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Abstract: The wear and rolling contact fatigue (RCF) testing approaches for wheels and rails have been reviewed 

and evaluated in this study. The study points out the advantages and limitations of the existing approaches. The 

broad analysis revealed that scaled laboratory-based wear testing is widely applied. However, it is necessary to 

predetermine the input parameters and observing parameters for scaled wear testing for three reasons: first, to 

emulate the real-world scenarios as closely as possible; second, to postprocess the results received from the scaled 

testing and transfer them into real practice at full scale; third, to present the results in a legible/appropriate format. 

Therefore, most of the important parameters required for wear testing have been discussed with fundamental and 

systematic explanations provided. Additionally, the transition of the parameters from the real-world into the test 

domain is explained. This study also elaborates on the challenges of the RCF and wear testing processes and 

concludes by providing major considerations toward successful testing. 
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1  Introduction 

Wheel and rail interaction plays an important role in 

the productive operation of the railways. However, 

the wheel–rail interface is complex because it is an 

open system with varying external conditions such  

as diverse wheel and rail geometry, inconsistent 

displacements and rotational movements of wheels, 

variable distribution of wheel loads acting on  

small contact patches, vehicle speed, operational rail 

self-cleaning mechanism, track irregularities, axle 

load distributions, and rail vehicle design to name   

a few. In addition, rail vehicle axle load targets are 

increasing to attract more financial and operational 

benefits. To do so, more trains are running on the 

track, and they are running faster, leading to more 

damage on the wheel-rail interface. 

Thus, the efficient control of impacts on the 

wheel-rail interface is a crucial aspect of rail vehicle 

operations. In the wheel–rail interface management, 

a wear control strategy is one vital part. It is a difficult 

problem because measures used to reduce wear (such 

as application of lubricant) may adversely influence 

adhesion and fatigue, and measures used to increase 

adhesion (such as application of sands) may impact 

on wear. Thus, wear testing is necessary before 

implementing an effective control strategy to establish 

a good balance regarding whether to introduce a new 

lubrication approach and/or more durable wheel or 

rail materials. There are different approaches to testing 

and analysing wear in railway operations which will 

be analytically reviewed in the next section. Also, wear 

testing is required to generate the wear coefficient  

to use in the wear simulation model and validate the 

results from predictive numerical tools. Above all, 

wheel–rail wear testing delivers the essential insights 

of the wear mechanism of the combination of particular 

wheel and rail materials. 

2 Wear and RCF relation 

In general, wear is a process in which the surface 
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layers of solid bodies are ruptured as a result of their 

mechanical action against each other [1]. A general 

classification of different types of wear is presented 

in Ref. [2]. One such type is wheel–rail wear where 

the bodies in action are wheels and rails and the 

mechanical action appears in the form of frictional 

force [3]. The quantitative definition of wheel–rail wear 

is the displacement of material from the wheel–rail 

contact surface. Such wear is influenced by several 

mechanisms, for instance, presence of friction 

modifier/enhancer, fluctuating high contact pressure 

on a varying small contact patch due to different vehicle 

running conditions, various rolling/sliding speed, etc. 

Specifically, in the railway industry and academia, 

there are three widely accepted methods for estimating 

wheel and rail wear rates [4]: the T-gamma model [5,6], 

the Archard model developed by British Rail Research 

[7, 8], and the USFD model from the University of 

Sheffield [9–11]. The T-gamma approach uses the 

wheel–rail contact pressure and sliding velocity to 

determine the energy dissipation from the wheel–rail 

contact and can be formulated as the Tγ value [12]: 

[ ]
y y x x z z

T T T M                    (1) 

where T and M are the longitudinal and lateral creep 

forces and spin creep force components,   and   

are the longitudinal, lateral, and spin creepage com-

ponents. Depending on the Tγ value, the wheel–rail 

wear is categorized into three types: mild, severe, and 

catastrophic [13]. The first two types occur on the 

straight track (wheel tread–railhead contact), and 

the last one may occur on tight curved track (wheel 

flange–rail gauge contact). The transition from severe 

to catastrophic occurs during the shift of the contact 

interface from wheel tread to wheel flange contact. 

The Archard wear model approach states that the 

material volume loss ( V ) is a function of the sliding 

distance ( s ), normal force ( N ), and the material 

hardness ( H ) formulated as [12]: 

Ns
V k

H
                   (2) 

where k is the wear coefficient, which similarly to the 

energy dissipation approach, classifies the wear volume 

loss results as mild, severe, and catastrophic. Finally, 

the USFD model expands the Tγ approach in terms 

of a wear index per contact area: Tγ/A where A is the 

contact area, using the expression in Eq. (3): 

( , ) ( , )
T

p x y x y
A

                (3) 

where Tγ/A is the scalar product of the traction (p) and 

the non-dimensional slip (γ) for the positions of the 

contact point located at (x, y) coordinates [9]. 

