÞg

¼
XN

i¼1

XkL

j
L
¼1

Xkw

jw¼1

Xkm

jm¼1

Xkn

jn¼1

pL
i;j

L
ðtÞ � pw

i;jw
ðtÞ

� pm
i;jm

ðtÞ � pT
jn
ðtÞ

� zUOPF Di;jL
ðtÞ;WPi;jw ðtÞ;Pi;jm ðtÞf g

¼
XKs

js¼1

ps
js
ðtÞzLCjs ðtÞ ð14Þ

where ps
js
ðtÞ and LCjsðtÞ are the probability and load cur-

tailment of system state js, respectively, pT
jn
ðtÞ is the

probability for the transmission network state jn, Ks is the

total state number including all state combination.

4 Probabilistic production simulation

On the basis of the probabilistic production simulation

method [17], and the improved UGF techniques, considering

the minimum outage time constraints and peak-shaving con-

straints of generator, a UGF model can be established. During

the probabilistic production simulation of power systems,

wind power, thermal generator and peak-shaving units are

dispatched. In UGF, conventional units are divided into sev-

eral levels of output, which have different generating costs per

MWh according to base load (minimum output part) and peak

load (adjustable output part) for load dispatching.

After simulation, we can obtain the reliability index loss of

load probability LLOLP; rðtÞ and Expected Energy Not Sup-

plied EEENS; rðtÞ in each composite pattern rs at sub-period t:

LLOLP; rs
ðtÞ ¼ 1 � ps

js LCjs ðtÞ¼0j ðtÞ ð15Þ

EEENS;rs
ðtÞ ¼

XKs

js¼1

ps
js
ðtÞLCjsðtÞ ð16Þ

The MSS system reliability indices at sub-period t can be

calculated as

LLOLPðtÞ ¼
XRs

si¼1

asi
LLOLP;si

ðtÞ

EEENSðtÞ ¼
XRs

si¼1

asi
EEENS;si

ðtÞ

Rs ¼
YN

i¼1

YRL

L¼1

YRW

w¼1

ri;Lri;w

asi
¼

YN

i¼1

ai;Lai;w

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð17Þ

where Rs, RL, RW are total numbers of the combination of

system pattern, the load pattern and the wind farm output

pattern, respectively; asi
; ai;L; ai;w are the probabilities of

system pattern rsi
, the pattern of the i-th load ri;L, and the

wind power output pattern of the i-th wind farm ri;w,

respectively.

We can obtain reliability indices, such as Loss of Load

Expectation LLOLE and Expected Energy Not Supplied

EEENS over different periods through accumulation based

on the dynamic probability distribution of the conventional

generators and different patterns of wind farm or loads:

LLOLE ¼
XT

t¼1

LLOLPðtÞT 0

EEENS ¼
XT

t¼1

EEENSðtÞ

8>>>><
>>>>:

ð18Þ

where T0 is the number of hours for each sub-period, and

T0 = 1 in this paper, T is the total number of sub-periods

for reliability assessment.

5 Case study

The IEEE-RTS has been modified to illustrate the pro-

posed models and techniques: original data can be found

elsewhere [18]. Table 1 shows the minimum output of

different types of units.

The IEEE-RTS load is a scaled-down version of load

shape from the power grid of Shandong province with a

2,850 MW peak load. The load data of the test system are

constructed by using the load data of power grid of

Shandong province in 2009 with a 39,025 MW peak load

and the scaling factor of 2,850/39,025. The study period is

one year. We make use of the several years’ historical

hourly wind speed data of Zhangbei wind farm in North

China with a total wind capacity of 680 MW.

5.1 Clustering of wind power and UGF model

To balance efficiency and accuracy, choosing a suitable

number of clusters is important. Guidelines on choosing a

Table 1 Minimum output of conventional units

Generation

type

Minimum output

(MW)

Generation

type

Minimum output

(MW)

U12 0.0 U155 86.8

U20 0.0 U197 0.0

U50 0.0 U350 192.5

U76 41.0 U400 400.0

U100 0.0
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suitable number of clusters are obtained based on statistical

data in this case. Relative errors and growth efficiency are

calculated over different seasons and the results are shown

in Fig. 2.

