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Abstract
Effective tourist demand forecasting is crucial for company operations and destina-
tion management. Furthermore, tourists may plan better personalized multi-attrac-
tion itineraries based on demand forecasting to avoid travel peaks and improve the 
enjoyment of their vacation. This study developed a unique deep learning model 
called the convolution block attention module (CBAM) that is built on convolutional 
blocks and attention modules to estimate tourism demand precisely. Then, the pas-
senger flow grid map was extracted from mobile phone signaling data. To forecast 
the subsequent period of the passenger flow grid map, the CBAM model uses the 
multi-channel spatial-temporal grid graph that is built by multiple successive pas-
senger flow grid maps. Finally, the forecasted passenger flow grid map was used to 
derive the tourist demand for multi-attractions for the next period. The analysis of 
mobile phone signaling data from Beijing and Xiamen using the proposed model 
reveals that its mean absolute percentage error (MAPE) is 8.11%, which is lower 
than other benchmark deep learning models.

Keywords Tourism demand forecasting · Spatial-temporal grids · Convolution 
block · Attention module

1 Introduction

With the improvement of people’s living standards and the rapid development of 
transportation, tourism will also usher in rapid development. Meanwhile, in the 
past few decades, tourism has become one of the most important promoter of 
global economic growth (Hu et al. 2021). As an important prerequisite for tourism-
related decision-making, tourism forecasting has gradually attracted the attention 
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of scholars (Palmer et al. 2006; Wu et al. 2019). The application topics of tourism 
forecasting are generally divided into three categories: event forecasting, future 
trends/market conditions forecasting and tourism demand forecasting (Lin and Song 
2015). The aim of event forecasting is to predict the occurrence of specific long-
term or short-term events or trends and to estimate the probability of these events 
occurring within a specific time period (Ng 1984). Researches on forecasting future 
trends/market conditions focus on predicting future trends/patterns and assessing the 
potential impact of certain events or future changes on tourism, such as changes in 
social values and changes in the structure of tourism (Kaynak and Marandu 2006). 
Literatures on forecasting tourism demand mainly focus on the arrival of tourists 
(Sun et al. 2019; Volchek et al. 2019), tourist flow in destination (Huang et al. 2017; 
Li et  al. 2018; Park et  al. 2017), hotel accommodation demand (Pan et  al. 2012; 
Yang et al. 2014), tourists’ characteristics (Alén et al. 2017; Hernández-López and 
Cáceres-Hernández 2007; Pomfret and Bramwell 2016) and so on. With the rapid 
development of international tourism in developed and developing countries, tour-
ism demand forecasting has not only become an important task for national and 
local planners and decision makers, but also aroused great interest in finding appro-
priate tourism demand modeling techniques to improve the forecasting accuracy 
(Song et  al. 2003). Therefore, tourism demand forecasting is considered to be the 
most popular application topic in these three categories.

Given the sensitivity and uncertainty of tourism to many factors, accurate tour-
ism demand forecasting has become particularly important. For example, due to 
the impact of the novel coronavirus pneumonia, the number of domestic tourists in 
China in 2020 was 2.879 billion, a decrease of 52.1% from 2019. China’s Ministry 
of Culture and Tourism is trying to revive the tourism industry with various policies. 
Therefore, with accurate forecasts of future demand, government agencies can make 
effective decisions on issues such as tourism policy design and implementation, 
transportation facilities and infrastructure construction. Managers and industry par-
ticipants need forecasts to make tactical and operational decisions to better allocate 
resources, such as pricing adjustments, financial investments, staffing and schedul-
ing (Fan et al. 2021; Li et al. 2022). Therefore, developing an effective demand fore-
casting model is one of the important tasks of tourism research (Bi et al. 2021; Li 
et al. 2022; Shahrabi et al. 2013).

Various models are used to forecast nonlinear, non-stationary, and complex tour-
ism demand, including traditional time series, econometric models, artificial intel-
ligence, and hybrid models (Li et  al. 2022). Time series models are simple and 
effective, and consider the lag of search engine data as explanatory variables, among 
which AR, ARMA and ARIMA are the most commonly used time series models (Li 
et al. 2021). Increasingly advanced econometric models have been incorporated into 
forecasting tasks to further improve accuracy, including ADL, TVP, DFM, FAAR, 
Bayesian-FAVAR, and GM (Li et al. 2021). With the development of computer per-
formance, artificial intelligence models including artificial neural networks and sup-
port vector regression models are gradually applied to demand forecasting, which 
are also called “black boxes” in forecasting (Hu and Song 2019; Li et al. 2018, 2019; 
Zhang et al. 2017a). Although many tourism demand prediction models have been 
proposed, most of them can only establish a one-dimensional mapping relationship 
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between each observation within the lag order and the observation to be predicted 
(Bi et  al. 2021). Therefore, there are some important features embedded in the 
tourism demand data that cannot be fully utilized, which may lead to the loss of 
some important information in the forecasting process (Bi et  al. 2021). As poten-
tial exploratory features, spatial features have attracted increasing research interest 
in recent years (Day et al. 2013; Goh and Law 2003; Li et al. 2022; Yang et al. 2015, 
2022). Spatial features mainly include spatial dependence and spatial heterogeneity, 
which may be triggered by factors such as multi-destination tourism, limited tour-
ism resource sharing, regional cooperation and competition. Due to spatial features, 
nearby tourism destinations may share (different) similar tourism demand patterns. 
Therefore, the combination of the spatial effect can improve the prediction accuracy 
(Chhetri et al. 2013; Fan et al. 2022; Li et al. 2022; Yang and Zhang 2019).