Wheels and rails may suffer damage due to wear 

and crack growth due to rolling contact fatigue 

(RCF). The phenomenon of enduring such damage 

differs depending on the scenarios of wheel and rail 

interaction [14]. This can therefore result in different 

types of RCF defects. Several types of RCF defects have 

been reviewed over many years by various authors 

[15–21]. The severity of RCF in railway applications 

depends on the numerous operational, infrastructure 

and wheel–rail adhesion conditions [22] that govern 

the elastic–plastic material behaviour triggered by 

rolling‒sliding contact. Mainly, two models are used 

to estimate RCF occurrence for railway applications: 

the surface fatigue index model, based on the 

shakedown mechanism [23], and the energy dissipation 

model based on T-gamma [24]. Shakedown maps 

developed by Johnson [25] enable assessing the 

compressive stress limits that the material can 

withstand without the risk of RCF or ratcheting [26]. 

A shakedown analysis establishes load and traction 

limits, classifying the possible contact conditions into 

elastic shakedown, plastic shakedown, and ratcheting 

[27]. Thus, shakedown maps have been historically 

used to limit traction forces and vehicle weight or  

to implement wheel and rail profiles that augment   

the contact area to achieve an optimised minimum 

desirable area of wheel and rail profiles, diminishing 

wear and the RCF occurrence probability [28]. Modern 

RCF prediction studies are normally conducted using 

computerised multibody dynamics analyses. As RCF 

is not only a function of the wheel–rail normal contact 

force resulting from the vehicle mass, but also a function 

of the tangential forces caused by traction, braking, 

curve negotiation, and other dynamic behaviour on the 

wheel–rail interface [29]. Non-Hertzian wheel–rail 

contact models, for example, the CONTACT algorithm, 

and the Extended Kik-Piotrowski or Kalker Book of  
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Tables, are used for multibody simulation (MBS) RCF 

studies. Although non-Hertzian contact models are 

more time-consuming and computationally intense, 

they deliver better local vertical and tangential forces 

results, as they allow for generic contact shapes that 

produce non-elliptical contact patches as routinely 

occur in railway applications [30]. 

Although wear rates are typically low under 

lubricated conditions, water and lubricants may 

promote RCF cracks. Thus, fatigue testing usually 

involves lubricants [31]. However, wear and RCF 

are closely related such that, in some cases, severe 

wear may prevent the occurrence of RCF [32, 33].  

Figure 1 shows the relationship among wear, wear 

rate, and RCF on the life of rail steel. The wheel–rail 

surface may fail by wear, RCF, or both. The life of 

the rail decreases with the increase in wear rate if 

only wear is considered, and this is reversed if only 

fatigue is considered. However, wear and RCF co-exist 

which creates the actual life profile of the rail shown 

by the bold line. The actual life above the horizontal 

line is the optimum life. The horizontal line intersects 

the actual life curve at point-A (failure by RCF) and 

point-B (failure by wear). The interesting observation 

from the figure is that, for the same material, a higher 

material removal rate leads to safer operation [34]. 

Some of the major parameters to influence the wear 

and RCF in railways are track structure, vehicle type, 

and lubrication applied [35]. 

While wear occurs over time on the wheel and rail 

contact patch by removing the superficial layer of the  

 

Fig. 1 Impact of wear and RCF on rail life (redrawn from  
Ref. [34]). 

bodies in contact, RCF manifests only after multiple 

loading cycles, when the material ductility is exhausted 

and microcracks appear and propagate from the 

wheel or rail material [27]. Hence, it can be noted  

that different testing approaches are required for 

wear and RCF phenomena. RCF testing consists of 

determining the presence or absence of cracks on  

the wheel–rail surface or subsurface after a number 

of loading cycles and a corresponding load condition 

that causes this outcome. Consequently, the result of 

an RCF test is a binary qualitative judgement that 

indicates if RCF did or did not occur on a section of 

the track, wheel or rail material. On the other hand, 

the wear rate estimated during a wear test is a 

quantitative value representing the wheel or rail material 

mass loss for a corresponding load condition over time, 

for example in volume loss per unit of longitudinal 

travel. Consequently, from the RCF perspective, this 

review focuses on technologies for detecting cracks 

on wheels, rails, or material specimens, as a relevant 

aspect of modern RCF testing. From the wear testing 

perspective, measuring mass or dimensional variations 

of the test specimens require less sophisticated 

instruments than are necessary for crack detection. 

Steady state wear rates do not depend on the number 

of cycles, and wear test runs can be extended to 

achieve reliable specimen mass loss or dimensional 

variation measurements. Then, from the wear testing 

perspective, this review addresses recent advances in 

field and laboratory wear testing approaches. 

3 RCF testing 

RCF testing is important to manage possible risks 

and reduce disastrous failures. The defects that might 

appear nonthreatening to the naked eye can be at  

a dangerous state internally. There are high-end 

technologies that exist for scanning and recording  

the internal state of various materials [36], however, 

methods used for the assessments of wheel and rail 

defect conditions are lagging to utilize those advanced 

technologies. As a result, the rail RCF testing approaches 

are still only able to provide qualitative analysis of the 

simplest surface defect (i.e., squats, spalls). There are 

few commercially available RCF testing systems [37] 

and most of them are not feasible for railway application 
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due to their low speed and manual operating 

requirements. On a positive note, advancement toward 

higher speed and machine integrated automatic 

systems is progressing and it seems only a matter of 

time before they become commercially available.  

