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Abstract: For training artificial neural network (ANN), big data either generated by machine or measured from 

experiments are used as input to “learn” the unspecified functions defining the ANN. The experimental data 

are fed directly into the optimizer allowing training to be performed according to a predefined loss function. To 

predict sliding friction and wear at mixed lubrication conditions, in this study a specific ANN structure was 

so designed that deep learning algorithms and data-driven optimization models can be used. Experimental 

ball-on-plate friction and wear data were analyzed using the specific training procedure to optimize the 

weights and biases incorporated into the neural layers of the ANN, and only two independent experimental 

data sets were used during the ANN optimization procedure. After the training procedure, the ANN is capable 

to predict the contact and hydrodynamic pressure by adapting the output data according to the tribological 

condition implemented in the optimization algorithm. 
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1  Introduction 

During the last decade, artificial intelligence (AI) has 

steadily progressed, starting from the computational 

statistical paradigms, to today’s successful intelligent 

machines involving technologies such as object and 

sound recognitions, language translation, reliable image 

and sound generations, car and robot control, prediction 

and decision making [1]. Basically, machine learning 

(ML), as an important portion of artificial neural 

network (ANN), is a set of techniques, methods and 

algorithms aimed at providing and achieving an 

“intelligent final result” based on the analysis of the 

data used. Applications of novel ANN technologies 

in tribology can open new ways to solving difficult 

engineering problems effectively and providing new 

opportunities for future challenges (for a review see, 

e.g. Ref. [2]). Recent reviews on the application of 

ANN techniques in tribology [3–6] have prospected 

wide areas to which deep learning (DL) techniques 

can be efficiently applied. Also, an interesting idea 

proposed by Zhang et al. [7] is to establish a tribology 

database which would be useful for the preservation 

and dissemination of tribological research information 

within areas where ML and DL techniques are 

practised.   

Mixed lubrication is a regime across the full fluid 

film lubrication and boundary film lubrication, and 

widely exists in most engineering tribosystems. Due to 

the complex mechanisms of interactions and mutual 

influence of physical phenomena existing in a mixed 

lubrication regime, there are no simple and unified 

general physical laws for prediction of friction and 

wear at mixed lubricated contacts. In general, the 

complex interactions in mixed lubrication are studied 

by either a numerical approach or a phenomenological 

one. A typical numerical approach is based on setting 

up a system of partial differential equations to define 

the state of the friction process with fluid lubrication 

of rough solid surfaces and elastic or elastoplastic 
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contact mechanics of the rough surfaces. It allows to 

provide numerical solutions for wear [8–10] based on 

the idea of Patir and Cheng’s average flow model [11], 

or by using the idea of wear dependent asperity 

contact pressure [10]. Many other implementations 

[12, 13], including the finite element method (FEM) 

and boundary element method (BEM) have also been 

proposed in recent years. Many tribological problem 

have been successfully modelled by means of FEM, 

such as contribution of elastohydrodynamics effect on 

friction [14], the influence of deformation model on 

the elasto-hydrodynamic lubrication modeling [15], 

application of FEM friction model for a problem of 

metal forming [16]. However, numerical modelling 

is not only computationally expensive due to its 

iterative nature, but also less reliable and correct than 

expectations because constants and parameters associated 

with the complicated mathematical equations as well 

as the boundary conditions are often poorly specified 

a priori. The phenomenological or analytical approach 

presumes the hypothesis of the physical laws describing 

the film thickness of lubricant [17], the rheological 

properties of lubricants [18], the stochastic approach 

to determine the contact deformation of asperities  

[19, 20], etc. The disadvantage of phenomenological 

or analytical approach is that the accuracy of any 

analytical equation involved in mixed lubrication, 

due to its simplified nature, is inadequate comparing 

with the real situations.  

An aptitude of a neural network system can provide 

a non-linear relationship between input parameters 

and output data, which is able to model the operation 

of mechanical systems. Recently, the ANN technique 

has very often been used as a tool for the analysis of 

wear test data [21–26]. Many dependencies have been 

established in the form of ANNs, where the material 

or mechanical properties [25–27], structural or surface 

parameters [28, 29] are used as input data for ANN  

[6, 30]. However, in most cases only one functional 

property of ANNs is realized, which is to produce an 

approximation fit between input and output data. 

ANN has therefore been used as a universal function 

approximator. A non-linear functional regression fit 

can be easily implemented in terms of ANN modelling 

and applied to tribology tasks, and this approach  

has been extensively studied by Argatov [6]. The 

comparison investigation between physical and machine 

learning modeling to predict fretting wear volume 

was done by Baydoun et al. [31]. 

