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Abstract: In this work, a new method to solve the Reynolds equation including mass-conserving cavitation by 

using the physics informed neural networks (PINNs) is proposed. The complementarity relationship between 

the pressure and the void fraction is used. There are several difficulties in problem solving, and the solutions 

are provided. Firstly, the difficulty for considering the pressure inequality constraint by PINNs is solved by 

transferring it into one equality constraint without introducing error. While the void fraction inequality 

constraint is considered by using the hard constraint with the max-min function. Secondly, to avoid the 

fluctuation of the boundary value problems, the hard constraint method is also utilized to apply the boundary 

pressure values and the corresponding functions are provided. Lastly, for avoiding the trivial solution the 

limitation for the mean value of the void fraction is applied. The results are validated against existing data, and 

both the incompressible and compressible lubricant are considered. Good agreement can be found for both the 

domain and domain boundaries. 
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1  Introduction 

Cavitation can often be found for diverging gaps when 

the lubrication liquid pressure drops to the value 

lower than the atmospheric saturation one, and both 

a vapor phase and a liquid phase will be involved. The 

lubrication film may be ruptured for the cavitation 

zones, and numerous studies can be found due to 

the importance. For the cavitation research there are 

still some open questions, such as the effects of the 

micro-jet and the shockwave caused by the cavitation 

on the pitting [1]. In this work we focus on the 

cavitation in lubrication, and extensive papers on this 

topic for both numerical and experimental ways can 

be found, and the reader is referred to the reviews  

of Dowson et al. [2], Braun et al. [3], Geike [4], and 

Kamat et al. [5] 

For analyzing the lubrication problems, the Reynolds 

equation has been widely used, but the effects of 

cavitation are not considered in it. In order to analyze 

the film pressure behaviors with the cavitation effects, 

attempts have been made by many researchers and 

different cavitation models have been developed [6]. 

Among of them, the mass-conserving cavitation model 

was firstly proposed by Jakobsson [7]. Later, Elrod and 

Adams [8] proposed a cavitation model, two variables, 

i.e., the fluid pressure p and the mass fraction  , 

were employed to describe the fluid behaviors, and a 

switch function is required to change the character as 

per the cavitated index. Recently, a similar but different  
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model was developed by Giacopini et al. [9], in 

which the fluid pressure p and the void fraction r 

were utilized to form the complementarity relationship, 

and the two variables were valid for both lubricated 

and cavitation regions. Later, Bertocchi et al. [10] 

incorporated the compressible, piezo-viscous and 

shear thinning behaviors into the cavitation model. 

Almost at the same time, Almqvist et al. also adjusted 

the complementarity variables by using the constant 

bulk modulus, and the compressibility can be 

considered [11]. 

Moreover, it is hard to obtain the analytical 

solution of the Reynolds equation with or without 

considering the effects of the cavitation. Therefore, 

numerical methods are often employed by researchers, 

such as the finite difference method (FDM), the finite 

element method (FEM), and the finite volume method 

(FVM) [12‒16]. 

As one branch of artificial neural network (ANN), the 

physics informed neural networks (PINNs) method 

was proposed by Raissi et al. in 2019 [17]. Different 

from the traditional ANN, it is unnecessary to employ 

a large number of data to train the neural network, 

but by using the known physics information itself to 

find the solution. It will bring unique advantage for 

engineering practical problems, because sometimes  

it is very hard to obtain enough data for the training 

of the traditional ANN, and therefore the PINNs 

method has been applied in many fields, such as for 

the fatigue prognosis of mechanical systems [18], the 

medical image analysis [19], the heat transfer problem 

[20], the fracture mechanics [21], and the magnetic 

modeling [22]. 