To the authors’ knowledge, only seven studies have considered spatial informa-
tion for tourism demand forecasting. Five of these studies developed spatiotemporal 
autoregressive models by including spatial lag terms in time series models or econo-
metric models (Jiao et al. 2020; Yang and Zhang 2019). Although their models have 
achieved good forecasting results, these traditional models have limited nonlinear 
processing capabilities and hardly avoid error accumulation (Jiao et al. 2021; Long 
et al. 2018). To overcome the shortcomings of the above studies, Zheng et al. (2021) 
improved a long short-term memory (LSTM) model to extract temporal dependen-
cies and spatial effects to accurately predict the hourly demand of some attractions 
in Beijing. Li et  al. (2022) proposed a new spatial-temporal fused graph convolu-
tional network (ST-FGCN) model. The model generates forecasts based on the spa-
tial effects extracted by the graph convolutional networks and the temporal depend-
encies captured through long short-term memory.

There are still certain limitations, despite the fact that their works improve the 
relevant literature by providing deep learning-based spatiotemporal models. First, 
LSTM is inherently built to capture temporal dependencies. It is difficult to extract 
deep and hidden spatial information using the LSTM model even if the input vari-
ables have been weighted by a given spatial relationship (Li et al. 2022). Secondly, 
the spatial Euclidean distance between attractions cannot fully reflect the real spatial 
effects. On the one hand, within a region, two attractions with the similar contextual 
environment and close cooperation in business but far apart can also show a strong 
spatial correlation. On the other hand, the tourism demand of an attraction is not 
only spatially correlated with other attractions, but also spatially correlated with sur-
rounding areas, such as hotels and restaurants. Therefore, more spatial information 
should be used to better characterize the spatial effects.

This study proposes a new convolutional block attention module (CBAM) model 
to forecast the tourism demand of multi-attractions based on the spatial-temporal 
grid passenger flow map. First, divides the research city into fixed-size grids, and 
extract each grid passenger flow based on mobile phone signaling data. Second, 
each grid map can be regarded as a channel graph, and the passenger flow between 
adjacent grids will have a certain spatial relationship, the grid map of several con-
secutive periods are stacked together to form a multi-channel spatial-temporal grid 
graph. The passenger flow between adjacent channels will have a certain temporal 
relationship, and the multi-channel spatial-temporal grid graph is used as the input 
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of the deep learning models. Third, deep learning models such as CNN, ConvL-
STM, ConvGRU, and CBAM are used to extract the spatial-temporal features and 
optimize the forecasting models. Two experimental studies demonstrate the effec-
tiveness of the deep learning models. One is to forecast multi-attractions tourism 
demand in Beijing and the other is in Xiamen. Since Beijing and Xiamen are famous 
tourist cities and attract a large number of tourists every year. Beijing is the capital 
of China and has more world heritage sites than any other city in the world. There 
are more than 200 attractions open to the public, among which there are many very 
famous sites, such as the Forbidden City, Temple of Heaven Park, Beihai Park, Sum-
mer Palace and Old Summer Palace. In addition, it attracts a large number of tour-
ists, including a total of 260 million visits in 2021. Xiamen is affiliated to Fujian 
Province and an important tourist city on the southeast coast. It has many famous 
tourist attractions such as Gulangyu Island, Zengcuoan, Xiamen University, Nan-
putuo Temple, Hulishan Fort, etc., attracting hundreds of millions of domestic and 
foreign tourists every year. The results suggest that CBAM shows high forecasting 
accuracy and outperforms all benchmark models.

This study provides some contributions to the tourism forecasting literature.

• First, a simple yet effective attention module based on the convolutional block 
(CBAM) is proposed which can be widely applied to the real-time forecast of 
tourism demand.

• Second, the performance of the proposed model is verified that it is greatly supe-
rior to other multiple benchmarks (CNN, hybrid CNN, ConvLSTM, ConvGRU) 
on high precision and calculation speed.

• Third, the passenger flow map data of Beijing and Xiamen in different periods is 
used to validate the proposed model. The high prediction accuracy and fast cal-
culation speed illustrates the universality and versatility of the model.

2  Literature review

2.1  Tourism demand forecasting models

Developing an accurate tourism demand forecasting model is a critical issue. Many 
models have been proposed to pursue better forecasting results (Bi et  al. 2021; 
Gunter and Zekan 2021; Li et al. 2022; Song et al. 2019). As mentioned above, they 
can be roughly divided into three categories: time series models, econometric mod-
els, and artificial intelligence models (Bi et al. 2021; Song and Li 2008).

Time series models have been the traditional and most widely used to forecast 
tourism demand (Chan et al. 2005; Shahrabi et al. 2013; Yang et al. 2015, 2022). 
These models may recognize patterns, seasonality, and cycles using data from regu-
larly spaced observations. They are often straightforward and efficient (Yang and 
Zhang 2019). They mainly include the autoregressive moving average model, expo-
nential smoothing model, and their improved versions (Fildes et al. 2011; Goh and 
Law 2003). These models forecasted future tourism demand based on historical 
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trends and patterns, and were widely used as benchmark models in related research 
(Long et al. 2018).

Unlike time series models, econometric models have been used to capture the 
causal relationship between the number of tourists and various explanatory factors, 
such as income, tourism price, and some other variables that potentially influence 
tourists’ travel motivation (Gunter and Zekan 2021). Popular econometric models 
include the vector autoregressive model (Gunter and Önder 2016), the error correc-
tion model (Moore 2010), the autoregressive distributed lag model (Wan and Song 
2018), and the time varying parameter model (Song et al. 2011). Many researchers 
have compared time-series and econometric models and found that the forecasting 
results can vary contextually (Peng et al. 2014).

These traditional models are subject to the stability of historical patterns and eco-
nomic structures in practical applications, making it difficult to deal with complex 
and nonlinear tourism demand data (Zhang et al. 2017a, 2020a, c). For better non-
linear modelling, AI-based models have attracted increasing focus and have shown 
impressive forecasting accuracy (Li et  al. 2022). AI models do not need to make 
assumptions about the stationarity and distribution of data, and have dynamic adapt-
ability and powerful capabilities for nonlinear time series. Multiple AI models have 
been developed for tourism demand forecasting (Li et al. 2018). Given the advan-
tages of these models, this study will focus on this type of model.

