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Abstract: With remarkable learning capabilities and swift operational speeds, artificial intelligence (AI) can 

assist researchers in swiftly extracting valuable patterns, trends, and associations from subjective information. 

Tribological behaviors are characterized by dependence on systems, evolution with time, and multidisciplinary 

coupling. The friction process involves a variety of phenomena, including mechanics, thermology, electricity, 

optics, magnetics, and so on. Hence, tribological information possesses the distinct characteristics of being 

multidisciplinary, multilevel, and multiscale, so that the application of AI in tribology is highly extensive. To 

delineate the scope, classification, and recent trends of AI implementation in tribology, this review embarks on 

exploration of the tribology research domain. It comprehensively outlines the utilization of AI in basic theory of 

tribology, intelligent tribology, component tribology, extreme tribology, bio-tribology, green tribology, and other 

fields. Finally, considering the emergence of “tribo-informatics” as a novel interdisciplinary field, which combines 

tribology with informatics, this review elucidates the future directions and research framework of “AI for 

tribology”. In this paper, tribo-system information is divided into 5 categories: input information (I), system 

intrinsic information (S), output information (O), tribological state information (Ts), and derived state information 

(Ds). Then, a fusion method among 5 types of tribo-system information and different AI technologies (regression, 

classification, clustering, and dimension reduction) has been proposed, which enables tribo-informatics 

methods to solve common problems such as tribological behavior state monitoring, behavior prediction, and 

system optimization. The purpose of this review is to offer a systematic comprehension of tribo-informatics 

and to inspire new research ideas of tribo-informatics. Ultimately, it aspires to enhance the efficiency of 

problem-solving in tribology. 
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1  Introduction 

Since the 1980s, tribology, as an independent frontier 

discipline, aims to save resources and prolong the 

service life of mechanical equipment [1, 2]. Tribology 

involves the cross-integration of many disciplines 

such as machinery, mechanics, physics, chemistry, and 

materials. It needs to consider, adjust, and optimize 

the design process and method framework based on 

models, and also needs to enhance the information 

exchange among different scales, levels, and systems 

based on data. Tribology is an experiment-based 

discipline. In the research process, a large number of 

working condition tests or operation and maintenance 

data are often designed and carried out based on 

different engineering and research needs. These massive 

data have the characteristics of multi-disciplinary, 

multi-scale, and multi-level [3], and it is difficult  

to form a complete tribological information unit.  

This leads to the contradiction between the massive 
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tribological test data and the lack of tribological 

information with application value, which seriously 

restricts the development of tribo-informatics. 

The term “artificial intelligence (AI)” was born in 

1956 at a conference at Dartmouth University. In 1980, 

Carnegie Mellon University pioneered the development 

of the first expert system known as “XCON”. 

Subsequently, in 2006, Hinton and Salakhutdinov 

systematically introduced the methodology of  

deep learning [4]. After decades of technological 

accumulation, it finally sparked a wave of research 

on AI globally after AlphaGo defeated the world 

chess champion in 2016 [5]. In 2021, Bommasani et al. 

comprehensively summarized the opportunities and 

challenges of foundation models, marking a significant 

shift in AI development towards the era of large-scale 

models [6]. The release of ChatGPT in 2022 signified 

a major advancement in the field of AI, particularly 

in its capabilities for processing natural language. 

On the whole, AI is the science that uses computers 

to simulate the intelligent behaviors of human 

including learning, judgment, and decision making. 

It compiles computer science, biology, logic, psychology, 

philosophy, and other disciplines targeting wide 

applications (as shown in Fig. 1). It has made great 

progress in knowledge representation and reasoning, 

pattern recognition, image processing, natural language 

processing, and other aspects [7]. AI plays an 

important role in human production and life which is 

applied in multiple research fields including materials 

science [8], biology [9], and tribology [10, 11]. Massive 

high-dimensional data is the foundation of the 

development of AI [12].  

Tribology, due to its unique system dependence, 

multidisciplinary coupling, and time dependence, has 

produced a large number of multi-dimensional and 

multi-structural research data, which is the basis of 

the application of AI in tribology [13–16]. Therefore, 

the deep integration of AI methods with tribology 

will inevitably improve the efficiency of knowledge 

acquisition, integration, analysis, and research in 

tribology research, and promote the development of 

 

Fig. 1 Development of AI in the field of tribology. 
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the discipline. For example, the robust capabilities  

of AI in data and pattern recognition can establish 

correlations between various signals (e.g., vibration, 

acoustics, electrical, and sound pressure) and wear, 

making early detection of mechanical wear feasible. 

At the same time, AI can simulate and predict 

tribological behaviors under diverse operational 

conditions, which is crucial for designing more 

durable and reliable mechanical systems. As early as 

1986, Tallian employed computer-aided approaches 

in tribological design [17]. In 1997, there was research 

on using neural networks to predict tribological 

properties, but it has been tepid [18]. In 2017, Wu et al. 

utilized random forest algorithms for wear prediction 

and garnered considerable interest among researchers 

[19]. This development catalyzed the gradual adoption 

of AI across various tribology research domains. 

However, the complexity of these machine learning 

methods and their varying applicability to the specific 

research needs in tribology presented challenges. In 

this context, “tribo-informatics” has been proposed 

to address the systematic fusion of AI and tribology 

[10]. This novel direction has immediately garnered 

significant attention in tribology.  

In this article, we mainly focus on the application 

of AI technology in various research fields of tribology. 

Tribology problems are divided into six main research 

areas: basic theory of tribology, intelligent tribology, 

component tribology, extreme tribology, bio-tribology, 

and green tribology. The article mainly includes the 

current research status of the integration of AI and 

tribology in recent years, the application of AI in 

different tribological research fields, the product of 

the integration of AI and tribology (tribo-informatics 

or triboinformatics), and the development trend and 

implementation framework of this emerging direction. 

We hope this article can provide tribology researchers 

with a systematic understanding and research inspiration 

on the field of “AI for tribology”, and promote the 

development of the discipline of tribology. 

2 Publication status of papers on the 

application of AI in tribology 

The publication status is a visual representation of 

the development of a research field, which allows for 

the understanding of the latest research achievements, 

analysis of research trends, and research hotspots in 

the field. Therefore, in this review, the search formula 

“TS = (artificial intelligence or machine learning) 

AND TS = (tribology or friction or wear or lubrication)” 

was used. A total of 1,882 papers were retrieved  

from the web of science core database on June 12, 

2023. It should be noted that due to the increasing 

number of publications, the following analysis results 

can only reflect the latest research status as of the 

retrieval date. 

Based on the number of papers published (as shown 

in Fig. 2), there has been a surge in the number of 

articles related to the application of AI in tribology 

since 2016. In just five years, the annual publication 

volume has increased by about 20 times, with 506 

papers published in 2022 alone. This coincides with 

the year when AlphaGo defeated the world chess 

champion (2016) [20]. There is no doubt that this 

global event not only sparked a revolution in the 

computer field, but also brought new ideas and 

methods to solve problems in many other fields [21]. 

From the perspective of journal publication volume, 

the distribution of publications is extremely scattered, 

and the journal International Journal of Advanced 

Manufacturing Technology with the highest proportion 

of publications is only 4.89%. And a large proportion 

of “AI for tribology” articles are published in journals 

related to manufacturing and sensing technology, 

with a higher volume of articles published in the 

manufacturing semester journal. It is easy to understand 

that tribological systems are an important component 

of machine systems, and the addition of AI technology 

helps in online monitoring, fault diagnosis, and 

optimization design of machining, assembly, and 

operation processes. The rise of research on the 

correlation between tribology and sensing technology 

is an undeniable feature. The integration of information 

technology makes it easier to classify and summarize 

various types of information during the operation of 

tribology systems, and the correlation between various 

information can be quickly obtained. When the target 

quantity is perceived through observable measurements, 

a sensing technology is developed. 

From the word cloud analysis in the research field, 

it can be seen that “material science multidisciplinary”, 
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“engineering manufacturing”, and “engineering 

mechanical” are the most frequently occurring fields. 

The application of AI technology in tribology focuses 

more on two main directions: material science and 

mechanical manufacturing. From the word cloud 

analysis of the keywords as shown in Fig. 2, it can be 

found that “artificial neural networks (ANN)” are 

the most frequently used algorithm model in AI 

technology, and “tool wear” is the most concerned 

research object in this field. “Prediction” is the most 

common application purpose in “AI for tribology”. 