3.1 RCF testing approaches 

There are several wheel–rail testing and inspection 

technologies available. Among them, those most 

commonly used for wheel–rail testing and RCF 

detection are based on ultrasonics, eddy current, vision, 

and alternating current. The competence of these 

technologies to detect the surface and subsurface 

defects are compared in Table 1 and briefly explained 

in the following sub-sections.  

3.1.1 Ultrasonic testing (UT) 

This approach transmits a beam of ultrasonic energy 

into the rail and the reflected energy of the beam after 

encountering an obstacle is detected by collection 

transducers. The amplitude of the reflected energy 

with the time stamp contains important information 

about the rail. In many countries, this system is usually 

used on Sperry trains (UTU1 and UTU2 models in 

the UK for example) [38]. The excessive false reading 

problems of UTU1 was partially addressed by setting 

more realistic detection thresholds and criteria in 

UTU2. Practically, ultrasonic rail testing systems are 

operated from 40 km/h up to a maximum of around 

110 km/h. The third body layer is one of the major 

problems for this testing approach. For better results, 

the combination of the ultrasonic transducer approach 

with the pulsed eddy current method described  

later has been implemented (e.g., Eurailscout [39–41], 

Scanmaster). To improve speed, accuracy and detection 

rate in rail flaw detection, many research efforts have 

been made to develop some innovative UT techniques. 

Those techniques include phased array ultrasonic 

testing, laser ultrasonic testing, guided wave testing, 

electromagnetic acoustic transducer, and acoustic 

emission testing. 

 Phased array ultrasonic testing  

Unlike the single transducer and beam used in 

conventional UT approaches, phased arrays use multiple 

ultrasonic elements and electronic time delays to create 

beams by constructive and destructive interference [42]. 

The phased array beams can be guided, scanned, 

swept, and focused electronically which can detect 

flaws in different directions, depths, and locations. 

Some of the recent developments in this testing 

approach include a foundation work to provide 

information and evidence for the positioning of phased 

array probes in rail flaw detection [43], a hybrid array 

transducer combining a linear phase and a static array 

to precisely measure real defects in rail specimens [44], 

multi-element phased array technology by Speno 

International Company [45], the Omni-scan system 

by TTCI [46], and an in-parallel analysis concept also 

known as the fast automated angle scan technique 

(FAAST) which has been developed by Socomate 

International to address the processing in real time 

problem [47].  

 Laser ultrasonic testing 

Unlike the conventional piezoelectric ultrasonic 

testing, laser-based ultrasonic testing (LUT) has     

a remote implementation option which enables the  

Table 1 Comparison of four most frequently used technologies for rail surface and subsurface testing. 

Application 
Surface 
defect 

Near 
subsurface 

defect 

Deep 
subsurface 

defect 

Third-body 
layer 

Couplant 
Test probe 

position 
Lift-off 

Shape of 
defect 

Inspection 
speed 

Ultrasonic Poor Reasonable Good Problematic Required 
Close to 

defect center
No Not possible Slow 

Eddy 
currents 

Good Reasonable Not possible Can detect Not required
Wide field 

of view 
Less than 

2 mm 
Not possible Fast 

Vision 
system 

Reasonable Not possible Not possible Not possible Not required
Wide field 

of view 
Variable Possible Very fast

Alternating 
current 

Reasonable Reasonable Good Can detect Not required
Wide field 

of view 
Up to  
5 mm 

Possible Faster 

 



Friction 11(12): 2181–2203 (2023) 2185 

www.Springer.com/journal/40544 | Friction 
 

ability to work in an adverse environment [48]. The 

pulsating laser on the solid surface creates a wave 

along both the longitudinal and lateral directions 

which can be utilized to detect defects on the surface 

and in the subsurface. Still, some of the existing 

issues with LUT are high detection cost, and low 

light to sound energy transformation. Some of the 

latest developments in this testing approach include 

automatic rail inspection called LURI [49], and a 

laser-air hybrid ultrasonic technique for rail defect 

inspection with a higher detection success rate [50–54]. 

 Guided wave testing (long-range ultrasonic) 

In this ultrasonic testing (UT) technique, a volumetric 

ultrasonic wave is transmitted along a structure such 

as a rail. Long-range ultrasonics may employ a range 

of wave modes such as Lamb, Plate, or Rayleigh waves, 

but have become commonly known as the Guided 

Wave UT technique. An extensive review of ultrasonic 

guided wave technology can be found in the Ref. [55]. 

In rail defect detection, the ultrasonic guided wave 

propagates through the uneven flaws on the rail 

surface, reducing the screening effect of lateral cracks. 

Long-range ultrasonics can be effective up to 30 m 

from the sensor array which can be affected by the 

wave mode and frequency selected [56, 57]. Some 

recently reported research projects to inspect rail using 

long-range ultrasonics are available in the Refs. [58–68] 

This testing approach is implemented in a hi-rail 

vehicle, known as Prism, by Wavesinsolids LLC in the 

USA [69–72] for commercial application.  

 Electromagnetic acoustic transducer 

In this testing approach, commonly referred to as 

EMAT, ultrasound is generated and detected in a 

magnetic or electrically conducting material. This is 

achieved by passing a large current pulse through 

an inductive coil in close proximity to a conducting 

surface in the existence of a strong static magnetic 

field, often provided by a permanent magnet [73] as 

shown in Fig. 2. 