According to the different “depth” of the artificial intelligence tourism demand 
forecasting models, they can be divided into two categories: shallow learning mod-
els and deep learning models (Bi et al. 2020, 2021). The former adopts an intelligent 
algorithm with a simple structure and few hidden layers, but usually requires manual 
construction of data features (Bi et al. 2021). Due to the good nonlinear fitting abil-
ity of shallow learning models, they have been widely used in tourism demand fore-
casting since the 1990s. They include radial basis function (Claveria et  al. 2015), 
multi-layer perceptron, and support vector machines (Li et al. 2020).

Deep learning models have more complex structures and more hidden layers than 
shallow learning models (Kulshrestha et  al. 2020; Schmidhuber 2015). They are 
end-to-end models that automatically extract features from dataset. These models 
have been successfully applied in many fields including image recognition, natu-
ral language processing, and more recently in tourism demand forecasting (Bi et al. 
2020; Law et al. 2019).

There are two main types of deep learning models: convolutional neural net-
works (CNN) and recurrent neural networks (Schmidhuber 2015). The deep learn-
ing models used in tourism demand forecasting are almost recurrent neural net-
works, of which the most commonly used is the LSTM network (Bi et al. 2021; Law 
et al. 2019) generated forecasts for tourism arrivals in Macau based on the LSTM 
framework and found that the LSTM model outperformed various benchmark mod-
els, such as support vector regression and artificial neural networks. Similarly, Bi 
et al. (2020), Zhang et al. (2020a) incorporated many explanatory variables into the 
LSTM model, thereby strengthening the forecasting performance of their models. In 
addition to the single LSTM model, some scholars have extended the LSTM model 
to avoid their inherent drawbacks, such as model overfitting (Zhang et al. 2020b), 
numerous parameters, and slow convergence. For example, Kulshrestha et  al. 
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(2020) used a Bayesian bidirectional LSTM to forecast tourism demand in Singa-
pore from several major source countries. Laaroussi et al. (2020) adopted a simpli-
fied LSTM model, the Gated Recurrent Unit (GRU), to predict tourist arrivals in 
Morocco. Dan Xiong (2020) proposed a novel LSTM-based model to predict node 
trajectories in crowd scenarios simultaneously. Zheng et al. (2021) developed a cor-
related time series oriented Long Short-Term Memory with attention mechanism, to 
forecast tourism demand for multiple tourist attractions on an hourly. Zhang et al. 
(2020a, 2020b, 2020c) proposed a novel group-pooling-based deep learning model 
(GP-DLM) to improve tourism demand forecasting accuracy. They defined a novel 
dynamic time warping (DTW) clustering quantitative approach and revealed cross-
region factors that influence travel demands of the studied regions. Shaolong Sun 
et  al. (2022) proposed an improved machine learning paradigm, introducing valu-
able additional information into the training phase, which can significantly enhance 
the multi-step ahead forecasting performance from the view of both error calcula-
tion and statistical tests.

On the contrary, few tourism demand forecasting models are based on CNN. 
This may be because most of the tourism demand data is one-dimensional time 
series data, and CNNs cannot fully extract data features from one-dimensional 
data, which means that the advantages of CNNs cannot be fully utilized. However, 
in many fields, especially in image processing and computer vision, CNNs perform 
better than recurrent neural networks (Radenovic et al. 2019; Zhang et al. 2017b). 
For example, Bi et al. (2021) proposed a model based on deep learning with time 
series imaging. In this research, they transformed the time series data into images 
and then used the CNN model to extract features. Li et al. (2022) introduced a novel 
deep learning model based on a graph convolution network and LSTM for tourism 
demand forecasting. They applied the graph convolution network to characterize the 
spatial correlations among tourism destinations and LSTM to capture the temporal 
dependency of each destination itself.

From the above relevant literature summary, it is found that econometric models 
are still dominant, and artificial intelligence models are becoming more and more 
popular. Time series models, such as ARMA, are considered benchmark models in 
forecasting. Deep learning methods are used to improve forecasting accuracy, espe-
cially when using massive spatiotemporal data with nonlinear information (Wu et al. 
2019).

2.2  Tourism demand forecasting with big data

With the increasing penetration of modern information and communication tech-
nologies, there is a large amount of data available to predict customer behavior, 
and viewed as a new driving factor of tourism demand forecasting research (Yang 
et al. 2022). Considering the differences in big data types, the research on tourism 
demand forecasting using big data is divided into three types according to their data 
sources: search engine data, web traffic data, and social media data.

Search engine data refers to the daily, weekly, and monthly real-time search 
queries entered by users in search engines, such as Google, Baidu, etc. These data 
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provide new data sources for tourism forecasting, such as tourist destination arrival 
prediction (Li et  al. 2017, 2018), scenic spots (Li et  al. 2019), and hotels (Zhang 
et al. 2019). This type of data usually uses keyword searches to select search engine 
data. And the review articles mainly rely on domain knowledge related to tourism 
demand and search query indexes under specific categories. A previous study by 
Hyunyoung Choi (2011) used a sub-category of Hong Kong holiday destinations for 
prediction in Google Trends. Subsequent research refined and expanded the num-
ber of keywords to reflect the comprehensive aspects of tourists’ activities. Li et al. 
(2017) used 46 keywords to collect Baidu search data to predict tourism demand in 
Beijing, China. Law et al. (2019) used 211 Google and 45 Baidu keywords to obtain 
search engine data to predict Macau’s tourism demand. At the same time, consider-
ing the different frequencies and period of data obtained, most articles use monthly 
search query data for tourism demand modelling and forecasting, and only a few 
articles directly use weekly search engine data for forecasting, including Pan et al. 
(2012) and Bangwayo-Skeete and Skeete (2015). Therefore, scholars are trying to 
obtain high-frequency search engine data to improve the efficiency of modeling and 
forecasting. Mingming Hu et  al. (2022) presented mixed data sampling (MIDAS) 
models to forecast international tourist arrivals to Hong Kong from seven English-
speaking countries based on tourists’ online review data.

