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Abstract: The tribological properties of self-lubricating composites are influenced by many variables and 

complex mechanisms. Data-driven methods, including machine learning (ML) algorithms, can yield a better 

comprehensive understanding of complex problems under the influence of multiple parameters, typically for 

how tribological performances and material properties correlate. Correlation of friction coefficients and wear 

rates of copper/aluminum-graphite (Cu/Al-graphite) self-lubricating composites with their inherent material 

properties (composition, lubricant content, particle size, processing process, and interfacial bonding strength) 

and the variables related to the testing method (normal load, sliding speed, and sliding distance) were analyzed 

using traditional approaches, followed by modeling and prediction of tribological properties through five different 

ML algorithms, namely support vector machine (SVM), K-Nearest neighbor (KNN), random forest (RF), 

eXtreme gradient boosting (XGBoost), and least-squares boosting (LSBoost), based on the tribology experimental 

data. Results demonstrated that ML models could satisfactorily predict friction coefficient and wear rate from 

the material properties and testing method variables data. Herein, the LSBoost model based on the integrated 

learning algorithm presented the best prediction performance for friction coefficients and wear rates, with R2 of 

0.9219 and 0.9243, respectively. Feature importance analysis also revealed that the content of graphite and the 

hardness of the matrix have the greatest influence on the friction coefficients, and the normal load, the content 

of graphite, and the hardness of the matrix influence the wear rates the most.  
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1  Introduction 

Metal matrix self-lubricating composites possess both 

excellent mechanical properties and good lubricating 

properties, which make them a broad application 

prospect. Usually, the type and content of metal 

matrixes and reinforcement are regulated to meet the 

requirements of composites under different working 

conditions, such as high/low temperature, high pressure, 

high vacuum, high radiation, high corrosion, etc. [1]. 

According to their matrix types, metal matrix 

self-lubricating composites are mainly Cu-based, 

Al-based, Fe-based, and Ni-based self-lubricating 

composites. Herein, Cu-based self-lubricating 

composites have good lubrication stability, mechanical 

properties, corrosion resistance, and electrical 

conductivity [2], and Al-based self-lubricating 

composites have good fatigue resistance, wear resistance,  
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corrosion resistance, damping characteristics, and low 

coefficient of thermal expansion [3, 4], which make 

Cu/Al-based self-lubricating composites become the 

focus of research and application in metal matrix 

self-lubricating composites. 

In Cu/Al-based self-lubricating composites, 

graphite—the most common inorganic solid lubricant, 

is added to the matrixes to improve tribological 

properties. Some ceramic particles as reinforcing 

phases, such as SiC and Al2O3, can also be incorporated 

into the composites to improve the physical and 

mechanical properties of the composites [5]. As 

critical indexes, the friction coefficient and wear rate 

are tested and analyzed to evaluate the tribological 

properties of the composites. It has been found that 

the tribological behavior of self-lubricating composites 

is a complex system response with many influencing 

factors and complex mechanisms. So far, the complexity 

between tribological properties and influencing 

variables has been deeply discussed by some scholars. 

For example, Pan et al. [6] explored the relationship 

between tribological properties and influencing factors 

from multiple perspectives including nanoscience, 

materials science, surface science, mechanics, and 

tribology, and revealed their potential coupling/synergy 

in adjusting the tribological behavior of metal matrix 

nanocomposites. Therefore, to obtain the optimal 

properties of self-lubricating composites, it is usually 

necessary to analyze the interactions of composition, 

preparation process, and tribological properties of 

the composites, as well as how these parameters 

affect their properties [7]. Unfortunately, most of  

the traditional studies on the tribological properties 

of self-lubricating composites are based on isolated 

experiments and two-parameter relationships, which 

makes it difficult to systematically analyze and 

understand the tribological properties. However, Pan 

et al. [6] also quantitatively described the anti-friction 

and wear mechanisms of metal matrix nanocomposites 

by incorporating classical friction and wear theories, 

and elucidated their relationship with the influencing 

factors, which provides a solid foundation for 

understanding, predicting, and designing the tribological 

properties of metal matrix nanocomposites. 

With the rapid development of artificial intelligence 

(AI), machine learning (ML), as an important branch 

in the field of AI, had been widely researched and 

applied in many fields such as status monitoring of 

tool wear [8], life prediction of bearing [9], fault 

diagnosis of equipment [10]. Practices have proved 

that ML algorithms have great potential in the 

analysis and modeling of complex problems [11, 12]. 

In ML models, not only the relationship between input 

and output can be fitted by setting multiple input 

and output parameters, but also the trained model 

can realize the prediction of unknown data. This 

provides a solution for analyzing complex problems 

such as friction coefficient and wear rate under the 

influence of multiple variables, thereby realizing the 

prediction of tribological performance under different 

material compositions and friction experimental 

conditions [13, 14]. 

Due to the advantages of ML models, they have 

been used to try to solve the problems encountered 

in self-lubricating composites. Yin et al. [13] and 

Argatov and Chai [14] reviewed the current research 

status and application potential of ML models in 

tribological research, the result of various analyses 

showed that ML models have high accuracy in 

simulating mechanical and tribological properties of 

composites as a function of various process parameters. 