The above three aspects will also be detailed in the 

specific research fields in Section 3. 

To display the evolution trend of keywords more 

intuitively, a bubble chart method was used to 

analyze the proportion of keywords in a single year 

and their trend over time (as shown in Fig. 3). From 

the horizontal comparison of each year, it can be 

seen that the three keywords “ANN”, “tool wear”, 

and “prediction” have always been research hotspots, 

and with the increase of years, more keywords have 

emerged, such as “model”, “fault-diagnosis”, and 

“prediction”. This indicates that AI technology has a 

broader application scenario in tribology research. 

From the vertical comparison that increases over  

time, it can be seen that all keywords have shown an 

explosive growth since 2016–2017, and the integration 

of AI technology and tribology research has entered a 

period of rapid development. In addition, the keywords 

“model” and “performance” have a relatively large 

proportion in 2022, which also reflects the increasing 

emphasis placed by researchers on the development 

of AI algorithm models and the performance of 

tribological systems. 

Overall, the application of AI technology in tribology 

research has shown a rapid growth trend [22–24].  

 

Fig. 2 Paper publication status of “AI for tribology”. (a) Number of publications in different years and journals; (b) word cloud analysis
in the research field of the papers; and (c) word cloud analysis of research keywords in the papers. 
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The research focus is mainly on machine learning 

methods for wear prediction and optimization of 

tribological system design [25, 26]. However, the 

application of AI in tribological research is still not 

comprehensive. AI technology includes three main 

concepts: symbolism, connectionism, and behaviorism. 

Among them, symbolism uses data logic symbols to 

express human cognition. Connectionism simulates 

the structure and working mode of the human brain 

with the idea of bionics, the most prominent of which 

is neural network. Behaviorism focuses on simulating 

various human control behaviors [7]. Transferring it 

to tribological research should enable the identification 

of tribological behavior (such as wear forms, lubrication 

states, and failure mode), data-driven monitoring and 

behavior prediction of tribological systems (such as 

friction, frictional heat, frictional vibration, frictional 

electricity), as well as optimization and behavior 

control of tribological systems. In order to demonstrate 

stronger systematic and systematic thinking in the 

application of AI in tribology research and promote 

comprehensive integration between both parties. The 

concept of “Tribo-informatics” has been proposed as 

a new field of research, indicating that the integration 

of AI and tribology has entered a new stage [10, 11, 27]. 

AI will no longer simply play the role of a numerical 

solution tool for traditional tribology problems, but 

can also inspire the thinking of tribology research. 

3 Applications of AI in different tribological 

research fields 

Tribology is a discipline that studies the fundamental 

theory and application technology of friction, lubrication, 

and wear between surfaces in relative motion, as well 

as the interrelationships among them [2]. The research 

scope of tribology is very extensive, involving many 

fields including mechanical processing, transportation, 

ships and oceans, aviation, aerospace, and biomedical 

devices [1, 28–31], etc. From the perspective of 

application purposes, tribological systems play an 

important role in energy transmission, motion 

transmission, and even information dissemination, 

and are also the main pathway for resource and energy 

consumption in production and manufacturing 

processes. In order to improve the energy-saving, 

reliable, stable, and intelligent characteristics of the 

relative motion interface, in recent years, the research 

scope of tribology has been mainly divided into the 

following six categories, which are the basic theory of 

tribology [32, 33], component tribology [34, 35], extreme 

tribology [36, 37], green tribology [38, 39], bio-tribology 

[40, 41], and intelligent tribology [32, 42–44]. In 

addition, a large number of research results have 

emerged in the field of geotribology [45–51], which 

studies earthquakes [52, 53], landslides [54–56], and 

Fig. 3 Bubble chart analysis of keywords. (a) Horizontal comparison in each year and (b) vertical comparison with annual changes. 
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crustal movements. In order to gain a deeper 

understanding of the application of AI technology in 

tribological research, this article reviews the scope, 

degree, and effectiveness of AI technology in these 

tribological research areas. It is believed that the 

mutual reference of application methods in different 

fields will inevitably promote the achievement of their 

respective research goals, and further improve the 

efficiency and quality of tribology research. 

The publication status typically serves as a useful 

indicator for analyzing developmental trends, research 

hotspots, and technological advancements. By examining 

the distribution of AI applications within various 

sub-disciplines of tribology, we can gain insights into 

how different tribological challenges are amenable 

to AI technologies. From the analysis of literature 

search results, it can be seen that the application of AI 

in various fields of tribology research varies greatly. 

Among them, there are many achievements in the 

application of intelligent tribology, basic theory of 

tribology, and component tribology, accounting for 

nearly 90% of the total (as shown in Fig. 4). However, 

the application results in other research fields are 

very scarce, and some are even at the preliminary 

exploration stage. Next, the application of AI will be 

divided based on different tribological research scopes 

and objectives, in order to clarify the tribological 

problems and objects that different AI methods are 

suitable for. Research directions of broad development 

space will also be identified.  

3.1 Basic theory of tribology 

The basic theory of tribology mainly conducts research 

on universality, cutting-edge, and other aspects. The 

application of AI technology in this field is mainly 

divided into three aspects: the explanation of tribological 

behavior mechanism, micro- and nano-tribology, 

and analysis of behavior patterns based on standard 

tribological experiments (as shown in Fig. 5). It should 

be noted that the essential role of AI technology is to 

establish data associations among different categories 

of information, and it cannot directly provide an 

explanation of the mechanism. In order to improve 

the application effect of AI in the basic theory of 

tribology, the interpretability of AI calculation results 

can be improved by adding physical models [57–59]. 

At the same time, regression, classification, clustering, 

or dimensionality reduction methods can also be used 

to artificially obtain the mechanism and the meaning 

of data patterns after data processing [60–65]. 

Classification or correlation on data can improve the 

cognitive efficiency of tribology, but there is still a 

distance to form a universal tribology theory that  

can be generalized. What is more, the standardization 

of experimental procedures, data storage, model 

expression, and other processes in tribology is an 

important factor that restricts the reusability of data. 

3.1.1 Mechanism explanation of tribological behavior 

The mechanism explanation of AI-assisted tribological 

 

Fig. 4 Proportion of AI technology in various research fields of tribology. 
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behavior generally involves first processing high- 

dimensional data generated during simulation or 

experimental processes through AI technology, 

separating the correlations of the main variables, and 

finally analyzing the mechanism of a certain tribological 

phenomenon [69]. For example, Kadupitiya and 

Jadhao [66] used machine learning methods to 

process high-dimensional simulation data generated 

in non-equilibrium molecular dynamics simulations, 

and ultimately obtained the correlation between 

rheological properties and molecular arrangement 

evolution in elastohydro dynamic lubrication, revealing 

the mechanism of viscosity decreasing with rates under 

low pressure of lubricants. Zhao et al. [70] combined 

the machine learning method with density functional 

theory, and characterized by structure factor and 

interlayer charge density, realizing accurate prediction 

of sliding energy barrier of polarized two-dimensional 

materials. Hossain et al. [71] studied the friction and 

wear behavior of mill steel using pin disk experiments, 

and introduced machine learning methods to analyze 

the effects of lubrication, reciprocating motion, and 

low speed on friction reduction and wear resistance. 

Sieberg et al. [72] used artificial neural network to 

analyze the images of scanning electron microscope 

(SEM), and obtained classification methods for different 

wear mechanisms. In the analysis of the mechanisms 

underlying tribological behavior, AI technology can 

be utilized to establish correlations between tribological 

phenomena and their influencing factors, thereby 

uncovering the primary causes of these phenomena. 

Consequently, clustering and classification methods 

within AI are particularly useful in the mechanism 

explanation of tribological behavior. 