Web traffic data usually represents the raw number of visits to a website, indicates 
the potential interest of tourists, and can be considered as an explanatory variable 
for predicting the arrival of tourists. Yang et al. (2013) pointed out that website vis-
its were the step that follows searching for information through search engines, and 
these data had stronger predictive power than search engine data. When tourists plan 
their vacation, they often use search engines such as Google and Baidu to retrieve 
relevant information (Gunter and Önder 2016). Therefore, web traffic data can pre-
dict travel and hotel demands. Yang et al. (2013) applied two types of website traffic 
data, visitors and visits, to predict the accuracy of the hotel room and occupancy 
rates in Charleston. The results showed that the ARMA model based on web traffic 
data could significantly reduce short-term prediction error. Gunter and Önder (2016) 
used 10 web traffic data series from Vienna websites to predict tourist arrivals in 
Vienna. There are still limitations in the research on tourism prediction using web 
traffic data, such as the difficulty of data acquisition. However, these data can effec-
tively improve the forecasting accuracy of time series and econometric models.

Social media provides abundant sharing channels for travelers through forums, 
blogs, microblogs, social networks, image and video sharing websites, and has a sig-
nificant impact on the tourism system (Li et al. 2021). In general, the social media 
data includes text and images that appear in questions and answers on forums, user-
provided comments, and geotagged photos from various social media sites, such as 
Twitter, TripAdvisor, Priceline, Hotels.com, Expedia, Flickr and Yelp. Toral et al. 
(2017) identified unique attributes of tourist destinations through comments col-
lected from online communities and employed a machine learning approach to train-
ing a classifier. Their findings suggested that unique attributes were the best predic-
tors of travel destinations. Bigné et al. (2019) used text mining methods to extract 
important information from tweets on Twitter and study how Twitter activities affect 
hotel occupancy prediction. Starosta et al. (2018) computed the sentiment indices for 
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popular destinations in Europe, reflecting the positive or negative attitudes towards 
these destinations by online media. Miah et  al. (2017) adopted a density-based 
clustering algorithm to identify tourists’ photos on Flickr and predict Melbourne’s 
future tourism demand. In contrast to search engine and web traffic data, research-
ers should use techniques such as text and image mining to extract useful structured 
data from social media data.

Big data may generally be thought of as a new driver, expressing the attention, 
interest, and emotions of tourists that affect tourism forecasting (Li et al. 2017; Song 
et al. 2019). The adoption of big data in tourism forecasting will have managerial 
implications and enable destination management to better understand tourist behav-
ior, allocate resources, and form timely decisions to improve tourism demand (Ma 
et al. 2018; Song et al. 2019). However, there are still limitations in data quality due 
to search keyword selection, noise, or irrelevant information in social media data, 
etc. (Song et  al. 2019). In particular, existing studies on social media and multi-
source data are still limited, and researchers need to explore which data sources can 
be integrated from a rigorous and robust perspective.

Compared to the internet data, the trajectory data recorded by mobile phone 
take the advantages of low collection cost, high update frequency, wide spatial, and 
temporal coverage. Such data is a promising source for monitoring urban immigra-
tion. The most common use of mobile signaling data is to analyze the distribution 
of population, spatial movement, and actual distribution of social networks (Sun 
et al. 2021). Thus, this study aims to introduce a novel spatial-temporal model on 
the attention mechanism of deep learning approaches, which adopted a more scien-
tific and effective spatial-temporal feature extraction method to forecast the demands 
of multiple attractions based on the spatial-temporal demand features obtained from 
mobile phone signaling data.

3  Methodology

In this section, we introduce the framework of deep learning models. First, we intro-
duce the most basic convolutional neural network (CNN), then we introduce the 
ConvLSTM which combined CNN and LSTM, and finally we present the model of 
the convolutional block attention module (CBAM).

3.1  CNN

Capturing the hidden complex spatial correlations between adjacent destinations is 
beneficial to reduce tourism demand forecasting errors. Convolutional neural net-
works (CNNs) are widely used methods in spatial feature learning, especially for 
Euclidean-structured data such as images, videos, and regular grids (Li et al. 2022). 
In this paper, we adopt the CNNs to extract deeper features from the obtained spa-
tiotemporal grid map. In particular, grid passenger flow maps at different times are 
regarded as different channels of the graph.
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The process of feature extraction using convolutional layers is shown in Fig. 1, 
where the spatial grid is treated as a two-dimensional matrix. The specific steps of 
image convolution are: sliding the convolution kernel on the image, multiplying the 
pixel value on the image point with the value on the corresponding convolution ker-
nel, and then adding all the multiplied values. This process is repeated until the con-
volutional kernel slides over the entire image. Let vxy

ij
 denote the values v at the posi-

tion (x, y) in the jth feature map of the ith layer can be calculated by:

 where m denotes the index of the feature map in the (i − 1)th layer, wpq

ijm
 is the 

(p, q)th value of the kernel connected to the mth feature map in the layer, (P, Q) 
denotes the kernel dimension.

3.2  ConvLSTM

ConvLSTM combines CNN and LSTM and is widely used in various spatiotemporal 
prediction tasks, such as traffic accident prediction, crowd flow prediction, precipita-
tion prediction, etc. (Miao et al. 2021). The input and hidden state of the ConvLSTM 
in a timestamp are all 3D tensors, and the convolution operations are performed on 
the input-to-state and state-to-state connections, and then, memory cells have been 
introduced in the hidden layer to control the transmission of information, as shown 
in Fig. 2. More specifically, ConvLSTM first performs a convolution operation on 
the data in each timestamp, and then passes them along the period [t − k + 1, …, t] 
through the LSTM module, which can be formulated as:

(1)v
xy

ij
= bij +

∑

m

Pi−1∑

p=0

Qi−1∑

q=0

w
pq

ijm
v
(x+p)(y+q)

(i−1)m

(2)it = �
(
WXi

∗ Xt +Whi ∗ Ht−1 +Wci ⋅ Ct−1 + bi
)

(3)ft = �
(
WXf

∗ Xt +Whf ∗ Ht−1 +Wcf ⋅ Ct−1 + bf

)

Fig. 1  The process of feature 
extraction using convolution 
layers
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 where ‘ ∗ ’ denotes the convolution operator, ‘ ⋅ ’ denotes the hadamard product, � is 
the logistic sigmoid function, it, ft,Ct, ot, and Ht are input gate, forget gate, mem-
ory cell, output gate and hidden state, W��(��{X, h, c}, ��{i, f , o, c}) and b� are the 
weight matrixes and bias vectors for the memory cell state in ConvLSTM.