In contrast to the application of conventional simple 

ANN, the advanced type of ANN is now being 

developed. The aim is to move away from direct 

approximation, to identify the features of the physical 

phenomena under consideration and to design the 

ANN structure to evolve the features related to the 

problem under investigation. One of the interesting 

and promising type of ANN is physical-informed 

neural network (so called a PINN). Perhaps, the first 

introduction of PINN was done by Raissi et. al. as an 

ANN modelling to solve non-linear partial differential 

equations [32]. Using this type of ANN investigation 

many physical problems were “solved” by the 

proposed PINN. There are many classical physics 

laws were incorporated and appropriate solutions 

were found for the problems as the velocity and 

pressure fields for the fluid mechanics [33], discovery 

of non-linear elastoplastic behavior of solids [34] and 

data-driven parametric partial differential equations 

[35, 36]. The SciANN wrapper [37] (written in Python 

language and includes all the necessary functions of 

Tensorflow/Keras packages related to PINN design) 

can be used to focus the ANN construction on finding 

an approximation for a differential or partial differential 

equation. The role of an error approximation 

techniques that realized in PINN architecture has 

been well studied by Zubov et al. [38]. The ability to 

apply the PINN techniques to lubricated contact  

has been investigated by Almqvist [39] to solve   

the Reynolds boundary problem, by Wang and Tsai 

[40] to predict the maximum pressure in thermos- 

hydrodynamic contacts, by Marian [41] to predict  

the film thickness in EHL contact. In most cases, the 

numerical data from FEM modelling was used to train 

the ANN, in such a case, the ANN will only be a 

replica of the FEM proposed solution. 

It should be noted that there exists another 

physical-informed neural network (also called PINN), 

introduced by Nascimento and Viana [42, 43] and 

Dourado and Viana [44]. Despite the same sounding 

title, the idea used is quite different. These authors 

have used the specially modified recurrent neural 

cell to construct the recurrent neural network (RNN) 

with embedded specific physical law to estimate the 

time-dependent physical process, such as a cumulative 
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damage process in a mechanical system. This approach 

will lead the researchers to develop the digital twin 

based on the ANN principles. 

In fact, the PINN method inherits an idea of an 

adaptive learning method for NN that was proposed 

about 10 years ago [45], where one of the ideas is to 

replace the traditional method of minimizing the error 

by the specific equation that provides the connection 

to the studied process. In other words, to implement 

the physical law in the adaptation algorithm. Moreover, 

the idea of implementing the physical laws or equations 

was introduced more than 20 years ago, see for example 

Oussar and Dreyfus [46] or Forsell and Lindskog [47], 

which described a general methodology for a “gray- 

box” or semi-physical modelling implemented in 

neural networks. The semi-physical NN modelling 

for one of the interesting tribological problems has 

been presented by Haviez et al. [48] in 2015. The 

authors have shown that the fretting wear evolution 

can be estimated by ANN without using of the 

back-propagation learning algorithm and without 

any regularization method. 

The aim of this paper is to show that instead of the 

“black box mystery”, ANN modelling in a tribological 

task could be more fruitful if the ANN model is 

designed according to the real physical phenomena 

governing the friction process under consideration. 

Here we show how the modified optimization 

algorithm embedded in the ANN training process 

allows us to evaluate the “hidden” or unknown 

tribological functionalities, especially for the ball-on- 

plate friction scheme, but the considered ANN method 

is not limited by the chosen tribological test scheme 

and can be applied to analyze any other friction and 

wear data. The novelty of the proposed research is 

that we have constructed the ANN as a set of parallel 

multylayer perceptrons (MLPs), each corresponding 

to the specific function to be studied, and the training 

procedure is enforced  by a modified loss function 

consisting of physical constraints and simulated 

constitutive laws. 

2 Brief descriptions of ANN architecture 

and optimization procedure 

A brief overview of the basic concepts of the structure 

and competence of neural networks [49] is presented 

in this section, with particular emphasis on the features 

of the training procedure that can be useful in 

modelling (or learning) tribological phenomena. 

2.1 Feedforward neural network structure 

In context of computing system ANN consists     

of interconnected units (neurons) that processes 

information by responding to external inputs, relaying 

information between each connected unit. The process 

requires multiple passes at the input data to find 

connections and derive meaning from undefined data 

to deliver a data signal to the output data. For a single 

layer with inputs mx  and outputs ny  we can 

write the approximation equation as 

   
1

σ
i i i

y W x b b            (1) 

where W is the matrix of weights at i level of ANN, b 

is the bias matrix and, σ  is the activation function. 