In order to solve the Reynolds equation by using 

the PINNs method, some reports have also been 

proposed recently. For example, the pioneering work 

of Almqvist, he firstly employed the methodology of 

PINNs to solve the 1D Reynolds equation [23]. Zhao 

et al. [24] and Li et al. [25] utilized the PINNs method 

to analyze the pressure results for the 2D Reynolds 

equation. The cavitation effect is not taken into account 

in the aforementioned works. Recently, Rom [26] 

focused on the Reynolds equation with consideration 

of the effects of the cavitation by using the PINNs 

method. The classical Elrod model was employed to 

model the cavitation. It can be seen that the results 

agree well with the results obtained from the existing 

numerical models in most domain. Moreover, he 

pointed out that some obvious error can be found for 

the boundary pressure values. 

In this work, the mass-conserving complementarity 

formulation proposed by Giacopini et al. [9] was 

employed to study the cavitation. One of the novelties 

in this work is that the complementarity relationship 

between p and r is utilized directly to form one  

loss function, and the nonnegative constrains of p is 

employed as one more loss function. The constraint for 

r is considered by using the hard constraint. Moreover, 

in the aforementioned works, similar to the partial 

differential equation (PDE) loss functions, the boundary 

conditions are also applied by using the loss functions, 

i.e., the soft constrains, that can be seen as one source 

of the large error for the results on the boundaries. In 

order to overcome this shortcoming, the network 

architecture was adjusted in the current work, and 

the boundary conditions can be satisfied naturally 

and exactly by using the hard constraints [27]. 

2 The mathematic model and the PINNs 

framework 

2.1 The mathematic model 

As presented in Eq. (1) [9], the 1D Reynolds equation 

for compressible fluids can be expressed as 

3 ( ) ( )
2 0

6

ph h h
U

x x t x

  


   
   

    
      (1) 

in which   is the density, h is the film thickness,   

is the lubrication viscosity, p is the pressure, and U is 

the surface velocity.  

In order to describe the complementarity relationship 

for considering the cavitation effects, the void fraction 

r is introduced and defined as given in Eq. (2) [9]. 

1
p

r



                  (2) 

where 
p

  denotes the lubrication density at the given 

pressure p. By substituting Eq. (2) into Eq. (1) the 

Reynolds equation can be expressed in Eq. (3): 

3 ( ) ( )
2 2 0

6
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U U

x x x x t t
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     
      

  (3) 



Friction 12(6): 1165–1175 (2024) 1167 

www.Springer.com/journal/40544 | Friction 
 

The complementarity relationship of the two 

variables p and r will be used [9] and is described in 

Eq. (4): 

0

0 1

0

p

r

p r

 
  
  

                 (4) 

It can be seen that both p and r should be non- 

negative values, while their product for any position 

should be zero. In this work, we will use PINNs 

method to find the solution of Eqs. (3) and (4). More 

detail of the mathematic model can be found in the 

work of Giacopini et al. [9]. 

2.2 The PINNs framework 

The PINNs architecture for 1D Reynolds equation 

with cavitation is presented in Fig. 1, and the coordinate 

x is used as the input layer. For 2D Reynolds equation, 

the coordinate y can also be added in the similar way 

for the input layer. The number of hidden layer as 

shown here is 3, and for each hidden layer a fixed 

number of neurons can be specified. There are two 

approximate solutions, i.e., p̂  and r̂ , are used in the 

output layer. Here, p̂  and r̂  should satisfy the PDE 

as described in Eq. (3). Due to the complementarity 

relationship between p and r as given in Eq. (4), two 

inequality constraints and one equality constraint  

are needed. Moreover, the pressure values on   

the boundaries are also applied in the boundary 

conditions. 

However, it should be noted that it is difficult   

to satisfy the inequality constraints directly and 

accurately for PINNs [27]. Therefore, the following 

adjustments are employed in this work. For the 

inequality constrain for p, as presented in Eq. (5), we 

transfer it into one equality constrain with no additional 

assumptions. In other words, there is no error for the 

transformation from the inequality constrain to the 

equality constrain. 

1
1 sign( ) abs() 0( )p p              (5) 

Specially, if 0p  , (1 sign( ))p  should be zero and 

(1 sign( )) abs( ) 0p p   . If 0p  , (1 sign( ))p  should 

be two, and a positive value of (1 sign( )) abs( )p p   

will be output into the loss function, and 
1

  is the 

corresponding hyper-parameter for the loss function. 