Hasan et al. [15] successfully applied ML models in 

the studies on friction and wear analysis of graphene- 

reinforced aluminum matrix composites, prediction 

of friction and wear of aluminum-graphite composites 

under lubricated conditions [16], and tribological 

information modeling of dry friction and wear of 

aluminum matrix alloys [17]. In this way, not only the 

effects of multiple variables are combined during the 

study and analysis of friction coefficients and wear 

rates to overcome the shortcomings of traditionally 

isolated experiments and two-parameter studies, but 

also the tribological experimental data are used to 

train the ML models, which realizes the prediction of 

friction coefficients and wear rates under different 

material compositions and friction experimental 

conditions [15–17]. Compared with traditional methods, 

this method is more comprehensive in considering 

the influencing variables of tribological properties and 

could achieve the prediction of friction coefficient 

and wear rate based on material compositions and 

sliding conditions, which opens a new avenue for the 

research and analysis of tribological properties of 

self-lubricating composites. 
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Considering the similarity and universality among 

copper, aluminum, and their composites, copper/ 

aluminum-graphite (Cu/Al-graphite) self-lubricating 

composites were taken as the research subject in this 

work. We provided a brief analysis and overview of 

the friction and wear mechanisms, the variables affecting 

the tribological properties of Cu/Al-graphite self- 

lubricating composites. And then, taking the friction 

coefficient and wear rate as the tribological performance 

indicators, five ML algorithms were adopted to 

establish unified ML models for two different matrix 

types of self-lubricating composites by compiling 

the existing research results of three widely used 

Cu/Al–graphite self-lubricating composites. Besides, 

the differences in the predictive performance of five 

different ML models were compared, followed by 

analyzing the relative importance of influence variables 

on the friction coefficients and wear rates based on 

the RF model feature importance attributes. 

2 Friction and wear mechanisms of Cu/Al- 

graphite self-lubricating composites and 

the analysis of influencing factors 

2.1 Friction and wear mechanisms 

The Cu/Al-graphite composites presenting self- 

lubricating performances depend mainly on the fact 

that the graphite can be dragged to the friction 

surface to form self-lubricating and transferring films 

during sliding, thus reducing the friction coefficient 

and wear degree [18]. Generally, the friction coefficient 

of metal matrix self-lubricating composites can be 

expressed as the sum of each component according 

to the mixing rules:  

m m f f
                   (1) 

where, 
m f

1   , and 
f

  and 
m

  are the coverage 

rates of the lubricating films and the area fraction of the 

matrix material. 
f

  and 
m

  are the friction coefficients 

of the metal matrix and solid lubricant [19]. 

However, affected by the microstructure, graphite 

content, and sliding condition, it is not always possible 

to form complete self-lubricating and transferring 

films, but rather a complex and mixed friction state. 

According to the results of the latest literature, the 

friction coefficient of metal matrix self-lubricating 

composites can be further expressed as [20]: 

2 2
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Where, 
f

kV  , k represents the lubrication efficiency 

of the lubricant, that is, the ability of the lubricant to 

form a lubricating film, and V represents the volume 

fraction of the solid lubricant.  

In order to better understand, predict and design 

the tribological properties of materials, it is necessary 

to analyze the factors influencing the friction 

mechanism. According to the theory of adhesive 

friction proposed by Bowden and Tabor [21], sliding 

friction is a leaping process in which adhesion and 

sliding occur alternately. And the friction force is the 

sum of the shear force (T) at the point of adhesion 

and the furrow force (Pe) generated from the furrow 

effect. Therefore, the friction coefficient () can be 

expressed as Eq. (3): 

e
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where, Ff and N denote frictional force and normal 

load, respectively. 
T

  is the component of the friction 

coefficient caused by adhesion between friction surfaces 

of materials. 
eP

  is the component of the friction 

coefficient due to deformation, which is related to the 

mechanical properties of materials, such as strength, 

hardness, and surface characteristics, like surface 

roughness [17, 22]. 

As metal matrix self-lubricating composites, the 

wear mechanisms are mainly abrasive wear, adhesive 

wear, delamination wear, and corrosion wear, 

according to their matrix properties and the state of 

self-lubricating films. With the increase of solid 

lubricant content, it is more conducive to forming 

self-lubricating and transferring films. At the same 

time, however, it also affects the mechanical properties 

of the composites such as strength and toughness, 

which results in greater degree of wear [23]. Studies 

have also shown that the wear mechanism of metal 

matrix self-lubricating composites is not only related 

to the properties of the matrix materials and the 

lubricant content, but also influenced by the normal 

load, sliding speed, sliding distance, and other 

operating conditions [19, 23–26]. 
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2.2     Variables impacting friction and wear of 

Cu/Al-graphite self-lubricating composites 

The variables that influence the friction and wear   

of self-lubricating composites include the material 

variables (inherent material properties, such as 

composition, lubricant content, lubricant particle size, 

processing process, interfacial bonding strength, etc.) 

and tribological variables (the variables related to 

testing methods, such as normal load, sliding speed, 

sliding distance, etc.). In this section, the effects of 

these variables on friction and wear of Cu/Al-graphite 

self-lubricating composites are discussed using 

traditional analysis. 

2.2.1 Effect of the material composition 

In metal matrix self-lubricating composites, the 

properties of the matrix phase affect the mechanical 

and tribological properties of the composites. Usually, 

metallic elements, such as copper, zinc, manganese, 

chromium, and tin, are added to the matrix to 

improve the mechanical and tribological properties [27]. 

Nano-treating, as an emerging metallurgical method, 

is important to improve the properties of composites 

[28]. Introducing nanoparticles (such as TiC [29] and 

WC [30]) into composite systems has an important 

effect on grain refinement, elimination of thermal 

tearing, and improvement of properties such as 

corrosion resistance and hardness of the material, 

thereby influencing their tribological performances. 