The advantage of using this technology is that it 

does not require physical coupling or acoustic matching 

as it is an electromagnetic coupling method that 

produces the ultrasound in the sample skin depth [73]. 

Some other advantages of this non-contact transducer 

technique are the ability to examine specimens with  

a coating layer, and the focusing and steering of the  

 

Fig. 2 EMAT: (a) typical configuration (redrawn from Ref. [73]) 
and (b) transducer from Olympus (redrawn from Ref. [74]). 

beam at various angles to achieve defect detection 

from an uneven surface and subsurface. 

With regard to the orientation of the magnetic  

field, the geometry of the coil and the physical and 

electrical properties of the material influence the 

efficiency of the EMAT. Furthermore, EMATs may be 

used to detect RCF cracks at high speeds but, in the 

case of multiple-RCF cracks, only the depth of the 

deepest defect may be detected [75, 76]. 

A commercial hi-rail vehicle including the EMAT 

technology has been developed by NDT Olympus 

and is known as RailPro. Several EMAT configurations 

have been used in the RailPro system to generate 

surface and bulk ultrasonic waves to inspect the 

whole section of rail [77]. The system has been tested 

on a special evaluation track containing several types 

of defects including RCF damage at inspection 

speeds between 5–9 km/h [77]. Advances in EMAT 

technology for rail inspection and quantification of 

RCF damage on rail have been reported by several 

researchers [78–84]. 
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3.1.2 Pulsed eddy current 

In this approach, alternating current is passed through 

an excitation coil which creates a magnetic field near 

the surface of the railhead and leads to the induction 

of eddy currents in the surface and/or near-surface 

layers of the metallic material under inspection [85]. 

Changes in the secondary magnetic field generated 

by the eddy currents are detected by the sensing coil. 

If there is a surface defect at the near-surface or on 

the surface, then the eddy currents cause fluctuations 

in the secondary magnetic field giving rise to changes 

in the impedance [36]. One of the main benefits of EC 

testing, unlike conventional ultrasonic testing, is that 

the EC testing sensor is not required to be in contact 

with the material under inspection which enables 

high-speed inspection capabilities. However, despite 

its extensive benefits, some of its weaknesses are that 

the EC sensor responds to undesired signal changes 

resulting from the variation of the material’s properties, 

such as conductivity and permeability [86]. Also, the 

EC system is very susceptible to changes in the 

distance between the coils and the target, so special 

care needs to be given to avoid lift-off changes [36]. 

The pulsed eddy current (PEC) is an upgrade to the 

traditional EC method in which excitation of the 

inducer coil is achieved by applying a wideband of 

frequencies one after another in a single pulse step 

rather than a single frequency sinusoidal voltage [75]. 

The advantage of such a method is that a range of 

frequencies can be produced at once to obtain a range 

of skin depths. The PEC has been used in the railway 

domain as a complementary system and/or together 

with ultrasonic testing [41, 87–89]. Some of the recent 

developments of such a testing system are reported 

by several researchers and companies [90–99]. 

3.1.3 Vision system 

The conventional visual inspection method performed 

by trained rail inspectors physically travelling along the 

rail track is highly subjective and places inspectors  

in harm’s way. With the advancement in speed and 

resolution in camera systems, the conventional system 

is being replaced by an automatic vision system. The 

concept of such automation in the vision system is 

based on acquiring the video images of the rail and 

analyzing automatically using different image analysis 

software/algorithms [100, 101]. The image analysis to be  

performed may range from simple pattern recognition 

to complex machine learning-based algorithms. Also, 

the analysis process depends on the speed requirement 

of the system. Thus, this system has been used for 

high-speed testing of RCF cracking. However, this 

system is not able to provide the information 

regarding internal defects and hence cannot be used 

as an alternative to ultrasonic testing. Some of the 

recent advancements of an automated vision system 

for RCF and rail inspection are reported by several 

researchers [102–109].  

3.1.4 Alternating current field measurement (ACFM) 

This is an electromagnetic inspection approach based 

on the principle that an alternating current (AC) can 

be induced to flow in a thin skin near the surface of 

any conductor. By introducing a uniform current into 

a section of the test component, the induced electrical 

current will be disturbed when there is a defect, and 

this influences the current to flow around the ends 

and down the faces of the crack as shown in Fig. 3. 

The changes in the direction of the current will 

introduce non-uniformity to the magnetic flux which 

is constantly monitored using two sensors measuring 

the magnetic field in two directions [110]. 

The ACFM technique is the most recent NDT 

inspection method introduced in the railway industry  

 

Fig. 3 Illustration of the ACFM principle (redrawn from    
Ref. [110]). 
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and some of the advantages mentioned in the 

literature are: 

 It is a non-contact method with reduced sensitivity 

to lift-off (5 mm is possible without significant loss 

of signal) as compared to eddy current sensors that 

are required to be placed at a very close (<2 mm) 

and constant distance from the inspected surface. 

 It can detect the defect and evaluate the size of the 

defect. 

 High inspection speeds up to 80 km/h are 

reported. 