Each input node in ANN has an associated weight 

W that represents the relative strength or the importance 

of the input. An initial value is assigned to each 

weight, but these values are not static. As the neuron 

is trained, as will be explained below, the weights are 

continuously adjusted to obtain a more accurate 

result and it is through these continuous adjustments 

that the neuron learns. A bias b, which has a constant 

initial input and is updated during training like weights, 

is simply added to the weighted sum of each node. 

The transfer or activation function σ  of each 

processing neuron is a mathematical formula that 

determines the output y of the neuron. Its purpose  

is to prevent outputs from reaching very large values 

which can inhibit training. A number of transfer 

functions are used in practice, i.e. the linear, non-linear 

(sigmoid) and binary threshold functions. Lastly, the 

output y corresponds to the solution of a problem, 

and usually needs to be transformed into a format 

suitable as input to another neuron or as a piece of 

information that is understandable to the user. 

2.2 Training (or learning) loop of ANN 

Training the ANN is the most important part of the 

“learning” process. Actually, the training procedure 

is an application of specific algorithms that have been 
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developed for ML. Indeed, the training of ANNs 

looks like a “miracle” at first sight, but this process is 

based on real human learning when the desired goal 

has to be achieved in common live cases. Each time 

we make a mistake, we train to correct the activity, 

which minimizes the gap to the desired outcome.  

We do it again, perhaps many times, until our action 

completes our goal. In a case of ANN, this repeat 

loop is called an Epoch, the correction of weights   

in backward way is called a backward propagation 

process. The general scheme of ANN training is 

showed in Fig. 1. 

A popular method of training an artificial neuron is 

by error correction: the difference between the neuron’s 

actual output y and the correct output t, defined to be 

the desired output, is calculated. This difference is 

also known as a learning error. If the response at the 

output is incorrect then the neuron weights should 

be changed so that it is more likely to produce the 

correct response the next time that the input stimulus 

is presented. Neural network training essentially 

involves a loss function. The value of the loss function 

gives a measure of how far from the perfect 

performance of the NN is on a given dataset. 

At present, a variety of loss (or cost) functions have 

been proposed and used for classifying and regressing 

data by means of ANN. In our research, we used the 

following two commonly used loss functions as mean  

 

Fig. 1 Diagram of training/learning loop for a conventional ANN. 

square error (MSE) and mean absolute error (MAE): 

   
1

ˆMAE u u
N

          (2) 

   21
ˆMSE u u

N
           (3) 

where û  is a predicted value and u  is the real value 

of the function. MSE is a differentiable function that 

makes it easy to perform mathematical operations  

in comparison to a non-differentiable function like 

MAE. 

Once the loss function is selected, the weight set 

have to be recalculated based on the appropriated 

error set. This is implemented in the training loop of 

the ANN by the use of specific algorithms that allow 

the input of the error data to the NN in a fast way. 

These set of algorithms are called as optimizers [50]. 

There have been controversial results in the literature 

about the characteristics of available optimization 

methods. Therefore, there is a need for exploring 

which optimization method should be chosen for a 

particular task. Commonly used optimizers for linear/ 

non-linear regressions are gradient descent (GD), 

stochastic gradient descent (SGD), RMSProp, ADAM 

(adaptive moment estimation) and many others.  

The use of a specific optimizer depends on the 

architecture of the ANN and the purpose for which it 

is used. In our study, the ADAM algorithm [51] was 

used because it works quickly and perfectly to evaluate 

the non-linear regression for the function of interests.  

The general form of optimization process is described 

by Eq. (4). In a case, trying to approximate the function 

D(x) with respect to the network of neurons  ( , , )x W b , 

the optimization rule using the ADAM algorithm is 

as Eq. (4): 

   ( , ) ADAMargmin ( , ) ( ) ( , , )D* *W b W b x x W b   

(4) 

where x is a set of training points, W is a matrix of 

weights, and b is a matrix of biases.  

A natural advantage of the optimization technique 

is that, since all loss functions (MSE or MAE) contain 

the form of error minimization computed as part of the 

ADAM adaptivity routine, they are not restricted to 

the general form of Eqs. (2) and (3) for a given values 
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ˆandu u , it could be extended to use an analytical 

equation or function u  with respect to the expected 

target function value û . Exactly this feature for 

modifying the loss function ( , )W b  has been realized 

in this study. 