Moreover, for the equality constrain as shown in Eq. (4), 

we also introduce a hyper-parameter, and it can be 

expressed in Eq. (6): 

2
abs( ) 0p r                 (6) 

We can also use the similar way for r, while in this work 

we choose to use one hard constraint to consider 

about r. 

Besides, as proved in the works of Zhao et al. and 

Rom [24, 26], if the pressure values on the boundaries 

are applied by using the loss function, i.e., the soft 

constrain method, obvious fluctuation can be found 

on the boundaries. For example, in the work of Zhao 

et al. [24], more than 10% error can be found. While 

 

Fig. 1 PINNs architecture for the 1D Reynolds equation with cavitation. 



1168 Friction 12(6): 1165–1175 (2024) 

 | https://mc03.manuscriptcentral.com/friction 

 

in the work of Rom [26], only little fluctuation can be 

found. Therefore, it is not so promising to guarantee 

the boundary condition values by using the soft 

constrain method. In order to solve this issue, the 

hard constrain method will be employed [27], and 

the PINNs architecture with the hard constrain is 

described in Fig. 2. In the current work, we choose to 

consider about the conditions with Dirichlet boundary 

conditions, and for conducting the hard constrain 

method, we need to construct one function to satisfy 

the boundary conditions, and the form can be given 

in Eq. (7): 

1
ˆ ( ) ( ) ( )p g x l x N x               (7) 

in which ( )g x  denotes the pressure values on the 

boundaries and ( )l x  is a function to satisfy the 

corresponding conditions: 

( ) 0, Ω

( ) 0, Ω Ω

l x x

l x x

  
   

            (8) 

in which Ω  denotes the boundaries and Ω  denotes 

the computational domain. 

For the other output r, as we mentioned before, the 

value of r should be between 0 and 1, and we also 

employ one function to satisfy it and can be given in 

Eq. (8): 

2
ˆ max(0,min( ( ),1))r N x            (9) 

It should be noted that, from the mathematic view, 

the all zero results of p and all one results of r can 

satisfy the Eqs. (3) and (4), but they are obvious not 

our solution. Actually, the PINNs method may fail 

when it does find the minimum but the trivial 

solution. In order to avoid the trivial solution, some 

different methods can be applied. For example, if we 

know the pressure results at some points we can use 

them as the anchors in our training. Or if we know 

the total load we can also use it as one loss function.  

In the current work, similar to the work presented 

by Lu et al. [27], we choose to limit the mean value  

of r, and the equation is given in Eq. (10): 

mean( ) 0.9r              (10) 

The main advantage of the current way is that it  

is unnecessary to know the accurate values of p or   

r beforehand for any point inside the domain. As  

we mentioned before for PINNs method it is very 

hard to satisfy the inequality constrain directly and 

accurately, and similar to the method used in Eq. (5), 

we also form one equation to describe it and can be 

given in Eq. (11): 

3
1 sign(0.9 mean( )) abs(mean( () )) 0r r       (11) 

where 
3

  is the hyper-parameter, and it should be 

clarified that the introduction of the mean value of r 

is only employed as the constrain to avoid the trivial 

solution. Actually, the limitation of the mean value 

can be adjusted, and we found 0.8 or 0.95 can also be 

used. Besides, in order to guarantee the satisfaction 

of the three derived equality constraints as shown in 

Fig. 2 the large values of 
1

 , 
2
,  and 

3
  are used, 

and in the following calculation all the three hyper- 

parameters are fixed at 1,000.  

 

Fig. 2 PINNs architecture with hard constrains for the 1D Reynolds equation with cavitation. 
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It should be noted that Rom conducted the pioneering 

work for solving the Reynolds equation with 

consideration of the mass-conserving cavitation [26]. 

The differences between the work of Rom and the 

current work are presented in the following: 

(1) For the work of Rom [26], two variables, i.e., the 

fluid pressure p and the mass fraction 
c,

/    were 

used, in which 
c

  denotes the density of the lubricant 

at the cavitation pressure, and the complementarity 

relationship (1 ) 0p    was employed. In our work, 

the void fraction variable 
0

1 /r     was used, in 

which 
0

  denotes the fluid density in the full film 

region and is supposed to be constant [9]. The 

complementarity relationship 0pr   was used.  