 It can also detect a defect in the presence of dirt 

contamination and the third-body interfacial layer. 

Although the ACFM technology was developed and 

patented by TSC Inspection systems initially for 

the routine inspection of structural welds, many 

research activities are being conducted to improve the 

technology specifically for rail inspection [111–114]. 

The literature claims that TSC has proven the ACFM 

system could detect RCF of 12 mm×2 mm in size,   

at 80 km/h with the lift-off of 2.3±0.5 mm [115]. Some 

of the recent advancements of ACFM technologies 

for RCF and rail inspection are reported by several 

researchers [116–125].  

3.2 Challenges to RCF testing 

As mentioned in Table 1, our literature review has 

shown that each RCF detection technology has 

some advantages and drawbacks. The ultrasonic 

based technologies are not that efficient in detecting 

surface defects and are relatively slow. However, an 

implementation based on this technology is being 

comprehensively investigated and can be expected  

to be developed to a practical railway application 

in the medium-term future. The eddy current system 

is offering tremendous benefits in the surface crack 

measurement through hand-held devices such as 

walking sticks and hi-rail mounted systems. More 

investigation is needed for detection of subsurface 

defects and for faster performance. The vision system 

can only be used for surface defect detection although 

higher speeds can be achieved depending on the 

pixel resolution required to identify the defect. All in 

all, successful RCF detection technology requires the 

integration of a range of detection technologies based 

on appropriately implementing their specific strengths.  

4 Wear testing 

There are several reasons for performing wheel-rail 

wear tests. Some of the major motivations are: 

 Wear coefficient calculation: to develop values for 

use in wear models. 

 Wear control: to help to select lubricants and 

friction modifiers. 

 Wear mechanism study: to understand the wear 

phenomenon in different combinations of wheel-rail 

materials. 

 Predictive tools validation: to confirm the numerical 

methods of wear calculation.  

 Material performance benchmark: to assess new 

wheel–rail material and/or technologies. 

Wear testing can be categorized into laboratory tests 

and in-service/field tests. The first type is carried 

out in the laboratory using a scaled or full-scale test 

set-up. The most common test rig setups are twin 

disc, pin-on-disc, reduced scale wheel–rail/roller, and 

full-scale wheel–rail/roller. Among these, the first  

two are mostly used for wear testing as they are 

inexpensive in comparison to wheel–rail/roller setups. 

Nevertheless, wheel–rail/roller setups allow for a better 

representation of the wheel–rail contact conditions in 

the field. The wear mechanism characteristics (rates 

and coefficients) derived from laboratory wear testing 

are quantified (scaled) to implement in the numerical 

model with the test conditions being controlled as close 

as possible to the real railway operational conditions 

[126]. The in-service/field testing performs the wear 

test under an actual contact condition. Most of the time 

such testing is performed to correlate (and validate) the 

results from laboratory test methods [127]. From the 

perspective of ease of the application and repeatability 

of the testing conditions, laboratory wear testing is the 

most popular one. 

4.1 Approaches 

A tool to test wear is called a wear machine (not to be 

confused with the tribo-machine or tribometer used 

for friction measurement). From the extensive literature 

search, dozens of wear testing apparatuses are found. 

The similarity in all wear machines is the involvement 

of two components loaded against and moving relative 

to each other. Table 2 shows the most popular wear 

testing technologies. 
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4.1.1 Pin-on-disc wear tester 

In this type of wear tester, a pin is loaded against a flat 

rotating disc such that a circular wear path is created 

for further analysis as shown in Fig. 4. The apparatus 

can be used to evaluate the wear properties of materials 

under pure sliding conditions. From wheel and rail 

specimens, the disc and pin serve as either of the 

specimens. Various pin geometry arrangements are 

used as convenient.  

4.1.2 Twin disc 

This is the most popular wear testing approach 

where two discs manufactured from wheel and rail 

material are fixed through parallel shafts and pressed 

against each other under a normal load as shown in 

Fig. 5. In general, the wheel disc is a driving wheel  

 

Fig. 4 Schematic of pin-on-disc wear test machine arrangement. 

 

Fig. 5 Twin disc wear tester: (a) schematic, and (b) device at 
Centre for Railway Engineering, CQ University Australia. 

Table 2 Wear testing approaches. 

Type Approach Reference Advantages Limitations 

Pin-on-disc [127–135] 

 Low cost 
 Control over test parameters 
 Easy to prepare the test specimen 
 Easy data acquisition and measurement 

 Simplified contact geometry—pure 
sliding 

 

Twin-disc [6, 136–146]  

 Low cost 
 Control over test parameters 
 Easy to prepare the test specimen 
 Modular approach 
 Easy data acquisition and measurement 

 Simplified contact geometry—rolling 
contact 

 Hard to replicate the actual 
environmental conditions 

Scaled  
roller rig 

[126, 147–149]  Better representative of contact geometry  Costlier test setup and specimens 

Laboratory 

Full scale 
roller rig 

[9, 150–154]  Actual contact geometry and contact 
conditions 

 High cost 
 Time-consuming 
 Limited control over test parameters

Field In-service [155–159]  Actual contact geometry and real test 
environment 

 High cost 
 Time-consuming 
  Hard to obtain wear data 
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driven by a motor and gear arrangement. The rotating 

speed is controlled by controlling the motor. Pure 

rolling conditions are reached when the linear speeds 

of the two discs are equal. For wear testing, the 

rolling–sliding condition is essential for which one of 

the discs needs to rotate slower. For that reason, the 

rail disc is equipped with a controlled braking system 

to generate a variety of slip/traction conditions.  