Fig. 5 Applications of AI in basic theory of tribology. (a) Investigation of liquid rheological behaviors under elastohydrodynamic
lubrication through integrated machine learning and simulation techniques [66]. Reproduced with permission from Ref. [66], © The 
Author(s) 2021. (b) Real-time diagnosis of tip wear during tip-based nanomachining via an unsupervised machine learning technique,
using an atomic force microscope (AFM) and employing a Gaussian mixture model (GMM) for in-process pattern recognition with 
process-generated data [67]. Reproduced with permission from Ref. [67], © Elsevier Ltd. 2022. (c) Introduction of a machine learning 
algorithm, WearGP, designed to refine predictions of 3D local wear by training on and testing against data derived from steady-state 
computational fluid dynamics (CFD) simulations [68]. Reproduced with permission from Ref. [68], © Elsevier B.V. 2019. 
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3.1.2 Micro- and nano-tribology 

With the development of AFM, transmission electron 

microscopy (TEM) and other high-precision testing 

technologies, the research of tribology has entered 

the micro nano scale [73, 74]. Micro- and nano- 

tribology is currently at the forefront of tribology 

research, which not only reveals the fundamental 

principles of tribological behavior at the atomic 

scale, but also gives rise to new directions in applied 

research such as superlubricity and ultra-low 

friction [75, 76]. The application of AI technology in 

micro- and nano- tribology mainly has two aspects: 

one is to predict the friction and wear properties of 

nanocomposites [77–80] or 2D materials [81] using 

machine learning methods. The other is to process 

the test results of precision instruments such as 

AFM to analyze the friction and wear properties of 

nanomaterials [82, 83]. Najjar et al. [84] proposed 

an improved machine-learning model to predict 

the microstructure, mechanical properties, and wear 

of Cu–Al2O3 nanocomposites with different Al2O3 

contents. Cheng et al. [67] used an unsupervised 

Gaussian mixture model (GMM) to analyze the 

friction and wear data collected by AFM, and realized 

real-time online automatic diagnosis of tool wear in 

nano manufacturing. Hasan et al. [85] developed five 

machine-learning regression models to predict the 

effect of graphene addition on the friction and wear 

properties of self-lubricating aluminum matrix 

composites, and found that the mass percentage of 

graphene and load conditions will have a greater 

impact on the friction and wear properties of 

composites. In the field of micro- and nano-tribology, 

AI is predominantly employed to predict the tribological 

properties of micro- and nano-scale surfaces. The 

training datasets for these AI models may originate 

from microscopic simulation data or experimental 

data gathered using high-precision instruments. 

Micro- and nano-tribology represents the cutting edge 

of current tribological research. AI technology can 

pre-analyze the selection of superlubricity materials, 

structural design, and operational principles, thereby 

accelerating the progress of related research.  

3.1.3 Tribological behavior analysis based on standard 

experiments 

The tribological standard test refers to the test 

conducted based on product-based and standardized 

friction and wear testing machines and referring to 

standardized processes [86–90]. In fact, this part is 

the main source of data for friction informatics, which 

has repeatability and accumulation, and is often used 

to analyze the universal laws of tribological behavior 

[91–94]. The tribological behavior includes the following 

aspects: (1) the processing of surface texture and 

its influence on wear resistance [95–99]; (2) wear 

image analysis and wear state recognition [100–107]; 

(3) the correlation between tribological derived signals 

(such as acoustics, vibration, acoustic emission, and 

thermodynamics) and the state of friction and wear 

[108–110]; (4) the influence of the preparation process 

of friction pair materials on friction and wear 

behavior [111–117]; and (5) the influence of input 

conditions on friction and wear performance of 

tribological systems [118–122]. Overall, it mainly 

includes three aspects: the relationship between state 

variables during the operation of tribological systems 

[123–125]; the evolution law of the tribological system 

behavior [126–130]; and the correlation law between 

the friction and wear performance and the system 

input and intrinsic variables [131–134]. Tran et al. [68] 

proposed a machine learning method called WearGP 

to approximate 3D local wear prediction, and used CFD 

simulation data for training, which could ultimately 

improve the calculation efficiency by 105–106 orders 

of magnitude. The foundation of “tribo-informatics” is 

a comprehensive tribology database, with standardized 

tribological test data being a crucial component. AI 

technology can establish relationships between various 

signals, such as experimental setup parameters, images, 

audio, temperature, and vibration. This facilitates the 

prediction of experimental trends and monitoring  

of specimen conditions, serving as a vital aid in 

high-throughput testing scenarios. 

3.2 Intelligent tribology 

In a sense, intelligent tribology is the greatest 

manifestation of the application of AI methods in 
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tribology research, and it is also the research field 

most influenced by AI in tribology research. Intelligent 

tribology mainly aims at evaluating the operational 

reliability and predicting the lifespan of tribological 

systems in key engineering fields such as transportation 

equipment, energy equipment, and mechanical 

processing [135–139]. With the development of 

technology, intelligent tribology has developed the 

branch of intelligent lubrication/friction material 

design. Therefore, intelligent tribology can be mainly 

divided into two aspects: status monitoring, fault 

diagnosis and life prediction of tribo-systems, and 

intelligent lubrication/friction material design (as 

shown in Fig. 6). This section mainly introduces the 

Fig. 6 Applications of AI in intelligent tribology. (a) A hybrid machine learning approach combining structured process parameters
with unstructured power profiles and tool wear imagery for prognostics of tool condition [140]. Reproduced with permission from 
Ref. [140], © Elsevier Ltd. 2019. (b) Enhanced predictive performance using random forest algorithms in conjunction with the synthetic
minority over-sampling technique (SMOTE) to balance datasets, tailored for industrial applications where flatness levels are discretized 
[141]. Reproduced with permission from Ref. [141], © The Author(s) 2020. (c) An innovative damage mitigation strategy employing
AI-based control mechanisms (e.g., genetic algorithms) in tandem with contact position control systems (e.g., morphing surfaces) to 
extend the lifespan of sliding surfaces through stable friction management [142]. Reproduced with permission from Ref. [142],
© Elsevier Ltd. 2023. (d) Insights from experimental and numerical analyses revealing a unique nano-electro-mechanical- opto system 
inherent in individual multiwall tungsten disulfide nanotubes, facilitating an unprecedented form of in-plane van der Waals 
ferroelectricity derived from a synergistic interaction of superlubricity and piezoelectricity [143]. Reproduced with permission from 
Ref. [143], © The Author(s) 2022. (e) The “lubrication brain”, utilizing generative adversarial networks (GANs) in conjunction with
reinforcement learning to autonomously engineer novel lubricant molecules with specified attributes [144]. Reproduced with permission 
from Ref. [144], © Elsevier Ltd. 2023. (f) A focus on manipulating surface wettability via designed hierarchical structures, optimized
and predicted using well-trained ANNs [145]. Reproduced with permission from Ref. [145], © The Author(s) 2020. 
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current application status of AI in intelligent tribology 

from these two aspects. The application of AI technology 

in intelligent tribology is more reflected in the use of 

machine learning methods, while the application of 

other artificial intelligence technologies (such as natural 

language processing, computer vision, and expert 

system, etc.) is still lacking exploration, and the overall 

degree of intelligence still needs to be systematically 

deepened. 

3.2.1 Status monitoring, fault diagnosis, and life prediction 

of tribo-systems 

This part is the largest proportion in intelligent 

tribology and the most effective application of AI 

in tribology. It is also the birthplace of the concept 

of “tribo-informatics”. Its application objects mainly 

include tribological systems with the main purpose 

of machining and forming, such as turning [146–150], 

milling [151–160], drilling [161–163], grinding [164–166], 

and friction stir welding (FSW) [167–169]. These 

systems usually have characteristics such as rapid 

wear, rapid forming, and obvious process signal 

characteristics, which is also the main reason for   

the effective application of AI methods [170–174]. In 

addition, the fault identification, predictive maintenance, 

and residual life monitoring of these machine systems 

are also the main focuses of intelligent tribology 

[175–180]. In the machining system, the most critical 

wear components are various types of tools, such as 

turning tools, milling cutters, drill bits, and grinding 

wheels. This section is classified according to the 

research purpose, which is mainly divided into three 

aspects: tool wear condition monitoring, machining 

quality prediction and optimization, and machine 

system fault diagnosis and predictive protection (as 

shown in Fig. 7). It should be noted that friction stir 

welding, as a welding technique, mainly focuses on 

welding quality and less on wear issues. Therefore, it 

is only discussed in the prediction and optimization 

of processing quality. The primary principle of 

monitoring tribological system states involves using 

AI to establish links between target signals that are 

difficult to monitor directly and other easily observable 

signals. This requires researchers to have a preliminary 

qualitative understanding of the correlation between 

signals. Fault diagnosis in tribological systems often 

involves retracing abnormal states. By employing 

interpolation and regression methods, researchers can 

clarify the evolution of signals over time, identifying 

the timing, location, and type of faults. Lifetime 

prediction is one of the most straightforward 

applications of AI technology. It utilizes time series 

forecasting with specific feature parameters and 

estimates the remaining life based on a predefined 

failure threshold, making it a widely used method in 

engineering.  