(2) In the work of Rom [26], in order to use the 

complementarity relationship (1 ) 0p   , a switch 

function is required to eliminate the pressure terms 

in the cavitation zones. Therefore, threshold values of 

p and   are required to format the loss functions for 

the PDE term and the boundary condition terms. In 

our work it is unnecessary to use the switch function 

for using the complementarity relationship 0pr  , 

and we can format the loss function for the PDE term 

directly.  

(3) For the boundary condition terms, we try to 

transfer the inequality constraints to the equality ones 

without introducing errors, and hard constraints for 

the boundary conditions are employed in the current 

work. 

(4) For the work of Rom [26], the fluid was 

assumed as incompressible one. In our work both the 

incompressible one and the compressible one are 

considered. 

3 Results and discussion 

3.1 1D condition with incompressible lubricant 

Firstly, the bearing of sinusoidal profiles with pure 

sliding motion was calculated [28]. Here, the viscosity 

of the lubricant   is fixed at 0.015 Pa·s, the film 

height h (mm) can be expressed in Eq. (12): 

π
0.02 0.005sin(2π )

2

x
h

a
           (12) 

in which the length a is 125 mm. The surface velocity 

U  is 4 m/s, and the cavitation pressure 
c

P  is fixed at 

zero. Two cases of the boundary pressure values are 

considered. For case A, both the inlet pressure 
0

P  

and the outlet pressure 
1

P  are set as 0. For case B, both 

of them are set as 1 MPa. 

For both cases A and B, ( ) (1 )l x x x  . While the 

definitions of ( )g x  are different, and for case A, 

( ) 0g x  , while for case B, ( ) 1g x  . 

Therefore, the functions for applying the boundary 

values by using the hard constraint method are 

presented in Eqs. (13) and (14) for cases A and B, 

respectively. The results can be found in Fig. 3. 

1
ˆ (1 )p x x N                 (13) 

1
ˆ 1 ( 1)p x x N                 (14) 

The number of training points is fixed at 2,000, and 

3 hidden layers with 64 neurons for each one are 

utilized. The Adam optimizer is employed to train the 

networks for 20,000 epochs with the 0.001 learning 

rate, and then the L-BFGS will be utilized until the 

 

Fig. 3 Comparison of the results from the PINNs method versus the ones from the full linear system (FLS) method [28] for (a) Case A 
and (b) Case B. 
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loss is converged. The training works are conducted 

by using a Nvidia T1000 GPU, and the training time 

is around 80 s for each case.  

The results are validated against to the results 

derived from the full linear system (FLS) [28], and the 

results obtained from the current PINNs method agree 

well with the ones of FLS. The largest error is less than 

3% for case A. For case B the results from the two 

methods are almost the same. Moreover, it should be 

noted that the values for both case A and case B are 

guaranteed accurately. 

3.2 1D condition with compressible lubricant 

In this part, we will consider the condition proposed 

by Bertocchi et al. [10], in which the compressibility 

of the lubricant is taken into account. The Dowson 

and Higginson model was used to describe the 

compressibility of the lubricant, and can be given in 

Eq. (15):  

1 2 c

c 1 c

( )

( )

C C P P

C P P




 


 
            (15) 

where the constants 
1

C  and 
2

C  are set as 92.22e   

and 1.66, respectively [29]. The film height (μm ) is 

given by  

2

0 2

( / 2)

( / 2)

x a
h H A

a


             (16) 

in which both 
0

H  and A  are 4 μm , and the bearing 

length a is 76.2 mm. The surface velocity U  is 4.57 m/s, 

the viscosity   is 0.039 Pa·s and the cavitation 

pressure 
c

P  is fixed at zero.  

Different inlet and outlet pressure values are applied, 

the inlet one 
0

P  is set as 0.336414 MPa and outlet one 

1
P  is zero. To achieve this, the function for the hard 

constraint method presented in Eq. (17) is used. 