4.1.3 Scaled roller rig 

While the most common wear testing methods 

used with railway wheels and rails are twin disc and 

pin-on-disc systems, the results from these systems 

cannot be directly compared with the wear process 

occurring on a railway wheel and rail in the field as 

they require implementing complex scaling techniques 

to account for the non-linearities governing the 

wheel–rail contact behaviour. A few of these roller 

rigs are used for wear evolution and testing purposes 

[126, 147–149]. Typically, the results obtained from 

those systems require a numerical model to consider 

the consequences of effective slip and pressure 

distribution. Nevertheless, scaled roller rigs allow 

simulating a wide variety of vehicle–track dynamic 

scenarios in a safer, more controlled environment and 

at a fraction of the cost compared to full-scale roller 

rigs of full-scale field tests [160]. The main drawback 

of scaled roller rigs is the scaling problem, i.e., adopting 

a similarity strategy to effectively recreate the full-scale 

scenario in reduced scale laboratory conditions and 

subsequently transforming the measured scaled results 

to the full-scale case. Two of the similarity laws are 

used to correlate the results of scaled roller rigs with the 

full-scale case and include, for example, dimensional 

analyses or inspectional analyses to determine different 

scaling factors for mass, lengths, material properties, 

and wheel–rail/roller contact forces, among others. 

Reference [161] compares and provides details on 

various scaling strategies for scaled roller rigs from 

the University of Sheffield, German Aerospace Center, 

and the French National Institute for Transport and 

Safety Research. The results obtained from scaled rig 

experimental programs deliver insights on the material 

properties during the wear process under equivalent 

wheel–rail contact dynamics. Some of the common 

features of these scaled roller rigs are that they are 

used to validate the numerical code determining the 

wear of wheel and rail profiles and they use a special 

profilometer to evaluate the wear of the profile. 

4.1.4 Full scale roller rig 

Full-scale roller rigs provide actual wheel and rail 

contact geometry and contact conditions. Additionally, 

the actual wheel and rail pieces used in the field can 

be used in the experimental programs performed in 

full-scale test rigs. Though the results can be easily 

transferable to represent the actual wear factors, as 

the results do not require complex scaling methods, 

the setup and operational costs are high in comparison 

to scaled and simplified testing methods. Nevertheless, 

full scale roller rigs offer less expensive and more 

controllable and repeatable experimental programs, 

compared to field tests [162]. Some relevant wear and 

RCF studies using full-scale roller rigs can be found 

in Refs. [9, 150–154].  

4.1.5 Field test 

This testing provides the actual wheel and rail contact 

geometry and the real operational environment. The 

field test approach requires a significant economic 

effort as the wear phenomenon in the field is slow in 

comparison to laboratory tests and it usually takes a 

relatively long time for wheel–rail profiles to become 

noticeable worn. In addition, the conditions in the 

field are not always easy to control as there are 

uncertainties introduced by weather, maintenance 

actions, and the different types of vehicles that operate 

over the same track. Some of the few field tests for 

wear testing in railways are discussed in Refs. [155–159]. 

In Refs. [155, 156], the wear tests showed that wear 

coefficient and sliding velocity are dependent on 

each other. Furthermore, the tests also establish the 

change of wear mechanism from mild wear to severe 

wear due to change in sliding velocity. In Ref. [157], 

the measure of rail wear is gauge face wear which is 

measured as lateral metal loss from that side of the 

high rail of the curve in contact with the wheel flange. 

On the other hand, the wheel tread wear is assessed 

as change in flange height for both powered and 

trailing wheels in Ref. [158]. The field test results are 

the best way to develop and validate a comprehensive 

wear model which can be easily used in combination 
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with other numerical simulations as performed in 

Ref. [159]. However, wear testing in the actual field 

creates enormous difficulties in obtaining the wear 

data along with a huge cost. Field testing is also 

time-consuming because each passage of the wheel 

propagates changes in the surface by a range of a few 

nano-meters [163]. The difficulties increase if a variety 

of different rolling stock is in use on the same railway 

network.   

4.2 Selection of input parameters for scaled wear 

testing 

In scaled wear testing and mapping, when using the 

/T A  wear model approach, the major parameters to 

consider are wear rate and /T A . Varying contact 

pressure and slip is required to represent a sufficient 

range of T  to represent the full range of operating 

scenarios which may be informed by multibody 

dynamic simulations of the rail vehicle. Thus, it is 

necessary to obtain the full range of contact conditions 

and parameters from multibody dynamic simulations 

of the rail vehicles before performing the wheel-rail 

wear test. The necessary parameters are elliptical 

contact patch size, maximum contact pressure, and 

sliding length. The Hertzian calculation in the elliptical 

contact case are shown in Table 3. 