 

Fig. 7 Information flow within the process of status monitoring, fault diagnosis, and life prediction of tribo-systems. 
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(1) Tool wear condition monitoring and prediction 

Tool wear is the most important cost factor in metal 

cutting, which affects machining quality, machine 

tool life, and even safety issues [181–188]. Therefore, 

it is very important to monitor the tool wear status 

in real time and predict the appropriate tool change 

time. During the operation of tools, a large amount 

of data is generated. If the correlation between these 

signals can be obtained, the status of non-observable 

measurements (usually wear) can be obtained by 

monitoring observable measurements [189–199]. 

Similarly, when the system inputs (such as dryness, 

temperature, and lubrication mode) and tool wear or 

cutting force establish a time series data association, 

then the remaining life of the tool can be predicted 

[200–206]. In general, signals such as cutting force, 

vibration, torque, current and power, acoustic emission, 

wear images, temperature, and sound are all observable 

measurements [207–212]. In engineering, these quantities 

can be used to monitor the current wear status, such 

as wear amount, wear rate, and wear form, in order to 

determine whether it is in a normal wear state or a wear 

failure state, and whether abnormal phenomena such 

as vibration and shaking have occurred [213–216]. 

Various machine learning methods have been 

applied to the monitoring of tool wear status. The 

method of selecting the appropriate algorithm to 

establish data correlations is one of the hot topics of 

research. [19, 217–226]. Sandeep and Natarajan [227] 

used the optimal linear associative memory (OLAM) 

neural network to establish the data association 

between cutting parameters, spindle motor load, and 

tool wear status in the turning process, and the 

correct rate reached 93.8%. Lei et al. [228] combined 

intrinsic timescale decomposition (ITD) technique with 

kernel extreme learning machine (KELM) technique 

to predict three stages of milling tool wear using 

multiple sensor signals. Rafezi and Hassani [229] 

used a backpropagation artificial neural network 

model to classify the wear status of drill bits used in 

surface mining and predict their faults. Azizi et al. 

[166] studied three kernel-based supervised learning 

algorithms and monitored the medium wear rate 

during the grinding process using solid percentage, 

mill speed, and grinding time as input factors. Lee  

et al. [165] used deep learning methods to establish  

a data correlation between the frequency domain 

signals of sound during machining and the wear 

status of grinding wheels, thereby monitor the  

tool status during grinding. With regard to the 

development of tool wear condition monitoring, 

there are generally two directions: more categories of 

information acquisition and more accurate algorithm 

models [140, 230–239]. 

(2) Machining quality prediction and optimization 

Friction plays different roles in different fields of 

mechanical processing. In machining processes such 

as turning, milling, drilling, and grinding, friction 

and wear are important variables in determining the 

quality of the machining process and can also reflect 

the healthy state of machine operation [240–245].  

In the process of friction stir welding, various 

parameters of friction (such as friction and relative 

motion speed) are the input variables of the processing 

process, which directly determine the quality of the 

welding [246–248]. Regardless of the processing 

method, the processing quality is the output quantity 

that engineers are most concerned about.  

For the tool processing process, the system inputs 

usually include cutting speed, feed rate, cutting 

depth, cutting time, composition, and concentration of 

cutting fluid [141, 249, 250]. The state variables mainly 

include cutting force, cutting zone temperature,  

and other process signals, and the output variables 

concerned mainly include surface roughness, surface 

mechanical properties, and flatness deviation [141, 

251–253]. It should be noted that the relationship 

between input and output is often influenced by 

the intrinsic information of the system (such as the 

structure of the machining system, tool shape, and 

coating material) and does not need to consider   

the time dimension. When using state variables to 

predict processing quality, the prediction is often 

based on time series prediction, as the state variables 

are time dependent. Singh et al. [254] used polynomial 

regression process (PR), support vector regression 

(SVR) and Gaussian process regression (GPR) to 

predict cutting power and cutting pressure through 

cutting speed, cutting depth, and feed rate, and then 

predict product processing quality. Mandal et al. [255] 

used Naïve-based classifiers to classify tool wear into 

initial stage (IS), progressive stage (PS), and exponential 
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stage (ES), and analyzed the relationship between 

tool wear and surface finish. Dubey et al. [256] used 

machine learning models such as linear regression 

(LR), random forest (RF), and support vector machine 

(SVM) to analyze the effects of cutting speed, depth, 

feed rate, and cutting fluid composition characteristics 

on the machined surface roughness, and proposed a 

method to predict the surface roughness by analyzing 

the particle size in the cutting fluid. 

For the machining process of friction stir welding, 

the most important concern is the welding quality, 

which is also the output of this machining process 

[257–259]. There are many characterization parameters 

for welding quality, including internal and external 

weld characteristics, tensile strength, elongation, impact 

strength, microhardness, grain size, fatigue strength, 

corrosion resistance, and residual stress [260–263]. As 

a relatively special tribology system, the input of 

friction stir welding system is the parameter settings 

of friction motion, such as tool speed, translation 

speed, shoulder diameter, tilt angle, axial load, coating 

material, and substrate geometry [264–269]. Similarly, 

in the process of friction stir welding, there are also 

some convenient monitoring variables, such as spindle 

torque, lateral force, lateral force, cutting force, and 

temperature signals [248]. Yadav and Khurana [270] 

combined multi-objective optimization technology 

with a genetic algorithm to establish the relationship 

between process variables and welding quality, and 

proposed a process design method for target machining 

quality, with a prediction accuracy higher than 97%. 

Thapliyal and Mishra [271] used a deep learning- 

based neural network model to analyze the influence 

of process parameters on mechanical properties, and 

pointed out that tool characteristics are the most 

critical factor affecting welding quality. Mishra and 

Dasgupta [272] used the classification algorithm 

based on supervised learning, including decision tree, 

logical classification, random forest, and Adaboost to 

realize the prediction of different fracture positions 

of friction stir welding products, thus realizing the 

data association between processing technology and 

crack positions. More interestingly, Du et al. [273] 

used various machine learning algorithms to analyze 

the variables that led to the decline in welding 

quality, and found that the maximum shear stress 

was the most important variable in the welding failure 

mechanism, followed by flow stress. These findings 

help prevent the decline in welding quality. 

(3) Machine system fault diagnosis and predictive 

protection 

Fault identification and preventive maintenance of 

machine systems is an important branch of intelligent 

tribology, which mainly includes the monitoring and 

prediction of machine system performance degradation 

caused by friction and wear [142, 274–278]. This field 

typically extracts physical quantities that are easily 

observable during machine operation, such as vibration, 

sound, and temperature, followed by feature extraction 

and fault recognition. Its main purpose is to promptly 

detect faults in situ and implement preventive 

measures [279–281]. For example, Schlagenhauf and 

Burghardt [282] used machine learning algorithms to 

automatically monitor the image of the ball screw 

transmission process and predict its faults. Wang et al. 

[283] proposed a reliability judgment method based 

on active learning Kriging model and Monte Carlo 

simulation, which can analyze the working reliability 

of machine systems based on vibration signals. 

The above three aspects fully reflect the purpose of 

AI application in tribology, including tribological 

system status monitoring, behavior prediction, and 

system optimization. By using AI technology to obtain 

the information existing in the tribology system itself 

and the data association between the information 

generated in the tribology process, different application 

purposes can be achieved. Therefore, in order to better 

apply AI technology in tribology, it is necessary to 

clarify which types of information exist in the tribology 

system and which data each type of information 

mainly consists of, namely “information expression 

of tribology systems”. This concept will be mainly 

discussed in Section 4.1. 