In the study, each function corresponding to the 

process under investigation was represented by its 

neural network. The experimental data set, if available, 

was fed into the loss function to evaluate the expected 

target value. Because the loss function may have 

multiple terms, each term must correspond to a 

particular neural network to determine the part   

of the loss that contributes to the total loss, we have 

examined the ability of the joint neural networks   

to be able to predict the output data when the error 

estimation is shared between the neural networks. 

3 Modelling of mixed lubrication 

In order to illustrate the potential of ANN with 

data-driven optimizer for predicting complex friction 

problems, in this section we have considered two 

cases where the ability and suitability of ANNs for 

estimating and predicting friction and wear under 

mixed lubrication is investigated. 

3.1 Friction force under lubricated condition 

Following the Bowden and Tabor [52], it is both 

reasonable and physically correct to consider the friction 

force between two solids as the product of the 

interfacial strength within the area of real contact. 

As a general simplification, the friction force can be 

expressed as the sum of three components contributing 

to the total friction force.  

h b s
F F F F                  (5) 

where Fh is a contribution of hydrodynamic shear 

force, Fb is the boundary friction and Fs is caused by 

the solid–solid contact.  

In simple case for a Newtonian liquid, the shear 

force is the integration of the viscous shear stress th 

over the fluid area Ah that can be written as 

   
h h

h h h0 0
d d

A Au
F A p A

h
         (6) 

where  is the viscosity parameter, u is the velocity, 

μh is shear stress coefficient, and ph is a hydrodynamic 

pressure. However, it is known that due to the 

rheological properties of the lubricant, the 

hydrodynamic pressure is not constant and can 

follow an exponential law [53]. 

Boundary friction Fb exists due to the presence of 

the boundary contact area Ab, which is chemically 

formed by the molecular layer of lubricant [54]. In 

the initial state of the lubricant contact, Ab is located 

around the real contact areas Ar, which are within the 

nominal contact area An. In the running process, the 

boundary friction surface is created by the formation 

of the boundary lubricant layer with the thickness of a 

single molecule. In general point of view, the boundary 

friction force can be expressed as Eq. (7): 

b

b b b0
d

A

F p A                (7) 

where μb is boundary shear coefficient, and pb is an 

external pressure applied on the boundary area Ab. 

The main contribution to volumetric wear is due to 

the direct contact of surface irregularities, which are 

also present in lubricated contact. The set of direct 

solid–solid contacts forms a real contact area Ar 

within which the removal process contributes to the 

friction force Fs.  

Using the above representation of the forces acting, 

the friction force Fs due to solid–solid interaction can 

be written analytically as the integration of pressure 

over the corresponding area domain multiplied by 

the shear stress within 

s

s s s0
d

A

F p A               (8) 

where μs is the solid–solid shear strength coefficient, 

and ps is the external pressure applied to the real 

contact area (or solid–solid contact As).  

As noted in Ref. [55], finding a solution using 

numerical approximation methods requires large 

amount of computational time that are largely dependent 

on solving the elasto-hydrodynamic (EHD) equations 

in the usual iterative manner. The use of an ANN 

methodology negates the excessive computational time 

of the numerical solution while maintaining accuracy. 

In our research we will illustrate that the general 
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relationships as Eqs. (5)–(8) are enough to make the 

ANN modelling to get the reasonable result that can 

be used for deep understanding of the relationships and 

interrelationship between friction properties. 

3.2 Wear rate and contact pressure 

In this investigation of friction of lubricated contact, 

the wear is considered as the change of surface 

geometry during the friction. The simplest and widely 

used law of wear process is the Archard wear law  

[56] that was used in ANN modelling to estimate the 

contact pressure. The Archard wear law presumes that 

between wear volume V and normal load L exists a 

linear dependence in a form 


L

V k s
H

                 (9) 

where s is the sliding distance, H is the hardness of 

the material, and k is the wear coefficient. One of the 

most commonly used parameters of wear is a wear 

rate, expressed in relation to time t as 

d d d

d d d

V L s L s
w k k

t H t H t
             (10) 

Equation (10) presumes the linear dependence between 

wear and sliding distance. However, in most of cases, 

this dependence is not linear as for lubricated contact 

of metals [57, 58], and for polymer materials [59] as 

well. The relation between wear rate and contact 

pressure is used in our research because the friction 

force is roughly proportional to the normal stress 

within the contact area caused by normal force 

applied [60, 61].  