To represent the contact conditions and parameters 

in scaled testing (especially in twin disc tests), the 

Hertzian calculations of these parameters assuming 

the two contacting bodies as cylindrical in shape 

need to be considered. The equivalent calculations of 

the contact parameters are provided in Table 4. 

Wear test machines have a limited maximum 

normal load capacity. Thus, the scaling of the specimen 

is influenced by the capacity of the test machine and 

the maximum required contact pressure.  

4.3 Major wear measurement parameters 

Wear measurement is conducted to determine the 

quantity of materials removed (i.e., worn off) after a 

wear test. The wear test resembles a portion of the 

service period in the real world. The wear measurement 

Table 3 Hertzian elliptical contact equations (adapted from Ref. [164]). 

Reduced  
radius 

Contact area  
dimensions 

Maximum contact 
pressure 

Average contact 
pressure 

Contact pressure 
distribution 

1 1 1
 
 x yR R R

 

1 2

1 1 1
 

x x xR R R
 

1 2

1 1 1
 

y y yR R R
 

3 2

*

3 ( ) 



k E k PR

a
E

 

3

*

3 ( ) 



E k PR

b
E

 

o

3

2



P

p
ab

 avg  
P

p
ab

 
2 2

o 2 2
( , ) 1  

x y
p x y p

a b

where: 
k  is the ellipticity parameter ( /k a b ) and ( )E k  is an elliptic integral of the second kind. The 
elliptic integral may be obtained from tables of mathematical data. Alternatively, an approximate 
solution is given by 
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The reduced elastic modulus, *E , is given by 

2 2
1 2

*
1 2

1 1 1 
 

v v

E E E
 

where:  

1v  and 2v  are the Poisson’s ratios of the contacting bodies ‘1’ and ‘2’, respectively. 

1E  and 2E  are the elastic moduli of the contacting bodies ‘1’ and ‘2’, respectively. 
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can be expressed either as weight (mass) loss, volume 

loss, or linear dimension variation depending on the 

purpose of the test, the geometry and size of the test 

specimens, the type of wear, and the availability of a 

measurement resource. Commonly, the mass loss is 

measured using a precision balance. The volume loss 

is evaluated by measuring the wear depth and/or 

assessing the cross-sectional area using a dedicated 

microscope. Linear dimension variation is determined 

through surface profiling/scanning. Brief explanations 

of the major wear measurement parameters are also 

presented in Table 5. 

4.3.1 Mass loss 

 This is a convenient method for wear measurement.  

 Measured by a precision balance.  

 Good for irregular and unsymmetrical worn 

surfaces. 

 The difference in weight before and after the test 

represents the weight loss caused by wear and is 

expressed in gram (g) or microgram (μg). 

4.3.2 Volume loss 

 Wear volume loss is usually determined from the 

wear track (trace) depth, length, width and/or profile 

depending on the geometry of the nature of wear. 

 A surface profilometer (e.g., a stylus type, or   

a microscope with a scale) is used for the 

measurement. 

 The wear volume loss is expressed in mm3 or μm3.  

 It allows for better evaluation of wear among 

materials having different densities.  

 In the case of complex/irregular wear track, mass 

loss may be calculated first, and the volume loss is 

determined for the uniform materials with a known 

density. 

4.3.3 Linear dimension loss 

 This is a simplified wear measuring approach and 

provides an initial estimation of the wear track. 

 This approach is combined with the volume loss 

approach for better results.  

Table 4 Hertzian line contact equations (adapted from Ref. [164]). 

Reduced 
radius 

Contact area 
dimensions 

Maximum contact 
pressure 

Average contact 
pressure 

Contact pressure 
distribution 

'
1 2

1 1 1
 

R R R
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π
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b
 

2

o 2
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x
p x p
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where:  

b  is the half width of the contact strip (m). 

P  is the load per unit length (N/m). 

 

 

Table 5 Major wear measurement parameters. 

Measurement type Measurement method Advantages Wear unit 

Mass loss  Measured by a precision balance. 

 Can be calculated from volume if the density is known.

 Useful if the work surface is 
irregular and unsymmetrical. 

µg 

Volume loss  Determined from the wear track (/trace) depth, length, 
width and/or profile depending on the geometry of the 
nature of wear. 

 A surface profilometer is used for the measurement. 

 Can be calculated from mass loss if the density is 
known. 

 Allows for better evaluation of 
wear among materials having 
different densities.  

mm3 

 

Linear dimension 
loss 

 A surface profilometer (e.g., a stylus type, or a 
microscope with scale) is used for the measurement. 

 Simplified wear measuring 
approach and provides an initial 
estimation of the wear track. 

µm 

 



2192 Friction 11(12): 2181–2203 (2023) 

 | https://mc03.manuscriptcentral.com/friction 

 

 A surface profilometer (e.g., a stylus type, or a 

microscope with scale) is used for the measurement. 

 The linear dimension loss is expressed in mm or μm. 

 Since wear testing involves the removal of material 

from specimens, careful consideration of parameters 

before, during, and after the test are important. Some 

other parameters required to be measured for 

wear testing recommended by Lewis et al. [164] are 

presented in Table 6. 