3.2.2 Intelligent design of lubrication/friction materials 

The intelligent design method for lubrication/friction 

materials is of great significance for the rapid design 

of specific components, structures, and functional 

materials [145, 284–289]. It often efficiently predicts 

the performance of target products through deep 

integration of simulation methods and machine 

learning algorithms. From the perspective of the 



1072 Friction 12(6): 1060–1097 (2024) 

 | https://mc03.manuscriptcentral.com/friction 

 

information composition of tribological systems, the 

main purpose of this research direction is to study 

the correlation between the intrinsic information of the 

system and its output based on the target function of 

the tribological system [143, 290–294]. By designing 

the composition and ratio of lubricating grease, 

optimal friction reduction and wear resistance can be 

achieved [295]. Customized performance of friction 

pairs is achieved by designing the size and morphology 

characteristics of composite materials [296]. Zhou   

et al. [144] combined generative adversarial neural 

networks with reinforcement learning to automatically 

generate new lubricating oil molecules with the 

required performance, known as the “lubricating 

brain”. Zeng et al. [297] proposed a design method 

for high-temperature lubricating greases based on 

backpropagation neural networks. The intelligent 

and rapid design of friction/lubrication materials is 

one of the hot research directions in the future of 

tribology, and is also an important means to reduce 

the design cost of tribology systems and improve 

system performance. Intelligent design of lubrication/ 

friction materials is a result of the deep integration of 

AI technology with simulation and experimental 

design methods. AI regression techniques, based  

on existing experimental or simulation results, can 

establish correlations between input parameters and 

material properties, reducing the time and economic 

waste associated with trial-and-error designs. 

3.3 Component tribology 

The basic components of tribology are the components 

that contain the Urelement of tribology system and 

undertake the key tribological functions of mechanical 

system, mainly including bearings, gears, tires, 

fasteners, and seals. Among them, bearings are one of 

the most complex and widely used basic components 

in tribology, and AI technology is also the most 

widely used in bearing research [298, 299]. Therefore, 

this section divides the basic components of tribology 

into two categories for analysis: bearings and other 

components.  

3.3.1 Bearings 

There are many classifications of bearings, such as 

sliding bearings, rolling bearings, deep groove ball 

bearings, angular contact bearings, and thrust bearings, 

according to their structure. According to material 

classification, there are also metal bearings, non-metallic 

bearings, and porous metal bearings. The application 

of AI technology in bearing condition monitoring, 

performance prediction, design optimization, and 

other aspects is very extensive, mainly including: 

(1) predicting bearing lubrication status [300–303], 

friction coefficient [304], and wear rate [305];      

(2) identifying the wear mechanism of bearings [306] 

and optimize their design [307–310]; and (3) monitoring 

the service status of bearings using multiple signals 

[311–316]. For example, Mokhtari et al. [317] extracted 

effective features in the time and frequency domains of 

acoustic emission signals, and used continuous 

wavelet transform and support vector machine to 

classify the dry friction, mixed friction, and fluid 

friction states of sliding bearings. Badawi et al. [307] 

applied artificial neural networks and fuzzy logic 

techniques to predict the performance of sliding 

bearings, based on performance characteristics such 

as bearing capacity, attitude angle, and maximum 

film pressure ratio under different aspect ratios. 

3.3.2 Other components 

The application of AI in the research of other 

tribological components is relatively scattered, such 

as hydraulic transmission systems [318], automotive 

tires [319–321], pistons [322], bottom pivots [323], ball 

screws [324], and cam [325]. However, it can also  

be roughly divided into two aspects: friction and 

lubrication status monitoring, and friction and wear 

performance prediction. There is less involvement in 

component design optimization. 

3.4 Extreme tribology 

With the emergence of extreme service environments 

such as deep sea, polar regions, deep space, and deep 

ground, tribological systems are also facing extreme 

operating conditions such as high speed, heavy load, 

high/low temperature, and special environments such 

as strong radiation and high vacuum. These working 

conditions often result in severe friction and wear 

phenomena, accompanied by the generation of various 

strong derivative signals, which increases the difficulty 

of friction and wear testing, online monitoring, and 
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fault diagnosis. On the other hand, the introduction 

of AI technology will also bring new and more effective 

solutions to this field. The role of AI technology in 

extreme tribology is massive. However, the reliability 

of the data depends on its quantity and authenticity. 

Obtaining realistic tribology information is a major 

challenge in this field. If AI technology is utilized, 

extreme tribology can establish a correlation between 

simulated environmental data and real working 

conditions. This breakthrough will help to bridge the 

gap between theoretical and practical data. 

3.4.1 Heavy load, high speed, and high temperature 

High temperature, high speed, and heavy load are 

the most intuitive extreme operating conditions, 

usually occurring during the service process of large 

high-end mechanical equipment [326]. Due to the 

influence of extreme working conditions, rapid wear 

is often the most important feature, and the obvious 

trend of data changes also makes the prediction results 

of machine learning more accurate. For example, 

vibration data can be used to monitor the uneven 

wear phenomenon between high-speed trains and 

rails [327, 328]. Other directions, such as tool wear 

monitoring and control parameter selection in 

high-speed processing [249, 329, 330], optimization of 

high-temperature alloy preparation process parameters 

[331], and composition optimization of pearlite steel 

used for heavy-duty tracks [332], are not fundamentally 

different from the introduction in intelligent tribology. 

However, from the volume of publications and the 

depth of AI integration, it can be seen that there is 

still great room for development in the application  

of AI in extreme working conditions tribology. AI 

technology is well-suited for addressing rapid wear 

caused by extreme operating conditions. On the one 

hand, researchers can initially study tribological 

properties under lower speeds, loads, and temperatures, 

and establish the relationship between performance 

and operating conditions. This allows for studying 

extreme conditions at a lower cost. On the other hand, 

under extreme conditions, due to the specific nature 

of testing technologies, the obtained physical quantities 

may be limited. AI can assist in researching these 

issues by establishing correlations between measurable 

parameters and target parameters. 

3.4.2 Special environmental conditions 

Special environmental conditions mainly occur during 

the service process of space spacecraft, such as high 

vacuum, atomic oxygen, and strong radiation [333, 

334]. These service conditions often make it extremely 

difficult to obtain in-situ working data and require 

extremely high requirements for tribological 

components. Therefore, if AI technology can achieve 

the correlation between ground test data and space 

service data, or achieve in-situ real-time monitoring 

of space service performance, it will be of great 

significance for improving the stability and reliability 

of spacecraft work. However, there are currently few 

reports on related research. 

3.5 Bio-tribology 

Bio-tribology is a research field that studies tribological 

issues related to organisms [40], mainly focusing on 

three aspects: (1) functional maintenance of biological 

friction pairs (such as skin, teeth, and joints) [335, 336]; 

(2) the tribological behavior of biological implants (such 

as artificial bones and heart stents) [337]; and (3) the 

tribological adaptability characteristics of wearable 

or medical devices to the human body surfaces  

(such as tactile feedback and human motion signal 

sensors) [338]. In fact, the application of AI in these 

fields is quite unsystematic, mainly focusing on 

predicting tooth wear, human touch/motion perception, 

and regulating the friction/lubrication performance 

of implants in the body. Bio-tribology is a highly 

interdisciplinary field that poses complex challenges. 

Due to the unique nature of its subjects, bio-tribology 

necessitates a certain integration with biology. “Tribo- 

informatics”, while primarily addressing engineering 

tribology issues, can also establish connections with 

bioinformatics data, thereby enhancing the efficiency 

of research in bio-tribology. Current research focuses 

on individual aspects, using advanced data analysis 

techniques to understand friction and wear performance 

under multiple factors. The future research focus is 

on how to achieve the correlation between biological 

information and tribological information and achieve 

real-time collection and monitoring of biological 

signals.  



1074 Friction 12(6): 1060–1097 (2024) 

 | https://mc03.manuscriptcentral.com/friction 

 

3.5.1 Tribology of human organ 

The application of AI in human tribology is mainly 

manifested in predicting tooth friction loss [339–341], 

monitoring human joint fever [342, 343], etc [335, 344]. 

Anaya-Isaza and Zequera-Diaz [342] proposed a heat 

change index based on the characteristics of foot fever 

in diabetes patients, and used the deep convolutional 

neural network to predict the occurrence of diabetes 

in advance. Zheng and Liu [339] established radial 

basis function and multilayer perceptron neural 

network models to predict the wear of tooth repair 

materials (TC4 alloy) in artificial saliva. 

3.5.2 Tribology of human wearable devices 

Human condition monitoring and behavior perception 

are the basis for realizing the natural interaction 

between human and machines, and also the premise 

for realizing the concept of the “Metaverse”. Human 

condition perception based on friction is an important 

part of it [338, 345]. Li et al. [346] combined the 

fingertip tactile sensor with the machine learning 

module to form a human-simulated tactile sensing 

system, which can realize multiple functions such as 

sliding detection, material classification, and roughness 

recognition. Bi et al. [347] proposed a new method 

based on support vector machines to achieve precise 

tactile display function, which provides a technical 

foundation for the application of virtual reality. 