3.3  CBAM

CBAM has two sequential sub-modules: temporal and spatial attention modules 
(Sanghyun Woo et al. 2018). Given a spatial-temporal feature map F = RT×H×W as 
input, CBAM sequentially infers a 1D temporal attention map MT = RC×1×1 and a 
2D spatial attention map MS = R1×H×W as illustrated in Fig. 3. The overall attention 
process can be formulated as:

(4)Ct = ft ⋅ Ct−1 + it ⋅ tanh
(
WXc

∗ Xt +Whc ∗ Ht−1 + bc
)

(5)ot = �
(
WXo

∗ Xt +Who ∗ Ht−1 +Wco ⋅ Ct + bo
)

(6)Ht = ot ⋅ tanh
(
Ct

)

Fig. 2  Architecture of the Con-
vLSTM cell

Fig. 3  The architecture of CBAM
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 where ‘ ⋅ ’ denotes hadamard product. F′′ is the final refined output.

3.3.1  Temporal attention module

We generate a temporal attention map by utilizing the inter-temporal relationship of 
features. As each timestamp of a feature map is considered as a feature detector, the 
temporal attention module focuses on “when” is meaningful given an input image. 
To compute the temporal attention efficiently, we squeeze the spatial dimension of 
the input feature map. For aggregating spatial information, we use average-pooling 
and max-pooling features simultaneously to generate two different spatial context 
descriptors: FT

avg
 and FT

max
 . Then both descriptors are forwarded to a shared network 

to produce our temporal attention map MT ∈ RT×1×1 . The shared network consists of 
multiple-layers perceptron (MLP), with a hidden layer. The computation process of 
this module as shown in Fig. 4. In short, the temporal attention is computed as:

 where � is the sigmoid function, W0 and W1 denote the weights of input layer and 
ReLU activation layer in MLP respectively.

3.3.2  Spatial attention module

We produce a spatial attention map by exploiting the inter-spatial relationship of 
features. Different from the temporal attention module, the spatial attention module 
focuses on “where” is an informative part, which is complementary to the temporal 
attention module. To compute the spatial attention, we also adopt average-pooling 
and max-pooling along the temporal axis to generate two 2D maps: FS

avg
 and FS

max
 . 

After then, they are concatenated to generate an efficient feature descriptor. And a 

(7)F� = MT (F) ⋅ F

(8)F�� = MS

(
F�
)
⋅ F�

(9)
MT (F) = �(MLP(AvgPool(F)) +MLP(MaxPool(F)))

= �
(

W1

(

W0

(

FT
avg

))

+W1
(

W0
(

FT
max

))

)

Fig. 4  Diagram of the temporal attention module
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convolution layer is applied to produce a spatial attention map MS(F) ∈ RH×W . The 
computation process of this module is shown in Fig. 5. In short, the spatial attention 
is computed as:

where � denotes the sigmoid function and f 3×3 represents a convolution operation 
with the filter size of 3 × 3.

In short, given an input image, two attention modules, temporal and spatial, com-
pute complementary attention, focusing on “when” and “where” respectively.

4  Empirical study

4.1  Data collection

To verify the effectiveness of the proposed model, an empirical analysis is conducted 
using spatial-temporal grid of tourism demand extracted from mobile signaling data 
at two well-known tourism cities in China, Beijing and Xiamen. The mobile signal-
ing data were obtained from China Mobile and China Unicom operators, which con-
tain the spatiotemporal location information of all users, such as residents and tourists, 
as well as other groups. Additional data were gathered from online, such as the city 
geographic information map and location information of city attractions. First, the city 
geographic information map is divided into a 500 m * 500 m grid map and the cor-
responding attractions grids are found by matching the city attractions. Second, taking 
advantage of the fact that mobile phone signaling data records the temporal and spatial 
locus points of each user, the flow of passengers in each time slice of each city grid is 
calculated. The passenger flow includes non-local tourists and local tourists (residents 
visit scenic spots). In this paper, we uniformly adopted 30 min intervals for a time slice. 
Third, the flow of passengers in all time slices of the attractions grids are extracted and 
the temporal regularity are analyzed. Lastly, we stacked several continuous time slice 
grid flow maps into multi-channel spatial-temporal grid map, and each time slice grid 
map is regarded as a channel graph.

(10)MS(F) = �
(
f 3×3

([
AvgPool(F);MaxPool(F)

]))
= �

(
f 3×3

([
FS
avg

;FS
max

]))

Fig. 5  Diagram of the spatial attention module
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The city map of Beijing was divided into 3726 (54 rows * 69 columns) grids 
map. And the period is from May 1, 2019 to May 29, 2019, with 1386 time slices. 
The city map of Xiamen was divided into 9991 (97 rows * 103 columns) grids map 
and the period is from June 1, 2015 to June 30, 2015, with 1440 time slices (Fig. 6). 
Meanwhile, we extracted the passenger flow data of 8 representative attractions grids 
in the two cities respectively (Fig. 7). In addition, to fully verify the performance of 
different models, each dataset was randomly divided into 10 equal subsamples, and 
then K-fold cross-validation method was adopted to retain each subsample as a test 
set to validate the models, the other 9 subsamples were used as a training set to train 
the models. The details about the dataset are shown in Table 1.

Figure 7 shows the demand for tourist flow of selected attractions in two cities. 
All attractions tourism demand time series show nonlinear and periodic patterns. 