1 0 0 1
ˆ ( ) (1 )P P P x P x x N             (17) 

For the inlet boundary, by substituting 0x  , the 

value of P̂  is 
0

P . Similarly, if 1x  , the value of P̂  is 

1
P . Therefore, Eq. (16) can satisfy the requirement. 

The network parameters are the same as the ones in 

Section 3.1. 

As can be seen Fig. 4, the current results are 

comparing to the ones of Bertocchi [10], and good 

agreement can be found.  

However, due to the maximum pressure is much 

larger than the boundary value, and it is difficult to 

show the effects of the pressured inlet. In other words, 

we cannot verify the boundary value of 
0

P  easily. In 

order to emphasize the effects of the nonzero value 

of 
0

P , we choose to use the parameters used in the 

work of Sahlin et al. [29], in which most parameters 

are the same as the ones used by Bertocchi, but the 

values of 
0

H  and A are selected as 25.4 μm. 

As can be seen in Fig. 5, the current results agree 

well with the ones from Sahlin et al. [29], and the 

maximum error is less than 1.5%. Moreover, it is easy 

to find that the current hard constrained PINNs method 

can capture the nonzero inlet boundary pressure 

accurately. 

 

Fig. 4 Comparison of the PINNs results versus the ones of 
Bertocchi [10]. 

 

Fig. 5 Comparison of the PINNs results versus the ones of 
Sahlin [29]. 
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3.3 Journal bearings with incompressible lubricant 

The film pressure examples for journal bearings  

are conducted in this section. Firstly, the journal 

bearing with the incompressible lubricant condition 

is considered, and the parameters used by Rom are 

selected [26]. Specially, the bearing diameter d is 

80 /π , the bearing width w  is 20 mm, the clearance c 

is 17.5 μm, the eccentricity ratio 
r

e  is 0.8, the lubricant 

viscosity   is 0.014 Pa·s, the surface velocity U is  

0.2 m/s, and the boundary pressure values 
b

P  are 

fixed at 0.1 MPa.  

The number of training points is 20,000, and the 

other network parameters are the same with the ones 

used in Section 3.1. The training time is around 1,200 s. 

Moreover, to improve the results on the boundaries, 

the hard constrain method is employed again. Here, 

the function as given by Eq. (18) is utilized.  

b 1
ˆ (π ) ( )P P x d x y w y N              (18) 

The film pressure results can be found in Fig. 6, 

and in order to validate our results against the ones 

of Rom, the pressure results along 0.01y   m are 

extracted and are presented in Fig. 7. It can be seen 

that the current results agree well with the results of 

Rom. 

As we mentioned before, a great advantage by using 

the hard constraint method is that the boundary 

values can be guaranteed mathematically. As can be 

seen in Fig. 8, the fluctuation of the boundary pressure 

values is reduced significantly by using the hard 

constraint method. 

 

Fig. 6 Film pressure results for the journal bearing with 
incompressible lubricant. 

 

Fig. 7 Comparison of the film pressure results of the mid-plane 
from the PINNs method versus the ones of Rom [26]. 

 

Fig. 8 Comparison of the boundary pressure results from the 
PINNs method with hard constraints versus the one with soft 
constraints [26]. 

3.4 Journal bearings with compressible lubricant 

For the journal bearing with consideration of the 

lubricant compressibility, we plan to compare our results 

with the ones of Miraskari [28]. The dimensionless 

pressure results 
non

P  were employed by them, as 

presented in Eq. (19), and therefore the parameters 

required for describing the journal bearing are the 

eccentricity ratio 0.8
r

e   and the bearing length to 

diameter ratio / 1l d  . Moreover, to describe the 

lubricant compressibility, the constant bulk modulus 

model is used and the bulk modulus   is set as 
92 10 Pa . 

2

non 2

4c
P P

d



             (19) 

The network parameters are the same with the 
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ones used in Section 3.3. As can be seen in Fig. 9, the 

maximum 
non

P  is around 71, and the pressure results 

along the middle plane of the Y axis are comparing to 

the ones of Miraskari [28]. Good agreement can be 

found as can be seen in Fig. 10. 