3.5.3 Tribology of human body impacts 

Artificial joints, as a key component of human 

implants, are of great significance for the treatment of 

arthritis and trauma [337]. The wear prediction and 

lightweight high-strength design of human hip joint 

implants are essential in medicine [348–350]. Vinoth 

and Datta [351] used genetic algorithms and artificial 

neural networks to characterize the structure of 

composite materials, in order to obtain artificial hip 

joint materials with higher Young’s modulus and tensile 

strength. Lantada et al. [145] used artificial neural 

networks to design the texture of artificial biological 

interfaces, improving their wetting performance. 

3.6 Green tribology 

Green tribology is a key direction for achieving healthy, 

safe, energy-saving, and sustainable development in 

tribology [352, 353]. It mainly includes areas such as 

friction emission control, friction noise control, and 

the application of green lubricants [354, 355]. Mahakur 

et al. [356] used machine learning methods such as 

support vector machines to study the wear resistance 

of biodegradable materials with different jute addition 

ratios. Bhaumik et al. [357] used genetic algorithms 

and neural network models to study biodegradable 

lubricants composed of various plant oils and different 

nano friction modifiers, analyzing the role of different 

components in improving lubrication performance. 

In the field of green tribology, AI technology enhances 

sustainability by optimizing lubrication processes, 

selecting eco-friendly materials, and improving energy 

efficiency. Through data analysis and predictive 

modeling, AI aids in reducing environmental impact, 

ensuring efficient resource usage, and minimizing 

wear and tear in tribo-systems. 

3.7 Other domains in tribology 

Beyond the six research directions highlighted above, 

the study of tribology is also extensively distributed 

across a variety of fields, such as landslides, crustal 

movements, etc. These areas underscore the profound 

relevance of tribology to human productive activities 

and everyday life, and they reflect the expansive scope 

of tribological research. Similarly, these research 

domains are also variably interconnected with AI to 

varying extents. Chou et al. [46] developed an effective 

AI model that improved the prediction of the peak 

friction angle of fiber-reinforced soil (FRS), achieving 

notable accuracy improvements. Ren et al. [52] used 

machine learning to analyze the behavior of seismogenic 

plate boundaries and showed that statistical features 

of velocity signals from individual particles in 

simulated granular faults could predict the overall 

stick-slip dynamics. 

4 The integration trend of AI and tribology: 

Tribo-informatics 

4.1 Informational expression of tribo-system 

4.1.1 Features of tribo-system information 

Tribo-informatics has originated from the profound 
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integration of AI and tribology, enhancing the efficiency 

and procedural rigor of tribological research through 

the establishment of standardized tribological 

methodologies, the construction of extensive tribology 

databases, and the employment of information 

technology for the systematic collection, categorization, 

storage, retrieval, analysis, and dissemination of 

tribological data [10]. Over recent years, tribo- 

informatics approaches have been applied in various 

domains including monitoring of tribological states, 

prediction of residual life, and reconstruction of wear 

morphologies [11, 27, 356]. However, the evolution of 

tribo-informatics is confronted with certain challenges, 

which will be critically discussed in this review.    

(1) Classification and recognition of tribological system 

information. It is necessary to give the multitude of 

information types within tribo-systems, determine the 

pertinent data to integrate with AI algorithms for 

specific tribological inquiries; (2) diversity in tribological 

research directions, AI algorithms, and tribo-system 

information. Identifying an optimal pathway for the 

fusion of these diverse elements in the resolution of 

tribological issues is crucial; and (3) establishment of 

standardization in tribological theories, experiments, 

and simulations. This is of significant importance for 

the creation of tribological databases. Additionally, 

the development of this field is contingent upon the 

availability of advanced signal sensing technologies 

and data storage systems. 

Tribological behavior is the result of the combined 

action of mechanical, physical, chemical, electrical, 

material science, and other disciplines. At the same 

time, it also has obvious system dependence and 

time evolution [358], so the tribo-system information 

covers a wide range, involves many disciplines, and 

is difficult to collect and process. The information 

sources of the friction process are extensive, and the 

data structure forms are various. A single physical 

information cannot accurately and completely describe 

the behavior of the tribo-system. To this end, it is 

necessary to establish a systematic tribo-system 

informatization model first, which provides a basis 

for revealing the flow law of tribological information 

at different scales, different levels, and between different 

systems. At present, the research of tribo-informatics 

faces many problems such as information collection, 

processing, and reuse.  

(a) In terms of information collection, tribological 

information mostly exists in the recessive form in  

the tribo-system, which brings great difficulties to 

tribological state monitoring. Using tribo-informatics 

technology, it is possible to easily find the relationship 

of observable measurements, which is, explicit 

quantities (such as acoustic, electrical, vibration, and 

thermal) and unobservable quantities, which are, 

recessive quantities (such as wear amount, lubrication 

state, and surface topography) to improve the integrity 

of the tribo-system information. 

(b) In terms of information processing, tribological 

information has the characteristics of multidisciplinary 

coupling and cross-scale correlation, resulting in too 

much information in tribological information units, 

and it is difficult for physics-based analysis methods 

to predict the behavior of tribo-systems accurately 

and efficiently. The information technology methods 

based on AI can search for the relationship between 

tribological information from regression, classification, 

clustering, dimensionality reduction, and other aspects. 

(c) In terms of information reuse, database 

technology can be used to build a huge tribological 

information pool after gradually establishing tribological 

standards and data representation consistency. The 

tribological test data, simulation data, and literature 

data are summarized into the tribological database, 

and the tribological information can be reused. 

4.1.2 Representation of tribo-system 

In order to solve the problems of information 

collection, processing, and reuse of tribo-systems, 

according to the three axioms of tribology [358], 

tribo-system information can be divided into five 

categories: input information, system intrinsic 

information, output information, tribological state 

information, and derived state information (as shown 

in Fig. 8). The information generated by the working 

process of any tribo-system should be included in 

these five types of information. It should be noted 

that these five types of information are divided 

according to the four categories of tribological research, 

namely tribological condition monitoring, behavior 

prediction, system optimization, and mechanism 

analysis. The essential purpose of AI technologies is 

to obtain the data association of several groups of 

information, and to obtain the correlation between 
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these five types of information using informatics 

methods is the focus of tribo-informatics research. 

(a) Input information (I), mainly refers to the initial 

setting amount of the tribo-system. These initial 

settings should generally include load, friction speed, 

friction time, contact form (point-to-surface contact 

and surface-to-surface contact), lubrication form (dry 

friction, oil lubrication, and grease lubrication), type 

of friction (sliding friction and rolling friction), and 

initial setting of environmental conditions (temperature, 

humidity, vacuum, and radiation intensity). The 

determination of the input information is related to 

the identification of the initial state of the work, but 

not to the evolution of time. Researchers can usually 

optimize the performance of tribo-systems by adjusting 

the input information (such as the study of tribo-system 

optimization) and can also use other methods to 

offset the negative effects of certain input quantities 

(such as the study of extreme operating conditions 

tribology). 

(b) System intrinsic information (S), refers to the 

properties of the tribo-system, mainly including the 

surface information related to the friction pair itself 

and the interface information related to the contact of 

the friction pair. The information includes the friction 

pair material type, hardness, elastic modulus, crystal 

structure, lattice constant, initial surface morphology, 

shape of the friction pair, type, and properties of  

the lubricant. The existence of certain information is 

independent of whether friction occurs. However, the 

evolution of this information is related to the process 

of friction. For instance, the surface morphology 

characteristics of a material exist even in the absence 

of friction, but these characteristics may change when 

friction occurs. Generally, the eigenvalues of the system 

generally emphasize the initial value. The inherent 

parameters of the tribo-system should be confirmed 

at the beginning of friction. 

(c) Output information (O), with the existing value 

of the tribo-system as the criterion, mainly reflects 

the function achievement degree of the tribo-system. 