Figure 2 indicates that the relationship between the

number of clusters and the relative error is non-linear. The

relationship between the number of clusters and the growth

efficiency is non-linear. The expected number of the

clusters would be found according to the inflexion value in

the curve. Considering the relative error and growth effi-

ciency, the number of clusters is chosen between 2% and

5% of the number of total research days, thus the number

of clusters is 48 per annum.

Given space limitations, only the main modes with larger

probabilities are listed. The centroid of each cluster and its

corresponding probability are shown in Table 2 and Fig. 3.

As can be seen, the fluctuations and the corresponding

probability of different clusters varied, the method can

readily extract the salient and time-varying patterns of

wind generation. Moreover, the characteristics varied sea-

sonally: the low average power pattern has a larger prob-

ability of 49% in Summer, however, the high average

power patterns has the larger probabilities of 42.22% and

38.89%, respectively in Winter and Spring, showing that

the proposed method can extract the seasonal characteris-

tics of wind power output.

Four to six states can reflect the characteristics of wind

speed and load [19], so we can choose four-state models for

wind farms in each sub-period by an apportioning method.

Multi-state models of wind power output are only shown in

sub-periods 4 to 8, and 16 to 20 of the pattern 2 in Summer

in Table 3 due to space limitations.

As can be seen, the value and the probability of wind

power output in different sub-periods varied, hence, the
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Fig. 3 Centroids of wind power patterns in a year

Table 2 Probability of each pattern

Season Probability (%) Pattern coverage

rate (%)
Pattern

1

Pattern

2

Pattern

3

Pattern

4

Spring 27.78 8.89 38.89 8.89 84.45

Summer 49.00 22.22 17.78 – 89.00

Autumn 33.33 30.00 16.67 – 80.00

Winter 26.67 42.22 21.11 – 90.00
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traditional UGF method is crude. The time varying UGF

can reflect the sequential volatility of wind power output.

The common capacity factor Dc = 10 MW, all of the state

values are expressed as integer multiples of Dc, and the

number of states combination of MSS are prevented from

growing exponentially.

5.2 Time dependent state probability of the

conventional generator

A typical real coal-fired generating unit U350 is observed

over 5 years [14]. The observed numbers kjmqm
of the unit

transition from state jm to state qm are presented in Table 4.

The generator expectation output Pjm and residence accu-

mulated time TP
jm

for each state jm are also shown.

By using (10) to (12), the following matrix of point

estimations of transition intensities is computed:

ajmqm

�� �� ¼
0:9067 0:0800 0:0133 0

0:0294 0:6177 0:3235 0:0294

0 0:0288 0:6154 0:3558

0:0002 0:0001 0:00070 0:999

��������

��������
ð19Þ

Each ajmqm
in (19) is represented by such units as 1/h.

Therefore, we can obtain the time dependent state

probability of the typical conventional generator U350 with

Lz-transform. The state probabilities are changed with time

in initial state, as shown in Fig. 4.

From these figures, it is observed that the state proba-

bility of U350 is time-varying, and the difference is great

enough, therefore the unit steady-state (long-term) reli-

ability cannot characterize the transient (short-term)

reliability.

5.3 Probabilistic production simulation: seasonal

variations

We divided the wind power data into four classes

according to season, and then acquired the wind power

pattern in each season. The results are shown in Table 5.