The application of ANN techniques for evaluation 

of non-linear mechanisms of wear, prediction of 

volumetric wear [62] and wear coefficients [63] was 

already published. The main assumption of the 

proposed applications of ANN is that the operating 

friction parameters, such as pressure, velocity and 

others, have been used as an input data for a simple 

straightforward architecture of ANN. This type   

of ANN allows the establishment of non-linear 

dependencies between input and output data as 

volumetric wear or wear coefficient. Unfortunately, the 

non-linear dependency discovered by conventional 

ANN architecture is valid for a given friction parameters 

and cannot be extended to other experimental 

conditions. This is because the training of ANN  

does not take into account the characteristics of the 

friction/wear properties as specific features of the 

friction and wear process. The features have to be 

extracted from experimental data by the “learning” 

process and the final prediction has to be made 

based on the feature properties but not on the raw 

experimental data. It can be realized in our ANN with 

complex architecture that can do this, as that it 

illustrated in Section 4.2. 

4 Results and discussion 

A simulation model of ANN is programmed in Python 

to describe the wear and friction evolution. The 

specific framework as Tensorflow and Keras have been 

used to develop ANNs according to the architecture 

evaluating the mechanism of friction and wear 

considered. 

4.1 An experimental data set of friction and wear 

In this paper we used experimental data of lubricated 

point contact during normal running-in process 

performed by Zhang et al. [64]. The tribology 

experiments were carried out on a universal tribometer 

manufactured by Rtec Instruments (USA). The 

triboscheme as a sliding friction with lubricant for a 

steel ball against a steel plate, both are GCr15 bearing 

steel, has been used in experiments. The wear coefficient 

GCr15 steel is accepted as 2.0 × 10−5 mm3/(N·m) [65] 

with hardness of 60 HRC. 

The experiments were carried out with an external 

load of 20 N, corresponding to a Hertz pressure    

of about 1 GPa and a contact radius of 94 mm. The 

slip distance was set to 5 mm at a constant speed of 

20 mm/s.  

The base oil polyol ester (POE) with dynamic 

viscosity of 0.031 Pa·s was used as the lubricant. 

The White Lite interferometer built into the tribometer 

was used to measure the surface change of a tested 

samples. The 3D image of the surface can be created 

with nanometer resolution using this optical method, 

which was independent on the friction tests. The 

estimation of the volume of wear and the rate of 

wear was carried out by comparing the bearing areas 
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curves of the worn surfaces, and this approach is also 

described in Ref. [64].  

4.2 ANN set up for wear rate prediction 

In this section we illustrate the ANN with the capability 

of evaluation of “unknown” dependency between wear 

rate, time, and contact pressure. We have proposed to 

use a multi-layer perceptron for each function that 

acts in a parallel way in the friction process under 

consideration. In this case, the ANN architecture can 

be constructed as a set of parallel “strings” (MPLs) 

bounded by the same input data and physical 

constraints. 

To evaluate the contact pressure in terms of complex 

ANN with “a string structure”, the wear rate ( w ) and 

pressure (p) can be represented as two independent 

MLPs. Each of MLP consists of several densely 

connected layers. The loss function implemented into 

optimization algorithms is the same for both MLPs. 

This ANN structure provides the link between the 

MLPs by means of collocation points (input data,  

first layer) and by the “shared” error data, resulting 

in the correlation of different quantities of interest 

(output layers for wear rate and contact pressure). 

The schematic representation of the ANN structure 

in Fig. 2 is shown. 

Since friction is a time-dependent process, time (t) 

has been chosen as an input variable for both MLPs. 

The set on neurons in the input layer is equal to the 

time series points, and this set of points are collocation 

points for the output layers for both MLPs. The 

functions of wear rate and contact pressure should be 

represented in terms of NN as 

w
ˆ ( ) ( , , )w t t W b               (11) 

p
ˆ( ) ( , , )p t t W b                (12) 

The loss function to evaluate the error during the 

training algorithm is 

    ˆ ˆw w p p               (13) 

The loss function consists of two terms. The first one 

denotes the difference between experimental wear rate 

data w  and the data proposed by 
w

ˆ ( , , )w t W b , 

the second one is the condition to estimate the  

 

Fig. 2 ANN network structure for evaluation of wear rate and 
shear pressure. A 4-layer neural network with 40 neural units and 
hyperbolic tangent activation function was chosen for both MLP. 
The same loss function was used for updating the weights and 
biases for both MLP. 

difference between NN for a pressure 
p

ˆ ( , , )p t W b  

and nominal error condition in the form 

p

ˆ

ˆ( , , )

w w

kv t w

    


  

 W b
          (14) 

Note that while the input data (a time series) are  

the same, the optimization model is defined with  

two targets, one of which is driven by the set of 

experimental data w , and the second one is adopted 

by the intermediate data of ŵ  and the predicted 

data of p̂  during the training (learning) procedure. 