Fig. 6  City grids and attractions 
distribution map

 
(a) Beijing grids map 

 
(b) Xiamen grids map 
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Table 1  Detailed division of each dataset

Dataset Period Grids Time slides Training set Test set

Beijing May 1 to May 29, 2019 3726 1386 1242 139
Xiamen June 1 to June 30, 2015 9991 1440 1291 144

(a) Selected attractions in Beijing 

(b) Selected attractions in Xiamen 

Fig. 7  Selected attractions’ tourism demand distribution
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In particular, the dataset of Beijing includes Labor Day. During holidays, the tourist 
flow is much higher than that on weekdays.

4.2  Performance evaluations

Five measures of performance are adopted: run time, mean absolute error (MAE), 
root mean square error (RMSE), mean absolute percentage error (MAPE) and coef-
ficient of determination  (R2). Among them, the run time refers to the time it takes 
for the model to complete running on the same server, which does not need a spe-
cific formula to calculate. The others are calculated as:

 where n is the number of forecasting samples and yi , ŷi and 
−
yi represent the actual 

tourism demand observations, forecasted tourism demand and average of the actual 
tourism demand observations, respectively.

4.3  Benchmark models and parameters setting

Four benchmark models—the ConvLSTM, ConvGRU, hybrid CNN, and basic CNN 
models—are chosen to properly illustrate the usefulness of the proposed technique. 
The CNN model is the most commonly used deep learning algorithm to deal with 
graph convolution. In this study, the spatial grid passenger flow map of several con-
secutive time slices is regarded as the different channels of the graph stacked into a 
multi-channel spatiotemporal grid map as the input of the CNN model. Considering 
the influence of convolution kernel size on model accuracy, we introduce a hybrid 
CNN model and use different convolution kernel size combinations to test the model 
accuracy. Compared with CNN and hybrid CNN, ConvLSTM and ConvGRU com-
bine the spatial graph convolution process of CNN and the time series recursion 
process of LSTM/GRU, in which the time recursion process of LSTM/GRU learns 
the regularity between time series between the input multi-channel spatiotemporal 
grid maps.

(11)MAE =
1
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|
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√√√
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2

(13)MAPE =
1

n

n∑

i=1

|
|yi − ŷi
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In addition, the appropriate parameter setting is the key to a better forecasting 
performance of these models. The main parameters of these models include the fol-
lowing: number of time slices, kernel size, learning rate, training epochs, batch size, 
optimization function and loss function. In this study, we set the number of the time 
slice as 5, the batch size as 10, the loss function uses MSE Loss function and the 
optimization function uses the Adam optimizer in the torch. The other parameters 
setting results are shown in Table 2.

4.4  Forecasting results and analysis

The proposed CBAM model and various benchmarks are first trained based on the 
optimal parameters combination and 10 different training sets. Then, forecasting 
for different test sets is generated separately. Lastly, we calculate the average error 
between the true value and the forecasting value of the tourist flow of 8 attraction 
grids in each of the two cities under different test sets respectively. The results are 
shown in Table 3.

It can be seen that the proposed model significantly outperforms the benchmark 
models in terms of run time in both two cities’ dataset. For Xiamen dataset, the 
run time of the proposed model is 896 s, and the CNN model, hybrid CNN, Con-
vLSTM and ConvGRU are 1491  s, 2375  s, 11,877 and 14,391  s respectively; for 
Beijing dataset, the run time of the proposed model is 330 s, and the CNN model, 
hybrid CNN, ConvLSTM and ConvGRU are 559 s, 845 s, 5329 and 6069 s respec-
tively. The results show that the proposed model is 1.68 times faster than the CNN 
model, 14.71 times faster than the ConvLSTM and 17.23 times faster than the Con-
vGRU. ConvGRU and ConvLSTM run slowly, mainly because the two models need 
to learn the regular patterns between the input multi-channel spatial-temporal maps, 
on the contrary, the proposed model uses an attention mechanism to effectively learn 
important information in spatial and temporal information, reducing the complexity 
of the model and making the model relatively simple and effective. In addition, for 
Xiamen dataset, the MAE, RMSE, MAPE and  R2 of the proposed model are 5.31, 
7.21, 6.27 and 91.97% respectively, which are better than the best MAE, RMSE, 
MAPE and  R2 obtained by the benchmark models (5.38, 7.26, 6.43 and 91.20%); 
for Beijing dataset, the MAE, RMSE, MAPE and  R2 of the proposed model are 
38.05, 60.48, 9.96 and 93.37% respectively, which are superior to the best MAE, 

Table 2  The optimal parameters for each model

Models Parameters setting

CNN Epoch = 50, layers = 4, kernel size = 3, learning rate = 0.005
Hybrid CNN Epoch = 50, layers = 8, kernel_1 size = 3, Kernel_2 size = 5, 

learning rate = 0.005
ConvLSTM Epoch = 50, layers = 3, kernel size = 3, learning rate = 0.01
ConvGRU Epoch = 50, layers = 3, kernel size = 3, larning rate = 0.01
CBAM Epoch = 50, layers = 4, kernel size = 3, learning rate = 0.01
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RMSE, MAPE and R2 obtained by the benchmark models (41.97, 61.76, 15.39 and 
91.44%).

On the whole, the prediction accuracy of the basic CNN model is not high. 
Hybrid CNN adds a 5  *  5 convolution kernel compared with basic CNN, which 
slightly improves the complexity of the model and the prediction accuracy of the 
model. Compared with basic CNN and Hybrid CNN, ConvLSTM and ConvGRU 
have greatly improved the accuracy of the two models. The two models can learn 
the relationship between the mining channel graph, and the complexity of the model 
increases a lot, and so does the running time of the model. The proposed CBAM 
model has the highest prediction accuracy and the fastest operating efficiency. The 
model uses the attention mechanism to mine the important information of the tem-
poral channel and the important information of the spatial position of the spatial-
temporal passenger flow graph, ignores the interference of the unimportant infor-
mation, reduces the complexity of the model, and improves operational efficiency 
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Fig. 8  Comparison of prediction accuracy of different models
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and accuracy. The comparative analysis of prediction accuracy and running time of 
different models can be seen in Figs. 8 and 9.