The friction coefficients and wear rates of several 

Cu/Al-graphite self-lubricating composites with 

different material compositions and similar graphite 

content (5–6 vol%) are shown in Figs. 1 and 2, 

respectively. In general, these composites consistently 

show decreased friction coefficients and wear rates 

compared to their matrix materials. However, it is 

important to note that a significant decrease in friction 

coefficients does not necessarily lead to a notable 

decrease in wear rates, and vice versa. In addition, 

the degree of reduction in friction coefficients and wear 

rates varies for composites with different matrixes and 

reinforcement. 

2.2.2 Effect of graphite content and particle size 

As a solid lubricant, graphite is the most important 

 

Fig. 1 Friction coefficients of several Cu/Al-graphite self-lubricating composites [26, 31–34]. 

 

Fig. 2 Wear rates of several Cu/Al-graphite self-lubricating composites [26, 32–35]. 
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composition for providing self-lubricating performances 

of the composites. Large amounts of graphite are 

conducive to forming self-lubricating and transferring 

films and achieving a lower friction coefficient, but 

that would also destroy the continuity of the matrix, 

to decrease the mechanical properties and wear 

resistance. And too little graphite cannot effectively 

reduce the friction and wear rate. Therefore, a proper 

graphite content is essential for these self-lubricating 

composites. Figures 3 and 4 show the influence of 

graphite content on the mechanical and tribological 

properties of Cu/Al–graphite self-lubricating composites, 

respectively. Obviously, the hardness and tensile 

strength of the composites show a near linearity 

decrease trend with increasing graphite content. The 

tribological properties are improved significantly. 

More graphite leads to the lower friction coefficients 

and wear rates. When the graphite exceeds the critical 

content, the friction coefficients would not remarkably 

decrease further, and the wear rates increases instead 

(Fig. 4(b)), as the result of the influence of graphite 

content on mechanical and tribological properties. 

The particle size and distribution of graphite are 

also non-negligible features of tribological properties 

of composites [36]. Figure 5 presents the variation of 

friction coefficients and wear rates of Cu-graphite 

self-lubricating composites with increasing graphite 

particle sizes. When the graphite content is certain, 

the smaller the particle size of graphite, the more 

uniform its distribution in the matrix, which is more 

conducive to providing a stable lubricating medium 

between the sliding surfaces. Therefore, the lower 

friction coefficients and wear rates are obtained with 

the smaller graphite particles. However, the too-small 

graphite particles cause more interfaces, which reduce 

the strength and hardness of the composites. Due to 

the difficulty of achieving uniform strength and 

lubricating properties, resulting in worse wear 

resistance performance of the composites [37]. 

2.2.3 Effect of the preparation process 

Although factors such as material composition and 

graphite content have significant effects on tribological 

properties, selecting a suitable preparation process  

 
Fig. 3 (a) Hardness [31, 38] and (b) tensile strength [35, 39] of several Cu/Al-graphite self-lubricating composites with different 
graphite content. 

 

Fig. 4 (a) Friction coefficients [31, 33] and (b) wear rates [31, 33, 34] of several Cu/Al-graphite self-lubricating composites with 
different graphite content. 
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is a prerequisite for obtaining excellent material 

properties. On the one hand, the preparation process 

affects the inherent properties of the matrix materials, 

such as strength, hardness, toughness, and other 

mechanical and tribological properties. On the other 

hand, the distribution of the lubricating phase, 

wettability of the lubricating phase and matrix, 

porosity, and other macro-micro structures are related 

to the preparation processes. Currently, the most used 

methods are powder metallurgy (such as hot-pressing 

sintering, microwave sintered, and spark plasma 

sintering) and stir casting.  

As to non-metallic solid lubricants, the powder 

metallurgy technology allows a relatively easy 

combination of metal and non-metal; therefore, it 

has a greater advantage in the preparation of metal 

matrix graphite self-lubricating composites [40]. For 

instance, Su et al. [33] prepared Cu/15 vol% graphite 

self-lubricating composites using hot-pressing sintering, 

and the friction coefficient of the composite was 

reduced to 0.09, which is 80% lower than that of the 

matrix material. Rajkumar and Ararindan [36] 

prepared Cu-graphite composites by microwave 

sintering method, and the friction coefficient of the 

composites was reduced to 0.12. Yang [41] prepared 

tin bronze/ 0.8 vol% graphite self-lubricating 

composites by the vacuum hot-pressing sintering 

method. When the sintering temperature was     

875 °C, the graphite distribution was uniform and no 

agglomeration phenomenon and the density of the 

material was close to 100%.  

The powder metallurgy method allows flexible 

adjustment of the composition of the material and is 

superior to conventional casting materials in improving 

the wear resistance of the material [42]. In contrast, 

the smelting-cast method can obtain materials with  

high density and few pores, and the temperature in 

processing is conducive to promoting interfacial 

bonding properties. The prepared materials possess 

better overall properties. Bhaskar et al. [43] prepared 

the SiC reinforced AA2024 alloy composite material 

by stir casting method, whose bending strength, 

ultimate tensile strength, and friction coefficient are 

515.97 MPa, 202.27 MPa, and 0.135, respectively. 

2.2.4 Effect of interfacial bonding strength 

For multiphase composites, the phase interface of the 

material is always a feature that cannot be ignored. In 

self-lubricating composites, the interfacial bonding 

strength not only affects the mechanical properties of 

the composites but also affects the friction and wear 

properties [44]. Su et al. [33] studied the tribological 

properties of three kinds of lubricating materials 

having different matrix-types, indicating that the 

tribological properties of self-lubricating composites 

with different matrix types were affected by the 

interfacial bonding strength between the matrix  

and lubricants. In general, the interfacial bonding 

strength can be enhanced by modifying the surface of 

the solid lubricant, thus improving the friction and 

wear performances of the composites. For example, 

Moustafa’s comparative study of Cu-coated and 

uncoated graphite composites showed that the 

Cu-coated graphite composites obtained high interfacial 

bonding strength and low wear rates due to the high 

mismatch and good contact between graphite and 

Cu-matrix [39]. 