Exactly this feature provides the ANN to evaluate the 

“unknown” functionality as a contact pressure. 

The second formula in Eq. (14) represents the error 

calculation between the wear rate predicted by the 

MLP for the contact pressure 
p

ˆ ( , , )p t W b . The 

point is that p̂  is initially unknown and the output 

data is initialized as a set of random values. However, 

during the training process (also called the learning 

process), the ANN tries to revise the randomly 

initialized data according to an analytical way proposed 
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by error functions (Eq. (14)). These functions have the 

same experimental data set as the wear rate data ( w ). 

This means that the calculated error is the same for 

two independent MLPs. The adaptation of (W, b) to 

the new set of output data takes place in an identical 

way. At the end of the ANN training process, the  

two output datasets (wear rate and contact pressure) 

are generated, each corresponding to the owner of  

its MLP (
w

ˆ ( , , )w t W b  and 
p

ˆ ( , , ))p t W b . The 

result of training ANN (for structure presented in  

Fig. 2) for evaluating the wear rate and the contact 

pressure is shown in Fig. 3.  

The effect of the number of layers and the number 

of neurons was empirically investigated. We have 

tested three types of MLP structures with 2, 4, and   

6 dense layers. All of them have shown the similar 

pattern of output wear rate and pressure data. The 

4-layer structure is the best choice because the loss 

 

Fig. 3 Results of training ANN (for architecture in Fig. 2) for 
evaluation of wear rate and contact pressure. (a) Comparison of 
experimental data (blue line) and ANN prediction (orange line); 
(b) predicted shear pressure, “n.u.” is a normalized unit; (c) the 
data of the loss function calculated at each epoch loop. 

function has a smooth curve with no oscillation or 

distortion. The influence of neurons per layer was also 

examined. We have tested structures with neurons 

ranging from 20 to 80 per layer. It has been observed 

that the growth of neurons leads to an increase in 

computing time without improving the accuracy.  

The 40 neurons were chosen because the loss error 

converges to zero around 100 epochs. 

The special functions and parameters implemented 

in the Tensorflow/Keras framework were used to 

optimize the training procedure. There are “Batch size” 

set to 64 per gradient update for a batch optimization 

procedure, “Adaptive weights” set to 100 for a 

regularization procedure, and “Adaptive learning 

rate” initially set to 0.001. This set of optimization 

parameters allows us to perform fast and reasonable 

training of the ANN. 

One immediate observation (see Fig. 3(a)) is that 

the curve of predicted wear rate completely fits the 

experimental data. It means that the constructed 

ANN is able to perform the prediction without 

overfitting or other factors affecting the distortion of 

output data. The contact pressure (see Fig 3(b).) was 

evaluated by ANN based on the error data involved 

in calculating the weight and biases for updating  

the state of MLPs. As it is seen, the general pattern of 

the ps(t) function is similar to the curve of  ( )w t  that 

allow us to note that prediction of contact pressure is 

reasonable and corresponds to the analytical Eq. (10). 

Figure 3(c) illustrates the loss function history of 

the ANN training. The first three epochs correspond 

to the identification of a stable initial error value, which 

is used as a reference point to minimize the difference 

between the expected value ŵ  and experimental w  

of the wear rate. The loss function history has a step 

wise pattern that can be attributed to the double MLP 

structure of the ANN. The smooth shape of the loss 

curve can be explained by the fact that we have found 

the correct number of layers and neurons within 

them, and have identified appropriate hyperparameters 

to perform accurate training. It was observed that  

100 epochs of training were sufficient to bring the 

loss close to zero approximately.  

4.3 ANN setup for prediction of friction data for 

lubrication contact 

As a second example, we show here how the ANN 
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with data-driven optimization problem allows to 

evaluate two “hidden functionalities” in the same 

learning loop, using the two independent data sets 

on the same collocation points represented by a time 

sequence. 

In the developed ANN model of friction under 

lubrication condition it is assumed that the external 

load L is transmitted by the bearing areas of 

hydrodynamic (Ah) and solid (As) contacts. Contacts 

with boundary friction Fb were assumed to be part  

of the solid contact, because although the frictional 

force is significantly reduced in these areas, the 

external pressure acting in the boundary area (pb)   

is the same as that in the solid–solid contact. This 

approximation is realistic if the molecular boundary 

layer is assumed to be incompressible. The modelling 

of a mixed lubrication regime where the hydrodynamic 

pressure and the solid contact pressure allows to 

investigate the main characteristics of the lubricated 

contact have been investigated numerically for various 

cases [8, 9].  