To better describe the forecasting accuracy clearly of tourist flow under differ-
ent models in each attraction grid, Table 4 shows the MAPE of each attraction grid 
under different models. To compare the traditional time series prediction algorithm 
at the same time, we also used the ARIMA algorithm to predict the passenger flow 
of 16 scenic spots in two cities. It can be found from the results that, on the whole, 
the MAPE of the CBAM model is lower than that of the optimal benchmark model 
in all attractions. The average MAPE of the proposed model is 8.11%, which is much 
lower than that of ARIMA, CNN, Hybrid CNN, ConvLSTM and ConvGRU (23.37, 
23.31, 16.08, 15.62 and 10.92%, respectively). Especially for the Beijing data set, 
the CBAM model is significantly better than other benchmark models. The aver-
age MAPE of the proposed model for the 8 representative scenic spots in Beijing is 
9.96%. The average MAPE of ARIMA, CNN, Hybrid CNN, ConvLSTM and Con-
vGRU was 34.36, 38.28, 24.32, 24.64 and 15.39%, respectively. For all scenic spots 
in Xiamen, the MAPE of the CBAM model is lower than that of other benchmark 
models. The prediction error of the proposed models is within 10%, and the average 
MAPE is 6.27%. The prediction accuracy of multi-scenic spots tourism demand is 
higher.

Meanwhile, to better reflect the passenger flow prediction results of the proposed 
model in various scenic spots of Beijing and Xiamen, the predicted value and the 

Table 4  Forecasting results of each model in terms of the MAPE value

Attractions ARIMA CNN Hybrid CNN ConvLSTM ConvGRU CBAM

Xiamen Sea view park 16.84% 5.69% 5.66% 4.68% 4.96% 4.58%
Gulangyu Peoples 

stadium
8.51% 8.46% 8.54% 8.15% 7.33% 7.23%

Empty alley 19.67% 11.46% 12.31% 10.18% 10.07% 9.80%
Zunde Palace 9.40% 15.14% 9.07% 7.99% 8.16% 7.93%
Xiamen ferry terminal 5.30% 5.37% 5.32% 4.00% 4.22% 3.95%
Zhongshan road pedes-

trian street
4.76% 5.50% 4.64% 3.16% 3.08% 3.08%

Gulangyu huandao road 22.29% 7.07% 9.56% 7.40% 6.76% 6.72%
Zhengchenggong mili-

tary arena site
12.39% 8.00% 7.59% 7.31% 6.90% 6.85%

Beijing The forbidden city 56.53% 60.57% 44.79% 43.20% 24.54% 13.69%
Zhongshan park 24.54% 22.61% 10.00% 9.46% 9.15% 9.08%
National Museum 29.16% 24.30% 15.41% 13.80% 14.16% 11.58%
The temple of heaven 

park
19.98% 19.03% 10.38% 10.80% 9.60% 8.53%

Jingshan park 33.04% 30.59% 8.24% 7.27% 7.09% 6.44%
Beihai park 40.53% 31.64% 12.20% 10.53% 9.43% 8.71%
National zoo 21.27% 19.47% 11.36% 8.47% 7.85% 7.27%
The old summer palace 49.79% 98.05% 82.17% 93.55% 41.31% 14.36%

AVG 23.37% 23.31% 16.08% 15.62% 10.92% 8.11%
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true value of the proposed model are placed in the same figure for comparative anal-
ysis, as shown in Fig. 10. It can be seen from the figure that the predicted value of 
passenger flow in scenic spots of CBAM model is in good agreement with the true 
value. The average fitting coefficient of this model is 93.37% for passenger flow in 
scenic spots of Beijing and 91.97% for passenger flow in scenic spots of Xiamen.

It is particularly noteworthy that for the grid of the Old Summer Palace scenic 
spot, the MAPE of other benchmark models are greater than 40%, while the MAPE 
of the proposed model is only 14.36%, which is 2.88 times higher in accuracy. In 
this paper, the prediction results of different models in the scenic spot grid of the 
Old Summer Palace were extracted and compared with the true values, as shown 
in Fig. 11. It can be seen from the figure that the prediction accuracy of ARIMA 
and basic CNN model are the worst, and the prediction trend has a large deviation 

(a) Beijing attractions 

(b) Xiamen attractions 

Fig. 10  Comparison of predicted and actual flows of different attractions under the CBAM model
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from the true value, and the peak value also has a large deviation. Hybrid CNN has 
a significant improvement compared with CNN, and the prediction trend of Con-
vGRU and ConvLSTM models is consistent with the true value trend. However, in 
some low-peak periods of passenger flow, there is a slight deviation between the 
predicted value and the true value, but the calculated MAPE will be larger than that 
of other scenic spot grids, and the proposed model can reduce this error, because the 
proposed model uses maximum pooling and average pooling to mine the temporal 
importance of the grid map, and reduces the influence and interference of unim-
portant factors, which results in the high prediction accuracy of the model in the 
low peak period. Therefore, this fully demonstrates the universality of the proposed 
model.

To verify the universality of the proposed model, we also extracted three time 
slices (morning peak, evening peak and flat peak) of the predicted passenger flow 
values and the spatial distribution of errors of each grid in two cities, as shown in 

Fig. 11  Comparative analysis of grid passenger flow prediction of different models in the Old Summer 
Palace
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Figs. 12 and 13. As can be seen from Fig. 12, the grids with high passenger flow 
density in the Fifth Ring Road of Beijing are mainly distributed along Chang ‘an 
Avenue, the west end of Chang ‘an Avenue is the Xidan and Financial Street area, 
the east end of Chang ‘an Avenue is the Dongdan and CBD area, and the grids 
around Peking University in the northwest Fourth Ring Road. The prediction error 
is basically within 10%. The grids with large prediction error are mainly distributed 

 
(a) Morning peak 

 
(b) Flat peak 

 
(c) Evening peak 

Fig. 12  Prediction results and error distribution of the grids in the Fifth Ring Road of Beijing based on 
CBAM model
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(a) Morning peak 

(b) Flat peak 

(c) Evening peak 

(a) Morning peak 

(b) Flat peak 

(c) Evening peak 

Fig. 13  Prediction results and error distribution of the grids in the Xiamen based on the CBAM model
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around the Fifth Ring Road and the peripheral area of the research object. The anal-
ysis may be due to the low learning rate of the spatial relationship of the periph-
eral grids, which leads to the large prediction error of the model. From Fig. 13, the 
areas with high passenger flow density in Xiamen are mainly distributed in Xiamen 
Island, and the prediction error of the model is basically within 10%. The grids with 
large prediction errors are mainly distributed in the boundaries of suburbs or traffic 
districts. The results above demonstrate the universality of the proposed model for 
passenger flow prediction on all grids.