2.2.5 Effect of normal load 

The magnitude of the normal load has an important 

 

Fig. 5 (a) Friction coefficients [37] and (b) wear rates [37] of Cu-graphite self-lubricating composites with different grain sizes of 
graphite. 
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influence on the formation and retention of self- 

lubricating and transfer films, the deformation of 

the material, and the adhesion tendency. Generally, 

the increase in normal load leads to greater plastic 

deformation on the subsurface of the self-lubricating 

composites and increases the rough contact between 

the rough bodies, thus increasing the friction force. 

However, the increasing normal load can also promote 

the diffusion of graphite from the subsurface to the 

sliding surface, which helps to form self-lubricating 

films. Figure 6 shows the influence of normal load on 

the friction coefficients and wear rates of several 

Cu/Al-graphite self-lubricating composites. The friction 

coefficients of Al-graphite self-lubricating composites 

presented a downward trend with the increase of 

load, but that of the Cu-graphite self-lubricating 

composite rose. Overall, the wear rates of the three 

self-lubricating composites increased with increasing 

normal loads (Fig. 6(b)). However, the SiC-reinforced 

Al-graphite self-lubricating composites show a trend 

of decreasing first and then increasing, which may 

relate to the addition of SiC that enhanced the wear 

resistance of the composites. 

2.2.6 Effect of sliding speed 

The heating, deformation, chemical changes, and wear 

of the surface layer of composites caused by sliding 

speed change the nature of the surface layer and the 

interaction of the friction surfaces, thus affecting the 

friction coefficient and wear rate. Figure 7 summarizes 

the effect of sliding speed on the friction coefficients and 

wear rates of several Cu/Al-graphite self-lubricating 

composites. 

In general, friction coefficients decrease first and 

then increase with increasing sliding speed (Fig. 7(a)). 

Firstly, the increase of sliding speed reduces the 

probability of contact between the rough bodies, so 

the adhesion component of the friction coefficient 

decreases. Secondly, the friction heat generated during 

the sliding also helps to decrease friction by softening 

the rough body. As a result, the friction coefficients 

decrease with sliding speed increasing under low-speed 

sliding conditions. However, when the sliding speed 

exceeds a critical value, the self-lubricating and 

transferring films formed on the sliding surface with 

low graphite content are thin and have poor adhesion, 

which may easily peel from the sliding surface  

 
Fig. 6 (a) Friction coefficients [45–47] and (b) wear rates [35, 48, 49] of several Cu/Al-graphite self-lubricating composites with different
normal loads. 

 

Fig. 7 (a) Friction coefficients [50-52] and (b) wear rates [50, 51, 53] of several Cu/Al-graphite self-lubricating composites with 
different sliding speeds. 
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during the process of high-speed sliding and lead to 

higher friction coefficients. However, the friction 

coefficient of Al2024 composites shows a monotonically 

increasing trend with increasing sliding speed, which 

may be related to the small critical sliding speed. The 

softening of rough bodies caused by friction heat also 

plays a certain role in reducing the degree of wear. 

Meanwhile, some studies have found that the thickness 

of the friction layer increases with temperature [41]. 

Therefore, in the low-speed sliding stage, the wear 

rates will gradually decrease with the increase in 

sliding speed. However, when the sliding speed 

exceeds a critical value, the wear rates increase with 

the increase in sliding speed. 

2.2.7 Effect of sliding distance 

The influence of sliding distance on friction coefficient 

and wear rate will vary with the properties of the 

sliding surface, the forming ability of the lubricating 

films, and the working conditions. As shown in Fig. 8, 

both increasing and decreasing trends in friction 

coefficients and wear rates of Al-graphite self- 

lubricating composites were observed with increasing 

sliding distance. The friction coefficients or wear rates 

of Si3N4-reinforced LM13 composite, SiC-reinforced 

Al2024 alloy composite, and SiC-reinforced Al2219 

composite increase or decrease monotonically with 

the increase in sliding distance. In addition, the wear 

rates of the Al2219-graphite composite present a slight 

fluctuation. This phenomenon indicates that sliding 

distance affects tribological properties. The trends 

and magnitude of change are also largely determined 

by the composites themselves. 

From the above discussions, it can be found that the 

tribological properties of metal matrix self-lubricating 

composites are influenced by many factors, and the 

influence mechanism is also complex. However, 

traditional research methods are not comprehensive 

enough in analyzing the relationship between 

tribological properties and the influencing variables. 

ML models have a certain research basis in the 

analysis and solution of complex problems with 

multiple dimensions. If the ML models are applied  

to the predict friction coefficient and wear rate of 

self-lubricating composites, they can not only simplify 

the analysis process but also help to generate new 

insights into the relationship between tribological 

properties and influencing variables by combining 

the effects of multiple variables. 

3 Materials and methods 

In this section, we will discuss the building and 

performance enhancement of ML models, including 

data collection, determination of input and output 

parameters, pre-processing of the data, introduction 

of the adopted models, parameter optimization, and 

performance evaluation methods of the models. 