The functions of the tribo-system mainly include 

motion transfer, energy transfer, information transfer, 

and material processing. Therefore, the output 

information can include motion transfer accuracy, 

energy output efficiency, energy loss ratio, and parts 

processing quality. The output information is the 

primary indicator for judging the working performance 

and remaining life of the tribo-system. For example, 

when the amount of wear is used as the life evaluation 

criterion, it is actually because of the wear that 

reduces the accuracy of motion transmission, or the 

proportion of energy loss is too large. Therefore, to 

determine which information belongs to the system 

 

Fig. 8 Information expression of tribo-system. 
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output information, it is most necessary to determine 

what value of the tribo-system exists. 

(d) Tribological state information (Ts), refers to the 

tribological state quantity that evolves with time  

and working stage in the tribological process. The 

information mainly includes friction force, wear 

amount, wear depth, wear rate, lubrication state, and 

friction surface topography. The tribological state 

information has obvious time series characteristics, 

which is closely related to the input information 

and system intrinsic information, and greatly affects 

the output performance and function achievement 

of the tribo-system. At the same time, this kind of 

information is also the most concerning quantity in 

traditional tribological research and is the most 

important data source in the analysis of tribo-system 

behavior. 

(e) Derived state information (Ds), refers to the 

multidisciplinary state information generated along 

with the tribological behavior during the working 

process of the tribo-system, which is determined by the 

multidisciplinary coupling characteristics of tribology. 

This information widely distributes in a variety of 

friction-derived phenomena, and the variety will 

increase with the deepening of tribological research. 

At present, the derived state information mainly 

includes friction images, noise, vibration, friction heat, 

triboelectric signals, and magnetic signals. This kind 

of information is often associated with tribological 

state information, which is explicit or implicit. For 

example, the image information is closely related to 

the friction surface morphology, and the vibration 

information is closely related to the friction force 

information. Therefore, researchers can enhance their 

understanding of the working state of a tribo-system 

by establishing a data association of the two types of 

state information. 

According to the above analysis and information 

classification, we can obtain the information expression 

formula of the tribology system, and for any tribology 

research object, the information can be classified and 

stored according to Eq. (1): 

s sTribo-system information  {I,S,O,T ,D }      (1) 

After this, it is convenient for researchers to intervene 

in informatics methods and increase the data 

association between different categories of information. 

In a sense, the focus of “tribo-informatics” research is 

to use informatics methods to establish the correlation 

of two or more tribological information. 

4.1.3 Example: Triboelectric nanogenerators (TENGs) 

The TENG, as an innovative tribological device, 

facilitates both energy harvesting and information 

sensing. It can function as a sensor, an energy harvester, 

or a power supply unit, and there is a critical need for 

systemic optimization to enhance its performance.  

Hence, its applications need a more comprehensive 

and intuitive utilization of tribo-system information. 

In this section, TENG will be rediscovered from the 

perspective of informatics based on the informational 

expression of tribo-system (as shown in Fig. 9). This 

example illustrates that the framework of tribo- 

informatics allows for an in-depth understanding of 

the informational architecture, functional typologies, 

and optimization directions of the tribo-systems 

(e.g., TENGs). More importantly, it delineates the 

general objectives of tribo-informatics, which include 

state monitoring, behavior prediction, and system 

optimization. 

Firstly, TENG needs to be analyzed from the 

functionality of the tribo-system. In terms of system 

function, the main functions of the TENG tribo-system 

include sensing and energy supply, so the purpose  

of its tribological system is energy transfer and  

information transfer. The main design purpose of the 

tribological system is the main basis for judging its 

output information. 

Secondly, it is classified from the purpose of 

tribological research, including condition monitoring, 

behavior prediction, system optimization, and 

mechanism analysis. In the research of TENG, its state 

monitoring mainly includes real-time monitoring  

of tribological and derived state information such  

as output current, voltage, friction force, and wear 

amount. Similarly, its behavior prediction mainly 

focuses on the evolution of these state quantities over 

time. As for system optimization, we first learned 

that the main purpose of TENG is information 

and energy transfer, so the main measures of its 

system performance are physical quantities such as 

information transfer efficiency, information carrying 
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capacity, output function, and power conversion 

efficiency. According to the information expression of 

the tribological system, in order to achieve system 

optimization, its input quantities (such as relative 

motion speed, vibration frequency, ambient temperature, 

and humidity), system intrinsic information (such as 

surface contact materials, and surface topography) 

can be changed. It can be seen from this that the 

use of the informational expression model of the 

tribology system can provide researchers with a 

more comprehensive system optimization direction 

and improve research efficiency. 

4.2 Research process of tribo-informatics 

From the classification of research purposes, 

tribological research can be divided into tribological 

condition monitoring, tribological behavior prediction 

[363], tribo-system optimization, and friction/wear/ 

lubrication mechanism analysis. At the same time, 

informatics methods usually have the purpose of 

regression, classification, clustering, and dimensionality 

reduction [11]. Under the background of the birth of 

tribo-informatics, these types of tribological research 

with different purposes will have new and more 

efficient solutions. In this section, from the perspective 

of tribo-informatics, the way of thinking and the 

research process to solve these types of tribological 

problems is reorganized. It should be pointed out 

that the analysis of friction/wear/lubrication mechanism 

is often performed by finding data associations of 

various types of information, and then combining 

them with physical models for analysis. The research 

process is diverse, and the informatics method is 

difficult to achieve the research purpose completely. 

 

Fig. 9 Informational expression of tribo-system: Taking the TENG as an example [359]. Reproduced with permission from Ref. [359],
© American Chemical Society 2023. (a) A TENG designed for adaptable energy harvesting capabilities, suitable for deployment in 
coastal environments to monitor oceanic wave conditions [360]. Reproduced with permission from Ref. [360], © American Chemical 
Society, 2021. (b) Integration of a TENG-based sensor within a vehicle’s steering mechanism to infer driver intentions [361]. Reproduced 
with permission from Ref. [361], © Elsevier Ltd. 2023. (c) Development of a self-actuated, real-time gear condition monitoring system 
utilizing TENG technology, which concurrently harvests energy from gear power transmission [362]. Reproduced with permission from 
Ref. [362], © Elsevier Ltd. 2020. 
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4.2.1 Tribo-informatics approach for status monitoring 

The core purpose of tribo-informatics research on 

tribological status monitoring is to achieve the fault 

diagnosis by fitting tribological state information 

with five types of tribo-system information through 

information processing methods (as shown in Fig. 10). 

A complete status monitoring process can be listed as 

follows: (a) the first step is to gather information, 

which mainly includes easy-to-observe state parameters 

and existing parameters. The easy-to-observe state 

parameters may be state parameters that are readily 

available from the derivative signals, outputs, and 

tribological information and these parameters may 

be different for each particular tribological study. 

Existing parameters include system intrinsic information 

and input information, which are determined when 

the system is set up, thus there is no need to set up 

sensors to obtain them; (b) the second step is to 

process information. Easy-to-observe state parameters 

as data sets are necessary for this process yet existing 

parameters are not necessary, which can assist in 

building a suitable model. A suitable model makes 

information processing more efficient and research 

interpretable. In order to fit tribological state 

information, two informatics processing methods, 

regression, and dimensionality reduction, are usually 

used. Regression can help establish the correlation 

between obtained five types of tribo-system information 

and tribological state information parameters, and 

dimensionality reduction can sort the correlation 

strength. With the correlation strength ranking, specific 

information can be selected to achieve a better fitting 

effect and robustness; and (c) the final step is to have 

a fault diagnosis with the obtained tribological state 

information through classification. 

4.2.2 Tribo-informatics approach for behavior prediction 

The core purpose of tribological behavior prediction 

is to predict the remaining service life with temporal 

signals and existing parameters (as shown in Fig. 11). 

The process can be described as “information gathering, 

pre-processing, information processing, and remaining 

service life predicting”. (a) The first step is to gather 

information which can mainly be divided into 

temporal signals and existing parameters. While  

the existing parameters information is the same as 

the one in tribological status monitoring research, 

temporal signals are different from easy-to-observe 

status parameters. Temporal signals also consist of 

tribological state information, output, and derivative 

signals, and the tribological information could be 

the result of the status monitoring process. The  

main difference is that temporal signals insist on 

time-variant characteristics when easy-to-observe 

status already eliminates these characteristics, for 

example, by averaging parameters. Temporal signals 

contain information gathered from historical stages 

and current stages of various systems under similar 

circumstances; (b) the second step is to pre-process  

 
Fig. 10 Tribo-informatics research process for status monitoring. 
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the gathered information to quantify a complicated 

tribology system. In this step, characteristic quantities 

should be carefully selected with the help of models 

built by existing parameters. For example, to quantify 

surface morphology, parameters such as roughness 

and skewness are preferred; (c) the third step is to 

process information with data sets from characteristic 

quantities and models based on existing parameters. 