To further analyze the universality of all grids in different periods for the predic-
tion accuracy of the model, the prediction error distributions of the grids in Xiamen 
City (9,991 grids) and the grids in Beijing Fifth Ring Road (3726 grids) in different 
periods were collected in this paper. The specific statistical distribution results of 
the errors are shown in Fig. 14. As can be seen from Fig. 14, the prediction error 
of Xiamen grids are within 5%, accounting for 90%, and the prediction errors are 
within 10%, accounting for 94%. The prediction error of the grids within the Beijing 
Fifth Ring Road are less than 5%, accounting for 77%, and the prediction errors 
are less than 10%, accounting for about 91%. Through the error analysis of the two 
research objects, it can be seen that the prediction accuracy of the proposed model 
is high and universal. At the same time, the more grids of the research objects in a 
certain range, the more spatial relations the model can learn, which will improve 
the prediction accuracy of the model. In addition, by comparing the proportion of 
error distribution in the morning and evening peak and flat peak of the two cities, 
it can be found that the prediction accuracy of flat peak is slightly higher than the 
morning and evening peak hours. The analysis may be caused by the high aggrega-
tion of passenger flow in the morning and evening peak hours, the strong mobility 
of population travel, and the prediction error of the grid with obvious traffic attribute 
characteristics (such as urban roads, hub terminals, etc.) will be larger in the morn-
ing and evening peak hours.

Fig. 14  CBAM model predicted accuracy distribution in different periods
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5  Conclusion and discussion

In this study, we forecasted short term tourism demand across two cities in differ-
ent periods. A deep learning model was employed to estimate the forecasting model 
based on a convolution block combined with attention module. In particular, we 
assessed the effectiveness of the proposed model in tourism forecasting by compar-
ing forecasting errors and calculated speed among several benchmark models such 
as CNN, ConvLSTM and ConvGRU. The results indicated that, the calculated speed 
of the proposed model is 14.71 times faster than the ConvLSTM and 17.23 times 
faster than the ConvGRU. Besides, the MAPE of the proposed model is superior to 
CNN, ConvLSTM and ConvGRU. Especially, the proposed model is more stable 
in forecasting performance, for example, the MAPE of the old summer palace is 
14.36%, on the contrary, the MAPE of other benchmark models are greater than 
40%. Therefore, in summary, the proposed model has high accuracy and fast cal-
culation speed in predicting the passenger flow of multiple scenic spots simultane-
ously, which is very suitable for the real-time prediction of the passenger flow of 
urban scenic spots and the collaborative linkage organization among multiple scenic 
spots.

Tourism demand forecasting has continuously attracted researchers’ attention 
because it can provide a valuable aid for efficient business operations and effective 
destination management. In this study, we proposed a novel deep learning model 
based on a convolutional block and attention module to make precise tourism 
demand forecasting. Two markedly different forecasting experiments were investi-
gated to verify the forecasting performance of our proposed model. Empirical results 
demonstrate the proposed model can handle tourism demand data with spatial-tem-
poral grids, and provide accurate tourism demand forecasts for multi-attractions. To 
the best of our knowledge, this is the first time that the convolution block combined 
with the attention module is applied to spatial-temporal tourist flow forecasting in 
tourism demand. The main findings and contributions of the study are summarized 
as follows:

(1) A novel model are proposed based on deep learning approaches to accurately 
forecasting tourism demands. The CBAM model investigated forecasts based on 
temporal dependency and spatial effects from spatial-temporal passenger flow 
maps, which were rarely introduced in previous studies.

(2) The proposed model is simple yet effective based on a convolutional block com-
bined with an attention module that can be widely applied to the real-time fore-
cast of tourism demand. The experiment results indicates that the performance 
of our proposed model is greatly superior to other several benchmarks (CNN, 
Hybrid CNN, ConvLSTM, ConvGRU) on high precision and calculation speed.

(3) We used the passenger flow map data of Beijing and Xiamen in different peri-
ods to validate the proposed model, and obtain high prediction accuracy, which 
illustrates the universality and versatility of the model.



230 H. Sun et al.

1 3

However, the superior predictive performance of our model can’t cover the limi-
tations of this study. First of all, the proposed model is proved in the forecast case of 
tourism demand under normal circumstances. Unfortunately, data from emergencies 
such as the outbreak of COVID-2019 cannot be obtained at present, so it is impossi-
ble to verify the accuracy of the proposed model’s tourism demand prediction under 
emergencies. Secondly, this model is a forecasting model of a spatial-temporal pas-
senger flow map, and without considering other exogenous variables. However, 
introducing exogenous explanatory variables that may affect tourism demand is 
considered an effective strategy to enhance the performance of forecasting models. 
It is worth noting how much improvement can be achieved in the proposed model 
by integrating factors such as GDP, points of interest geolocation data and weather. 
Third, parameterize the number of selected demand sequences in the demand stack-
ing graph and the number of lags of the predicted results, to extract more accurate 
spatial correlation and obtain more passenger flow maps in future periods. The pro-
posed model can only predict the passenger flow data of one period in the future, 
and cannot simultaneously evaluate the prediction accuracy of multiple periods of 
passenger flow. In future research, spatial maps based on economic factors, cultural 
factors, geotagged data, and time-varying parameters should be constructed and 
applied.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s40558- 023- 00247-y.

Data availability The datasets generated and analyzed during the current study are not publicly available 
due to the fact that they constitute an excerpt of research in progress but are available from the corre-
sponding author on reasonable request.
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