3.1 Data collection and input–output parameters 

The collection of data points is one of the most 

fundamental and critical steps in building an ML model 

since the source of the collected samples and the 

accuracy of the data themself can have a significant 

impact on the robustness and generalization ability 

of the ML model. A high-quality dataset is essential 

to train an ML algorithm for better predictive 

performance. The process of collating adequate data 

for an ML analysis is expensive and time-consuming 

 

Fig. 8 (a) Friction coefficients [23, 54] and (b) wear rates [48] of several Al-graphite self-lubricating composites with different sliding 
distances. 
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if data collection relies on performing tribological 

experiments. It is worth noting that there exists a large 

amount of data in the existing literature [7, 25, 32, 39, 

46, 52, 54–56]. Organizing the data among them as 

the dataset for building ML models can not only meet 

the data volume requirement of ML modeling, but 

also the wide range of data sources can cover a wide 

range of input and output relations, which is conducive 

to improving the robustness and generalization ability 

of the model [14]. 

Therefore, we collected and organized the published 

data on tribological properties of Al/graphite, 

Cu/graphite, and Cu/copper-coated graphite studies, 

and selected a total of 506 friction coefficient samples 

and 497 wear rate samples as the dataset. A total  

of 12 material and tribological variables, including 

hardness, tensile strength, yield strength and elongation 

of matrixes, reinforcement volume, graphite content, 

graphite particle size, processing process, interfacial 

bonding strength, normal load, sliding speed, and 

sliding distance, were considered as the input features 

for ML analysis, and the corresponding friction 

coefficients and wear rates were the output features, 

respectively. It is worth noting that the interfacial 

bonding strength was not easily available, and the 

preparation process only represented the method of 

preparation without specific numerical meaning. 

Therefore, the interfacial bonding strength and the 

preparation process were treated as ordered categorical 

variables and nominal categorical variables, respectively. 

The remaining characteristics were numerical variables 

according to the influencing variables. 

3.2 Pre-processing of the data  

Due to the influence of data point distribution and 

outliers, the pre-processing of the data is a key step 

in building high-performance models, including data 

cleaning, missing value and outlier processing, data 

shuffling, data standardization, and splitting of the 

training set and test set. 

Firstly, the missing values and outliers were 

manually removed. Then, the categorical features in 

the data were converted into categorical values using 

one-hot encoding and ordered encoding. The data 

were disrupted by generating random indexes, so 

that each sample became an independent individual, 

thus reducing the impact on the model results. Due 

to the different working conditions and units of 

measurement of data points, their data feature scales 

have great differences, which would affect the model’s 

computational speed and performance. To weaken 

this effect, finally, Z-score standardization was adopted 

to process the data. The advantage of this method is 

that it eliminates scale differences in sample attribute 

values without changing the spatial distribution of 

the data. 

To test the generalization and robustness of the 

models while training the ML models, we split the 

dataset into two mutually exclusive training set and 

test set according to the standard sample division ratio. 

Herein, 75% of the total data was used for training 

the models and the remaining 25% was used to test 

the performance of the models. 

3.3 Introduction of the adopted models 

The advantages of ML models lie in their ability to fit 

the implied correspondence between input and output 

parameters from large datasets and make predictions 

on unknown data through the trained models. ML 

models built on different algorithmic principles have 

different prediction performances for the same 

dataset [57]. In this paper, five ML algorithms: support 

vector machine (SVM), K-Nearest neighbor (KNN), 

random forest (RF), eXtreme gradient boosting 

(XGBoost), and Least-squares boosting (LSBoost) were 

used to perform the ML modeling to achieve the 

prediction of friction coefficients and wear rates of 

Cu/Al-graphite self-lubricating composites. A summary 

and brief description of these ML models are 

presented below. 

3.3.1 SVM model 

The SVM model is a supervised ML algorithm model 

developed based on statistical learning theory, which 

can better realize the idea of structural minimization 

and has unique advantages in solving few-shot, 

nonlinear, and high-dimensional pattern recognition 

problems [58]. The SVM model maps the input 

vectors non-linearly by the linear kernel, polynomial 

kernel, radial basis function, sigmoid kernel, and 

other kernels during the solving processes [59]. In 

this way, the original feature space is mapped to the 
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higher dimensional feature space, thereby predicting 

the outputs. The key parameters of the SVM model to 

be tuned include the selection of kernel functions, 

the parameters of kernel functions (gamma), and the 

regularization parameters (C). 

3.3.2 KNN model  

The KNN model is an instance-based supervised 

ML algorithm model, which firstly finds K training  

data points that are closest to the new data points, 

and then averages or weights the output values 

corresponding to these K data points as the predicted 

output values of the new data points. When training 

a KNN model, the parameters usually need to be 

considered are the number of neighboring points 

(NumNeighbors) and the choice of the distance metric 

function between data points. 

3.3.3 RF model 

The RF model is an integrated algorithmic model 

based on the bagging mechanism (Fig. 9) and a decision 

tree as the base evaluator, in which the model 

generalization will be improved by a self-sampling 

method. In the RF model, the bagging mechanism 

can reduce the correlation between the trained 

multiple decision trees, effectively alleviating the 

problem of overfitting, and the error of the model can 

be significantly reduced by averaging the results of 

the base evaluator [60]. During the parameters tuning 

of the RF model, the performance of the model can be 

optimized by adjusting the number of decision trees 

(treesNumtrees) and features considered (minleaf). 

3.3.4 XGBoost model 

The XGBoost model is an integrated algorithmic 

model based on the boosting mechanism (Fig. 10) 

and a decision tree as the base evaluator. In the 

XGBoost model, the second-order Taylor expansion 

of the objective function makes the model highly 

accurate in solving classification and regression 

problems, and it is optimized by using distributed 

computing and parallel sampling sorted by eigenvalues 

so that the XGBoost model can be efficiently trained 

and predicted on large-scale datasets [61]. The key 

parameters that usually need to be optimized in the 

XGBoost model include the learning rate (LearnRate), 

the number of base models (NumLearningCycles), 

and the maximum depth of the tree (depth_max). 