Table 3 Wind power (WP) and probability (p) in UGF model

Period WP

(MW)

WP/

Dc

p Period WP

(MW)

WP/

Dc

p

4 120 12 0.111 16 80 8 0.296

264 26 0.148 211 21 0.222

409 41 0.296 342 34 0.296

553 55 0.444 472 47 0.185

5 181 18 0.111 17 57 6 0.296

302 30 0.148 168 17 0.296

422 42 0.296 279 28 0.148

542 54 0.444 390 39 0.259

6 285 28 0.222 18 61 6 0.370

372 37 0.148 173 17 0.259

458 46 0.259 285 29 0.185

545 55 0.370 397 40 0.185

7 269 27 0.333 19 69 7 0.407

360 36 0.074 176 18 0.296

451 45 0.296 283 28 0.222

543 54 0.259 390 39 0.074

8 225 23 0.185 20 60 6 0.518

339 34 0.222 179 18 0.296

454 45 0.333 298 30 0.111

568 57 0.259 417 42 0.074

Table 4 Observed numbers kjmqm
of the unit transiting from state jm to

state qm, generating capacity Pjm and residence accumulated time

TP
jm

in state jm

State

number

1 2 3 4 Generating

capacity Pjm

(MW)

Accumulated

time TP
jm

(h)

1 – 6 1 0 0 75

2 1 – 11 1 117 34

3 0 3 – 37 233 104

4 6 4 28 – 350 40,711

Table 5 Simulation results: seasonal variations

Season LLOLE(h/

a)

EEENS(MWh) Fuel cost

(1 9 107USD)

CO2

emissions

(1 9 105 ton)

Spring 0.28 2.5489 1.3767 3.9966

Summer 1.86 199.65 2.9598 5.1262

Autumn 0.55 35.959 2.1897 4.8230

Winter 1.14 109.64 2.4521 4.9956

Year 3.83 347.7979 8.9783 18.9414
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Fig. 4 Time dependent state probability of U350
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We can see that the reliability indices in different sea-

sons varied. The reliability index in spring is the lowest,

because the probability of high wind power patterns is

larger and the load is lower. The reliability index in sum-

mer is the largest, because the probability of low wind

power patterns is larger and the load is higher. In addition,

fuel cost and CO2 emissions in summer are larger, because

the low wind power patterns widen the peaks and valleys of

the equivalent system load, and need more peaking units.

The method can reflect the correlation of wind power and

load: this correlation is seasonal.

5.4 Probabilistic production simulation considering

wind power and load pattern

Take summer as an example: the time-varying wind

power pattern is shown in Fig. 3, and then the UGF model

for time-varying wind power output is established. The

workday pattern and weekday pattern of load according to

the weekly load characteristics are acquired, and the

probabilistic production simulation is done and the simu-

lation results, such as the reliability index, fuel costs, and

CO2 emissions are shown in Table 6.

In the same load pattern, the reliability index is different

for different wind power patterns. Furthermore, in the same

wind power pattern, the reliability index, fuel cost, and

CO2 emissions vary with different load patterns due to the

differences in the correction between wind power and load.

In a further illustration, the impact of wind power on power

systems is not only related to the wind power pattern itself,

but also the correction between the wind power and the

load.

6 Conclusions

An improved universal generating function based on

probabilistic production simulation with wind power pen-

etration is proposed. Meanwhile, by clustering the wind

power data from the Zhangbei wind power farm in North of

China, the IEEE-RTS is modified to test the probabilistic

production simulation. The conclusions are summarised as

follows:

1) The salient, time-varying pattern of wind power has

been extracted by feature extraction and cluster

technology.

2) A sequential UGF model is established for conven-

tional generators with discrete-states continuous-time

Markov process. By using the model, reliability

indices can be more accuracy by considering specific

load and wind farm output patterns of system.

3) The improved UGF method can effectively calculate

the system reliability over different time and specific

wind power output patterns.

4) The proposed approach explicitly quantifies the impact

of the temporal correlation between wind power and

system load on reliability indices, fuel cost, and CO2

emissions.

Acknowledgements This work was supported by the National High

Technology Research and Development Program of China (863

Program) (No. 2011AA05A101), and National Natural Science

Foundation of China (No. 51177092).

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.

References

[1] Billinton R, Chen H, Ghajar R (1996) A sequential simulation

technique for adequacy evaluation of generating systems includ-

ing wind energy. IEEE Trans Energy Conver 11(4):728–734

[2] Billinton R, Bai G (2004) Generating capacity adequacy asso-

ciated with wind energy. IEEE Trans Energy Conver 19(3):

641–646
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