In the above-mentioned examples, the cavitation 

pressures are all set as zero. However, it should be 

noted that for the work of Rom [26] the absolute 

pressure was employed due to the ambient pressure 

was also set as 0.1 MPa, while in the works of Bertocchi 

et al., Sahlin et al., and Miraskari et al. [10, 28, 29]  

the gauge pressure was used because the ambient 

pressures were zero. It should be noted that different 

cavitation pressures were reported in some experimental 

works [30], and for the absolute way the cavitation 

pressures for journal bearings are varied from 29.2 kPa  

 

Fig. 9 Film pressure results for the journal bearing with 
compressible lubricant. 

 

Fig. 10 Comparison of the pressure results of the mid-plane 
from the PINNs method versus the ones from the work of 
Miraskari [28]. 

to 95.7 kPa (absolute) [31]. In order to consider about 

the non-zero cavitation pressure, the complementarity 

relationship of p and r provided in Eq. (4) is described 

in Eq. (20): 

c

c

0

0 1

( ) 0

p p

r

p p r

  
  
   

              (20) 

The first two equality constraints used in the PINNs 

architecture are revised in Eqs. (21) and (22). 

1 c c
1 sign( ) abs(( ) ) 0p p p p             (21) 

2 c
abs(( ) ) 0p p r                 (22) 

The current results are validated against the ones 

obtained from the method of Almqvist [11], and both 

the inlet and outlet pressures are set as 0.1 MPa 

(absolute). Two cavitation pressure values, i.e., 0.03 

MPa and 0.09 MPa (absolute), are considered. The 

viscosity of the lubricant   is 0.02 Pa·s, and the film 

height h (mm) is given in Eq. (23): 

    
 

π
0.02 0.01sin 2π

2

x
h

a
      (23) 

in which the length a is 100 mm. The surface velocity 

U is 1 m/s, and the bulk modulus   is set as 
92 10 Pa . The results are provided in Fig. 11, and it 

can be seen that the current results agree well with 

the ones of Almqvist. Moreover, we can find that the 

current PINNs method can capture the cavitation 

pressure values well through enlarged details.  

3.5 Limitations 

The PINNs method has demonstrated the great 

potential to solve the Reynolds equation with or without 

considering about the cavitation. However, it also 

should be noted some limitations when using it.  

1) It is difficult to consider the discontinuity film 

height conditions, but they can also be found in practice, 

such as for pocket bearings [4, 6] and the textured 

journal bearings [25]. Due to the non-differentiable 

nature at the discontinuity points, we cannot employ 

the PINNs method to obtain the solutions directly. 

2) The training time is normally much longer than 

some sophisticated methods. For the current study, 
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we use a T1000 GPU to conduct the calculation. For 

the 1D Reynolds equation, about 80 s are required, 

while for the 2D one, about 1,200 s are needed. We 

believe by using one more advanced GPU we can 

reduce the time to some extent, but it is still much 

longer than the existing numerical methods, such as 

the FDM. 

4 Conclusions 

In this work, the Reynolds equation with considering 

of the mass-conserving cavitation is solved by using 

the PINNs method. The inequality constraint for 

pressure is transferred into the equality one without 

introducing any error, and the one for void fraction is 

guaranteed by using the hard constraint method. In 

order to reduce the fluctuation and inaccuracy of the 

soft constraint method on the boundaries, we also 

employed the hard constraint method to construct 

the neural networks. Both the incompressible and  

the compressible lubricant conditions are considered, 

by comparing with the existing data from several 

researchers for both 1D and 2D conditions, and 

the accuracy of the current PINNs method has been 

validated. Moreover, due to the employment of the 

hard constraint method to describe the pressure values 

on the boundaries, the accuracy of the boundary 

pressure values is improved significantly. Besides, the 

limitations of the current method are also discussed. 

We believe the PINNs method can be used for other 

forms of lubrication, and in our next study we will 

try to use it to solve the EHL problem. 
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