 

Fig. 9 Schematic of the bagging mechanism. 

 

Fig. 10 Schematic of the boosting mechanism. 
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3.3.5 LSBoost model 

As a decision tree-based integration algorithm 

model, the LSBoost model uses the same integration 

strategy as the XGBoost model. The least squares 

method is used in the LSBoost model to optimize the 

loss function during model training, in which the 

predictive value of the target variable is adjusted by 

minimizing the sum of squares of the residuals, thus 

allowing the next basic model to fit the residuals 

more accurately [62]. The main advantages of the 

LSBoost model are its ease of implementation and 

tuning, as well as good adaptability to high-dimensional, 

nonlinear, and sparse datasets. Table 1 describes   

the algorithm for the model. During the parameter 

tuning of the LSBoost model, the parameters that 

usually need to be optimized include the learning 

rate (LearnRate), the number of base models 

(NumLearningCycles), and the minimum number of 

leaf nodes (MinLeafSize). 

Table 1 Algorithm description of the LSBoost model [62]. 

Input: A training set 1{( , )} 
n

i i ix y , a loss function ( , ) L y F
2( ) /2y F , number of iterations M 

Initialize, 0 ( ) F X y  

For m = 1 to M do: 

1 ( ) i i m iy y F x , i = 1…, N 

2

, 1 ;( , ) argmin ( )    

   m i m i

N

im y h x   

End for 

Output: the final regression function ( )mF x  

3.4 Performance optimization and evaluation of 

the models 

In the previous section, we briefly discussed five 

different ML models and the parameters that need to 

be optimized. Parameter tuning allows for optimal 

performance of the model. Generally, the parameters 

that a model needs to be optimized include both the 

parameters of the model and the hyperparameters 

that are used to define the model structure or 

optimization strategy. Here, we found the optimal 

parameters corresponding to the models by adding 

automatic optimization algorithms or cross-validation 

techniques to the ML models. 

To evaluate the predictive performance of the 

models, the following four evaluation indicators were 

used. Mean absolute error (MAE) avoids the problem 

of errors canceling each other and thus can accurately 

reflect the magnitude of the actual prediction error. 

Mean square error (MSE) measures the performance 

of a model by calculating the deviation between the 

predicted and actual values. Root mean square error 

(RMSE) measures the extent to which the data deviates 

from the true value. The coefficient of determination 

(R-squared, R2) measures the goodness-of-fit of the 

whole regression, in which the value is taken in the 

range of 0–1. If the value of R2 is closer to 1, it indicates 

that the model prediction performance is better. The 

R2 value of the model ranging 0.7 < R2 < 0.9 is considered 

satisfactory while R2 > 0.9 confirms excellent prediction 

model performance [15]. The formula of the four 

evaluation indexes are as Eqs. (4)–(7) [62, 63]: 

1

1
MAE

N

i i
i

y y
N 

                (4) 

2

1

1MSE ( )
N

i i
i

y y
N =

= -å                (5) 

2

1

1RMSE ( )
N

i i
i

y y
N =

= -å               (6) 

2
12

1 ( )
1

( )

N
i ii

y yNR
var y
=

-
= -

å 
             (7) 

where iy  is the observed value corresponding to  

the ith sample, iy  is the actual value (experimentally 

measured) corresponding to the ith sample, and N is 

the number of observed samples. 

4 Result and discussion 

The optimized parameters and corresponding 

performance indicators of the five prediction models 

are shown in Tables 2, 3, 4, and 5, respectively. At 

the same time, we analyzed the relative importance 

of the input variables for the friction coefficients and 

wear rates of the self-lubricating composites using 

the feature importance attribute of the RF model, and 

the results are shown in Figs. 12 and 14. These results 

were also briefly analyzed and discussed in this 

section. 
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Table 2 Optimization of friction coefficient prediction models. 

Model name Selected parameter 

SVM Gamma = 0.25, C = 32, kernel = rbf 

KNN NumNeighbors = 2, Distance = ‘cityblock’ 

RF Numtrees = 200, minleaf = 1 

XGBoost 
LearnRate = 0.13, NumLearningCycles = 200, 
depth_max = 5 

LSBoost 
LearnRate = 0.081999, NumLearningCycles = 
497, MinLeafSize = 1 

Table 3 Performance indicators of the friction coefficient 
models. 

Model 
name 

MAE MSE RMSE 
R2 value on 

the test 

SVM 0.0319 0.0027 0.0515 0.8317 

KNN 0.0455 0.0044 0.0662 0.7217 

RF 0.0328 0.0022 0.0474 0.8573 

XGBoost 0.0230 0.0013 0.0364 0.9158 

LSBoost 0.0234 0.0012 0.0351 0.9219 

Table 4 Optimization of wear rate prediction models. 

Model name Selected parameter 

SVM Gamma = 2, C = 32, kernel = rbf 

KNN NumNeighbors = 2, Distance= ‘cityblock’ 

RF Numtrees = 80, minleaf = 2 

XGBoost 
LearnRate = 0.11, NumLearningCycles = 100, 
depth_max = 10 

LSBoost 
LearnRate = 0.35105, NumLearningCycles = 490,
MinLeafSize = 6, NumBins = 5 

Table 5 Performance indicators of the wear rate models. 