The proposed ANN structure with a set of  

MLPs for the evaluation of the hydrodynamic and 

solid contact pressure must have separated MLPs 

approximating the wear rate ŵ , contact pressure 
s

p̂ , 

hydrodynamic pressure 
s

p̂  and friction coefficient 

f̂ as the following: 

w
ˆ ( ) ( , , )w t t W b   

h h
(( )) , ,p̂ tt W b   

s s
ˆ ( ) ( , , )p t t W b   

f
ˆ( ) ( , , )f t t W b   

Figure 4 shows the ANN consisting of four MLP for 

each evaluated function. In general, this multi-MLP 

feed-forward NN is capable of approximating 

unknown dependencies. However, when examining 

the proposed structure of ANN, the inaccuracy of 

approximation has been observed several times. 

Usually, it can be caused by lack of deterministic 

relationship between input and output data, insufficient 

number of layers and hidden units, insufficient training 

for a case of estimating two unknown functions.  

To overcome observed inaccuracy, the special 

Tensorflow/Keras functions have been used to improve 

the repeatability. The main ones were “batch 

optimization”, which was implemented to specify  

the number of samples processed before updating 

the model, and “adaptive weights” to force the scale 

weights to fit the shape of the weight tensor. The 

number of epochs was doubled compared to the ANN 

described in Section 4.2, and the number of neurons 

was up to 80, the activation function has left a 

hyperbolic-tangent function as in the previous example. 

 

Fig. 4 ANN structure for evaluation unknown hydrodynamic pressure ph(t). A 4-layer neural network with 80 neural units and 
hyperbolic tangent activation function was chosen for MLPs representing the wear rate w , contact pressure ps, hydridynamic pressure 
ph, and friction coefficient f. The time data are used for all MLPs as an input data. 
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It allows to reach a repeatability of about 70%. It is 

obvious that the ANN structure should be improved 

or modified in future implementations. 

Following the procedure described in Section 4.2, the 

MLP for evaluating the wear rate 
w

ˆ ( , , )w t W b  is 

supported by the experimental data w  by means of 

error calculation as 
w

ˆw w  . The contact pressure 

ps is estimated by approximating 
s s
( ) ( , , )ˆ t tp W b   

with the loss function 
p p

( , , )kv t w  W b   . The 

hydrostatic pressure ph is also approximated by MLP 

h h
( ) ( , , )ˆ t tp W b   and uses the simplified relation 

for a friction coefficient, where boundary friction 

area is combined with solid contact 

h s

h h s s0 0

1 1
d d

A A

f p A p A
L L

             (15) 

As it seen, there is no physical law on how the 

pressures change during the friction process in the 

governing Eq (15). For the prediction to be correct,  

it is necessary to provide the equation that links the 

hydrodynamic pressure and the contact pressure. 

The simple law for this is pressure equilibrium in 

the form  
H s h

P p p , where PH is the Hertz contact 

pressure applied to the entire nominal contact area 

that provided by the experimental conditions. The 

next point is that during the running-in process, the 

frictional force is affected by a series of relaxation 

phenomena occurring in the nominal contact area 

and caused by various factors. Bowden and Tabor [52] 

proposed to use the logarithmic relationship between 

contact area Ar, interfacial normal stress tn and state 

variable f accounting such a transformation, Rice  

and Ruina [60, 66] considered the exponential laws 

between friction force F and state variable f, contact 

area A, contact stress s and velocity u. According to 

the above hypotheses, the behavior of the pressure 

distribution over time can be expressed in differential 

form as Eq. (16): 

p 0

d
( )

d

p
k p p

t
               (16) 

where kp is a rate constant related to the pressure 

distribution and p0 is an initial value of pressure. The 

real experimental data of friction coefficient f [64] has 

been used in the data-driven optimization problem 

as a second data source. In our study for estimating 

the pressure distribution, we expected the ANN 

prediction to be in the form close to Eq. (16). 

Considering that the objective is to determine the 

unknown solid contact pressure ps and hydrodynamic 

pressure ph, the set of loss functions has been set up 

as Eq. (17): 

s

s h H

s s h h

ˆ

ˆ

ˆ ˆ

ˆˆ ˆ

ˆ

w w

kv p w

p p P

A p A p f

f f

 
  
   
  
 

 




            (17) 

The ADAM optimizer has been used to perform 

the simulation with the constraints given in Eq. (17). 