Still, models are strongly recommended but not 

necessary. To identify key impact factors, clustering 

and dimensionality reduction methods are adopted. 

Clustering is used to establish the correlation between 

no-label time-variant characteristics and service life. 

Dimensionality reduction is used to identify factors 

that are strongly correlated with service life while 

weakly correlated with other factors; and (d) in the 

final step, key impact factors are classified to predict 

different failure forms and regressed to predict the 

remaining service life. 

4.2.3 Tribo-informatics approach for system optimization 

The main purpose of system optimization is to achieve 

the optimization of target performance (as shown in 

Fig. 12). (a) In the first step, specific targets will be 

obtained at the beginning of the research. These 

targets are derived from the deficiencies in practical 

applications and the pre-research for advanced 

tribo-systems; (b) in the second step, decision-making 

needs to distinguish the system optimization during 

the design stage or the working stage. The degrees of 

freedom are different at different stages, but all these 

optimizations can be classified into system intrinsic 

information characters and input information characters. 

In the working stage, to have performance-seeking 

Fig. 11 Tribo-informatics research process for behavior prediction. 

Fig. 12 Tribo-informatics research process for performance optimization. 
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control, system intrinsic information characters tend 

to be optimized such as automatic oil replenishment 

bearing and intelligent surface by adjusting the 

contact pair and lubricant. The system optimization 

in the design stage can be more biased towards the 

adjustment of the input information characters. Some 

compromises in other systems may significantly 

improve the state of the tribo-system by changing the 

friction velocity, friction time, and friction form. 

These decisions are supported by status evaluation 

and models. Status monitoring and behavior prediction 

play vital roles in status evaluation; (c) the third step 

is to determine the amount of adjustment by regression 

and update the existing parameters in time; and (d) 

the first three steps are executed repeatedly until the 

goal of performance optimization is achieved. 

4.3 Future trends of tribo-informatics 

Tribo-informatics was born under the background of 

the rapid development of informatics technology. AI 

technologies have improved the efficiency of data  

collection, processing, analysis, and reuse. Under the 

guidance of tribo-system informatization expression 

and tribo-informatics research ideas, new driving 

force will be given to tribological research. The future 

development trend of “tribo-informatics” is to improve 

the induction and classification of tribo-system 

information, and enrich the conceptual connotation, 

application scenarios, and technical implementation 

paths of tribo-informatics. To elaborate on the driving 

role of tribo-informatics in tribology more specifically, 

the future research directions of tribo-informatics will 

be carried out from six aspects based on the different 

research fields of tribology research. 

4.3.1 Basic theory of tribology 

Basic theoretical research has creative characteristics, 

while AI technology is essentially about obtaining 

data correlations between physical quantities, so it 

cannot directly create theoretical knowledge. However, 

using AI technology can provide a more intuitive 

data foundation for mechanism analysis. For example, 

researchers can firstly establish the correlation between 

the dynamic contact resistance of the current carrying 

friction pair and signals such as acoustics, vibration, 

and acoustic emission, conducting correlation analysis, 

and then identify the main factors affecting the 

current carrying friction performance, and reveal 

mechanism. On the other hand, super-slip/ultra-low 

wear is the purpose of most tribological studies, 

which is of great significance for reducing frictional 

energy consumption and prolonging the life of 

mechanical systems. Using tribo-informatics-based 

behavior prediction methods, it is possible to establish 

the relationship between various inputs such as 

structures, compositions, environments, or system 

intrinsic information, and friction/wear performance. 

In this way, various factors affecting super-slip/ultra- 

low wear can be found, and high-throughput screening 

of input/system eigenvalues can be established to 

realize the design of super-slip/ultra-low wear tribo- 

systems. 

4.3.2 Intelligent tribology 

Intelligent tribology is the most typical research 

direction with the characteristics of “tribo-informatics”, 

and it is also the most widely studied field. It not 

only enables online monitoring and fault diagnosis 

of tribological systems, but also enables efficient and 

intelligent design of friction/lubrication materials. 

Here is only one possible development idea proposed, 

intelligent regulation of interfacial friction/lubrication 

behavior is an important research direction that has 

developed rapidly in recent years, mainly including 

online monitoring of coating status, self-healing of 

damage, and active lubrication regulation. Among 

them, the online monitoring technology can monitor 

the coating state in real-time by establishing the 

relationship between the coating structure variables 

(such as morphology, cracks, and wear) and the 

easily observable derived state information. Damage 

self-healing involves high-throughput screening of 

many lubricating materials, and active lubrication 

regulation requires establishing the relationship 

between lubricant dosage and tribological state. These 

intelligent detection, regulation, repair, and other 

purposes can be used to establish data association 

through tribo-informatics methods to provide a basis 

for final decision-making. 

4.3.3 Component tribology 

The fundamental components of tribology are 

those important parts of machine systems that can 
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exist and be sold separately. The application of AI 

technology in this field should mainly focus on 

product optimization design and service performance 

prediction. For example, using AI technology to 

optimize the pore structure of bearing cages can 

improve the passive oil replenishment performance 

of bearings. At the same time, establishing the 

relationship between different oil replenishments and 

friction torque fluctuations can guide the amount   

of lubricating oil added. Improving product design 

efficiency and predicting performance degradation 

patterns are of great significance for the application 

of AI technology in this field. 

4.3.4 Extreme tribology 

Extreme tribology problems under extreme working 

conditions often exist in deep space, deep ground, 

deep sea, polar regions, and other environments. These 

tribo-systems have high precision requirements, 

complex structures, and extremely high costs, which 

makes it difficult to predict performance and life 

through repeated tests. Tribo-informatics methods 

can first combine limited data for sample 

amplification, and then perform data association 

based on condition monitoring and life prediction 

methods. This method can effectively avoid the 

inaccurate prediction caused by the difficulty of direct 

measurement of some state parameters under extreme 

working conditions. 

4.3.5 Bio-tribology 

Bio-tribology mainly studies the tribological properties 

of joints, implants, and wearable devices in living 

organisms. Among them, there is no significant 

difference in the study of the tribological performance 

between joints in living organisms and implants in 

the human body compared to the tribological research 

in machine systems. In terms of wearable devices, 

with the development of the concept of “metaverse”, 

more attention should be paid to the development of 

tribological devices that can realize environmental 

awareness and human-computer information interaction, 

including artificial limbs that can sense contact 

movement, tactile skin based on tribology, and so 

on. Among them, achieving data correlation between 

environmental information, contact point tribology 

information, and brain signals is the key application 

focus of AI technology. 

4.3.6 Green tribology 

Green tribology mainly studies various aspects such 

as friction emission control, friction noise suppression, 

green lubricants, and the design of extended life friction 

pairs. The control of friction process derivatives is 

the research focus of green tribology. AI technology 

can promote the development of green tribology by 

establishing a data relationship between the input 

and derivative quantities of the tribology system, such 

as noise, debris particles, and lubricant loss. 

5 Conclusions 

With the integration of artificial intelligence (AI) 

technology and tribology research, “AI for tribology” 

has attracted more and more researchers’ attention. 

This article first analyzes the publication status of 

papers in this direction and clarifies the research 

hotspots and trends of “AI for tribology”. Subsequently, 

the field of tribology research was divided into basic 

theory of tribology, intelligent tribology, component 

tribology, extreme tribology, bio-tribology, and green 

tribology. Then, the role of AI technology in each 

research field was reviewed. 

AI technology has greatly promoted the development 

of tribology by establishing data associations 

between tribological system information. To achieve 

a deep integration of tribology and informatics, 

“tribo-informatics” has been proposed as a new 

discipline direction. In this paper, informational 

expression for tribology systems are proposed, namely 

input information (I), system intrinsic information (S), 

output information (O), tribological state information 

(Ts), and derived state information (Ds). Then, the 

technical implementation path of tribo-informatics is 

introduced in terms of tribological state monitoring, 

behavior prediction, and system optimization. Finally, 

the future development trend of AI Technological 

convergence is prospected based on the tribology 

research field. It is hoped that this article can increase 

researchers’ understanding of “AI for tribology”, 

“tribo-informatics”, and improve the efficiency of 

tribology research. 
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