Model 
name 

MAE MSE RMSE 
R2 value on 

the test 

SVM 6.9862e–05 1.2723e–08 0.000113 0.9219 

KNN 8.2647e–05 2.2117e–08 0.000149 0.8651 

RF 1.2023e–04 7.9136e–08 0.000281 0.8911 

XGBoost 6.1607e–05 1.2694e–08 0.000113 0.9225 

LSBoost 6.8006e–05 1.2335e–08 0.000111 0.9243 

4.1 Results of friction coefficients prediction 

The R2 values of the five friction coefficient prediction 

models ranged from 0.7217 to 0.9219, with low values 

of MAE, MSE, and RMSE. Among them, the LSBoost 

model (MAE = 0.0234, MSE = 0.0012, RMSE = 0.0351, 

R2 = 0.9219) and the XGBoost model (MAE = 0.0230, 

MSE = 0.0013, RMSE = 0.0364, R2 = 0.9158) based on the 

integrated learning algorithm produce the best 

prediction performances. The comparison between 

the actual values of friction coefficients and the 

predicted values of the LSBoost algorithm is shown 

in Fig. 11. The results show that for most of the 

sample points, the LSBoost model can accurately 

predict the friction coefficients of the composites 

based on the original properties of the matrix material 

and the sliding conditions. The R2 value of 0.9219 

indicated a high prediction accuracy. However, the 

occurrence of large errors in individual data points is 

a normal phenomenon that is mainly related to the 

accuracy of the data itself, the distribution of the data, 

and the effect of outliers. 

Among the other three friction coefficient prediction 

models, the R2 value of the RF and SVM models are 

0.8573 and 0.8317, respectively, showing satisfactory 

prediction results. When considering 2 proximity 

points and the “cityblock” is chosen as the distance 

metric function, the KNN model also presents a 

satisfactory prediction result with the R2 of 0.7217 

(higher than 0.7). However, compared to other ML 

models, the KNN model performs poorly in processing 

the friction coefficient dataset, which may be related 

to the fact that the KNN model is too simple. Moreover, 

it can be found that the prediction performance of the 

models based on the integrated learning algorithm 

are better than that of the traditional ML models such 

as SVM and KNN. The integrated learning algorithm 

based on the boosting mechanism performs better in 

predicting the friction coefficients than that based on 

the bagging mechanism. 

4.2 Effect of input variables on friction coefficients 

We further analyzed the effect of each input variable 

on the friction coefficients by the feature importance 

attribute of the RF model. The score corresponding to 

each input variable represents the importance of the 

input variable on the friction coefficients, and higher 

values represent the more important the variable is 

for the study of the friction coefficient. The results 

are summarized in Fig. 12. As discussed in Section 2, 

graphite content has a significant effect on the 

friction coefficients of self-lubricating composites and  
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is the most important variable in the analysis of 

friction coefficients. Previous studies indicated that 

the deformation of the subsurface is the main factor 

leading to the transfer of graphite to the sliding 

surface, while the hardness of the matrix also plays an 

important role [33]. For Cu/Al-graphite self-lubricating 

composites, therefore, the hardness of the matrix 

material is considered to be the second most important 

variable after the graphite content in the friction 

coefficients analysis. In terms of the other factors, the 

properties of the matrix material (tensile strength, 

yield strength, ductility) have a more significant effect 

on the friction coefficients compared to the sliding 

conditions (sliding distance, normal load, sliding 

speed), indicating that there is a strong relationship 

between the properties of the matrix phase and friction 

coefficients as the main body of the self-lubricating 

composite. Besides, the non-zero score of interfacial 

bonding strength indicates that the effect of matrix 

type on the friction coefficients is related to the 

interfacial bonding strength between the matrix and 

lubricant, and the preparation process has the least 

effect on the friction coefficients. 

4.3 Results of the wear rates prediction  

The R2 values of the five wear rates prediction  

models ranging from 0.8651 to 0.9243, and each of the 

models performed excellently. Herein, the LSBoost 

model (MAE = 6.8006e−05, MSE = 1.2335e−08, RMSE = 

0.000111, R2 = 0.9243) presented the best prediction 

performance. The comparison between the actual 

wear rates and the predicted values of the LSBoost 

model is given in Fig. 13, indicating that there is still 

a strong correlation between the actual values and 

the predicted values. Similar to friction coefficients 

prediction, some wear rates that failed to be accurately 

predicted still existed, which mainly originated from 

some errors in the wear rate data itself and the defects 

of the machine algorithm itself, as well as the model 

may be affected by the distribution of the wear rate 

data. Generally, the prediction results of the wear rate 

are in a satisfactory error range. 

Besides, the XGBoost model (MAE = 6.1607e−05, 

MSE = 1.2694e−08, RMSE = 0.000113, R2 = 0.9225)  

and SVM model (MAE = 6.9862e−05, MSE = 1.2723e−08, 

RMSE = 0.000113, R2 = 0.9219) had similar prediction 

 

Fig. 11 Comparison between the actual friction coefficients (experimentally measured) and the predicted values obtained from the
LSBoost model. 

 

Fig. 12 Relative importance of input variables for predicting the friction coefficients. 
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performance to the LSBoost model, and they achieved 

impressive prediction performance in the wear   

rate dataset. The R2 values of the RF model and  

KNN model are 0.8911 and 0.8651, indicating that 

the above two models also have strong processing 

capability for the wear rate dataset. However, 

compared to the other four ML models, the KNN 

model still performs poorly on the wear rate dataset. 