This set of constraints, implemented in an optimization 

loop, allows the problem of neural surrogation to be 

solved, where in this form the error bounds for each 

function represented in terms of the MLP prediction, 

for used functions depending on the time 
s

( ), ( ),w t p t  

h
( ), ( )p t f t  on unknown (or all) parameters can be 

computed by summing the error bounds from the 

individual function estimates. This gives an overall 

expected error in the mixed lubrication representation 

by the equations used, which can be shown to be 

proportional to the error in the dependent variables 

of the functions. 

The results of the pressure evolution prediction 

are shown in Fig. 5, where 200 epochs were chosen to 

obtain the fastest and best performance. 

The pressure prediction results are presented in   

a non-dimensional form. This makes it possible to 

analyse the friction behaviour in relation to the nominal 

contact pressure. Figure 5(a) shows that at the beginning 

of the friction test, the hydrodynamic pressure PH 

contributes slightly to the frictional force. During 

the friction test, the effect of the hydrodynamic effect 

increases significantly and becomes dominant at 

approximately 600 s of duration. In contrast to ph, 

contact pressure ps is a major effect at the start of the 

test and decreases with time. In fact, such a predicted 

behaviour of a lubricated contact generally corresponds 

to the mixed lubrication regime.  

The main feature revealed by ANN is that the 

contact pressure ps and hydrodinamic pressure ph are 

non-linear and evolve in apposite way due to the  
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Fig. 5 Results of ANN prediction of evolution of pressure during 
the friction process. (a) Prediction of hydrodynamic pressure ph; 
(b) prediction of contact pressure ps; (c) loss function calculated 
during epoch loop. 

friction process. As the contact pressure non-linear 

decreases, the hydrodynamic pressure increases in 

similar pattern. It should be noted that the non-linearity 

was not provided by any of the equations used for 

error estimation. The non-linear behaviour with 

time was found from the input experimental data. 

This feature was successfully “extracted” during  

the optimization process and “transfered” to the 

predictions by the ANN pressure evolution. 

The presented ANN structure and data-driven 

optimization method is not limited to evaluate the 

the non-linear relationship between input time series 

t and the output wear rate  ( )w t  or pressure ( )p t  

under a specific test condition. The effects of test 

conditions on the ANN structure can also be taken 

into account. There are two ways to incorparate   

test conditions. One is to use an additional set of 

coallocation points, let it be an additional vector of 

the state denoted as f, as a secondary axis of the input 

data. In this way, ANN will generate a map according 

variables (t, f). Hovewer, this way requires to provide 

the information that defines how the experimental 

data depend on the friction/wear state f. The second 

way is to add an additional MLP corresponding to the 

wear/pressure state to be evaluated   ˆ ( , , )t W b  

and add the new term to the loss function denoting 

the constitutive law (can also be purely empirical)  

for the wear/pressure state to be investigated. Such 

extensions are left for investigations and verifications 

in the future. 

5 Conclusions 

In this study, we have examined an ANN consisting 

of several parallel MLPs, with data-driven optimization 

procedure, to estimate the contact and hydrodynamic 

pressure in mixed lubrication regime of friction. The 

equations for ANN prediction are based on simple 

physical relationships that allow the unknown solution 

(dependence) of the function to be approximated by 

the two or more MLPs. One of the MLPs acts as a prior 

on the unknown relationship between experimental and 

predicted data, the other works as an approximation 

to the spatiotemporal dependence. 

The major achievement of such an ANN structure 

is the ability to feed the experimental data directly into 

the modified loss function allowing the prediction  

of the output data with reference to the input data. 

The time series with constant increment was used as 

input data for a first neural layer of the MLP, and this 

time series data was used as vector of collocation 

points for the pressure output data (the last neural 

layer in the MLP), which allows the pressure to be 

reconstructed as a function of time. We pointed out 

that the underlying reason for this behavior is the 

particular architecture of the network, where the input 

variables are only the spatial or temporal dimensions, 

allowing the network output data to adapt to the 

required variability needed for gradient-based 

optimization, to best predict the set of output data. 

This type of ANN with data-driven optimizer allows 

the prediction of “hidden” tribological laws or 

dependencies that are not obvious or cannot be 

measured directly regardless to the test scheme selected. 

We find that the optimizer performs much better   

at accessing the relationship between experimental 
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data and the set of equations where the relationship 

exists explicitly for functions, and provides excellent 

opportunities to study tribological properties using 

artificial neural network, deep learning, and machine 

learning techniques. 
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