As to wear rates, likewise, the integrated learning 

algorithm models based on the boosting mechanism 

perform better overall than that based on bagging 

and the traditional KNN model, while the SVM model 

presented a higher prediction accuracy may be related 

to the data mapping mechanism of the SVM model 

and the generalization ability of SVM model improved 

by maximizing the interval to select the decision 

boundary. 

4.4 Effect of input variables on wear rates 

Using the same method, the relative importance 

of each input variable was analyzed by the feature 

importance attribute of the RF model, and the results  

are shown in Fig. 14. The graphite content, normal 

load, and hardness of the matrix are the most 

important influencing variables when analyzing the 

wear rates. Graphite content plays a key role both in 

the mechanical and lubricating properties of metal 

matrix self-lubricating composites, and therefore 

graphite content is still considered the most important 

parameter for the wear rates. The normal load affects 

the formation and retention of lubricating films,  

and the transition from light to severe wear of 

self-lubricating composites, thereby is considered the 

second most important variable. The hardness affects 

the deformation, adhesion, and removal of the surface 

of the self-lubricating composites, so it instinctively 

has an important influence on the wear rates. In 

addition, it is found that the interfacial bonding 

strength and preparation process also had the least 

effect on the wear rates. 

5 Experimental verification 

To further verify the generalization and robustness of 

the models, several Cu/Al-graphite self-lubricating 

 

Fig. 13 Comparison between the actual wear rates (experimentally measured) and the predicted values obtained from the LSBoost model.

 

Fig. 14 Relative importance of input variables for predicting wear rates. 
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composites were designed and prepared, and their 

friction coefficients and wear rates were tested and 

compared with the predicted results of the LSBoost 

model. 

5.1 Materials and methods 

Commercially available graphite (~5 μm), Cu663  

(~6 μm), and Al2024 (~37 μm) were used to prepare 

four self-lubricating composites with different matrixes 

and graphite content. Because there is no component 

volatilization during the sintering process, the graphite 

content in the original composite powder can directly 

reflect the graphite content in the composites. 

The preparing processes of the composites are  

as follows: (1) mixing the powders according to a 

certain proportion; (2) stacking the mixed powder in 

a steel mold and dry-pressing to form a green body; 

(3) hot-pressing for 120 min at 800 °C and 60 min at 

530 °C for Cu and Al matrix self-lubricating composites 

respectively, and the heating rate was 10–15 °C/min. 

The sintered Al matrix composites were solution 

treated at 540 °C in a muffle furnace for 120 min  

and water quenched; then, they were naturally aged 

for 72 h. 

The friction coefficients of Cu/Al-graphite self- 

lubricating composites were measured by standard 

rotary friction testing machine and reciprocating 

friction and wear testing machine, respectively. Before 

the experiments, all samples were polished to obtained 

a smooth surface with a roughness of ~0.1 μm.    

The wear volume of the Al-graphite self-lubricating 

composite are determined by the mass loss of the 

pins before and after the test. The wear volume of the 

Cu-graphite self-lubricating composite is determined 

by measuring the cross sections of the worn track 

with a stylus profilometer. 

5.2 Design and verification of friction experiment 

The composition of composites and experimental 

parameters, and the experimental verification 

results of the model are shown in Table 6 and Fig. 15, 

respectively.  Results  demonstrate  that  the  LSBoost 

Table 6 Composition of composites and experimental parameters corresponding to friction experiments. 
 

Reinforcement Experimental condition 
S. No. Matrix 

SiC content Graphite content Normal load Sliding speed Sliding distance

S1 Al2024 5 0 6.5 0.312 565.5 

S2 Al2024 5 0 8.0 0.210 377.0 

S3 Al2024 5 7.5 6.5 0.312 565.5 

S4 Al2024 5 7.5 8.0 0.210 377.0 

S5 Cu663 0 7.5 15.0 0.080 300.0 

S6 Cu663 0 7.5 7.5 0.100 360.0 

S7 Cu663 0 12.5 15.0 0.080 300.0 

S8 Cu663 0 12.5 7.5 0.100 360.0 

 

Fig. 15 Experimental verification results of (a) friction coefficients and (b) wear rates. 
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model has a strong ability to predict the friction 

coefficient and wear rate of Cu/Al-graphite 

self-lubricating composites. Although there are some 

errors between the predicted values and the actual 

experimental values, that are within the acceptable 

error range on the whole. 

6 Conclusions 

Five ML models were trained to predict the friction 

coefficient and wear rate of Cu/Al-graphite self- 

lubricating composites using tribological experimental 

data reported in the literature based on the analysis 

and discussion of the friction and wear mechanisms 

and the effects of influencing variables on friction 

coefficient and wear rate using conventional research 

methods. It is demonstrated that ML models can 

satisfactorily predict the tribological properties of 

Cu/Al–graphite self-lubricating composites. Herein, 

the LSBoost model based on the integrated learning 

algorithm is good at predicting the friction coefficients 

(MAE = 0.0234, MSE = 0.0012, RMSE = 0.0351, R2 = 

0.9219) and wear rates (MAE = 6.8006e−05, MSE = 

1.2335e−08, RMSE = 0.000111, R2 = 0.9243), showing  

the best prediction performance compared to the  

other ML models. Feature importance analysis shows 

the graphite content and the hardness of the matrix 

are the most important variables affecting the friction 

coefficient. Graphite content, normal load, and 

hardness of the matrix are the most important variables 

affecting the wear rate. The influence of interface 

bonding strength and preparation process on tribological 

properties is weaker than other influencing variables. 

The LSBoost model was demonstrated a strong ability 

to predict the tribological properties of Cu/Al-graphite 

self-lubricating composites through their own 

experiments. 
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