4.4 Presenting wear results 

The three wear models presented in Section 2 propose 

different wear outputs: the T-gamma wear model 

produces a wear number ( T ) [5]; Archard’s wear 

model uses wear volume [7, 8] and the USFD wear 

model computes a wear rate [9, 10]. When using the 

Archard’s wear model (Eq. (2)), the wear volume is  

a function of the wear coefficient K, which is related 

to the sliding velocity and contact pressure and is 

determined using a wear map as shown in Fig. 6(a). 

The Archard’s wear coefficient map is built through 

experimental programs. The USFD wear model (Eq. (3)) 

determines the wear rate as a function of T /A, as 

shown in Fig. 6(b). The USFD wear map classifies the 

computed wear rate into a piece-wise-linear pattern 

covering three wear regimes: mild (K1), intermediate 

(K2), and severe (K3).While the USFD wear rate is 

linearly dependent on the T /A for wear regimes 

of mild and severe, it is constant for the whole 

intermediate region. The wear regimes and transitions 

are determined through experimental programs whose 

results are typically implemented subsequently in 

MBS analyses to estimate wear volumes for specific 

vehicle-track operational scenarios. Wear rate versus 

T /A plots are ideal for comparing the wear behavior 

of different types of wheel and rail materials and 

their combinations as well as the general trends of 

specific materials wear performance. Alternatively, 

wear coefficients presented as contour map (Fig. 6(c)) or 

a 3D graph (Fig. 6(d)) permit studying the individual 

contributions of the contact pressure or sliding speed 

to the wear volume and wear regime transitions [10]. 

These outcomes allow railway operators to carefully 

optimize vehicle weight or traction limits while 

extending the life of wheel and rails for specific 

material combinations. Table 7 presents the main 

parameters used to study wear results.  

Table 6 Parameters required to measure wear test (taken 
from Ref. [164]). 

Pre-test measurement 

 Mass (after cleaning) 

 Roughness 

 Sub-surface image 

 Surface hardness  

 Sub-surface hardness 

 Surface image 

During-test measurement 

 Friction 

 Load (/pressure) 

 Intermittent wear 
(either stopping the test 
or using appropriate 
technology) 

 Slip 

 Test cycle (/length) 

 Contact temperature 

 Temperature and humidity 

 Unusual specimen behavior 
(e.g., change in noise, change 
of specimen surface) 

Post-test measurement 

 Mass (after cleaning) 
 Roughness 

 Third-body layer 
thickness 

 Third-body layer 
composition 

 Surface hardness  
 Sub-surface hardness gradient 
 Surface image 
 Sub-surface deformation 
 Wear derbies characteristics 

4.5 Challenges to wear testing 

While scaled wear tests are better in terms of cost, 

control over test parameters, and test repeatability, 

some issues need to be carefully considered and 

mitigated before final implementation. 

 Scaling the wear value 

There have been two methods implemented in scaling 

the wear value. The first approach is comparing   

the wear from a reduced scale with the full-scale 

using T  values based on the principle that, for the 

same T  value, the mass loss should be the same [10, 

154, 164, 165]. The second approach is to validate 

laboratory wear coefficients results with data from 

full-scale tests complemented with numerical studies 

[9, 166–169]. 

 Specimen and contact geometry 

In field trials, the actual wheel and rail are used, 

producing actual contact geometries and contact 

conditions. While scaled wheel–rail/roller approaches 

use specimens that try to replicate the wheel and 

rail/roller material properties, however they do not 

achieve exact field conditions. Depending on the size 

of the disc required, the specimen can be prepared 

from the actual wheel and rail materials (if the disc is 

the size of a railhead) or a comparable material. The 

specimen for the twin disc is obtained from the actual  
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wheel and rail. Both pin-on-disc and twin disc machine 

tests have simplified contact geometry. 

 Test cycles 

Extended number of cycles are an important yet 

challenging factor in laboratory wear testing because 

it is correlated with high temperature generation, oxide 

formation, and reduced contact pressure between 

the wheel and rail/roller contact. During the test, the 

Table 7 Calculation of wear and its related parameters. 

Parameter Calculation Unit 

Wear amount, W mass loss or volume loss or linear dimension loss 3μg, mm , μm  

Sliding length, L number of cycle 2 nominal disc-radius   m 

Contact area, A major semiaxis( ) minor semiaxis( ) a b  mm2 

Wear rate 
wear amount

sliding length contact area
 µg/m/mm2 

Slip 
   
   

2 2 1 1

2 2 1 1

200%
 
 
   

     

R R

R R
 — 

Traction coefficient, μ 
tangential force

normal force
 — 

T /A 
traction coefficient normal force slip

area of contact ellipse

 
 2N/mm  

Wear coefficient 
wear amount materialhardness

sliding length normal force




 — 

 

 

Fig. 6 Example of quantitative representations of wear : (a) Archard wear coefficient map (redrawn from Refs. [7, 8]); (b) wear rate 
and wear regimes map (redrawn from Ref. [11]), (c) 2D contour map of the wear coefficient (redrawn from Ref. [10]), and (d) 3D points 
graph of wear coefficient (redrawn from Ref. [10]). 
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same rolling contact area of a specimen comes into 

interaction repetitively, creating excessive heat [170]. 

As a result, thermal softening of the material occurs 

which increases the wear rate. The wear rate continues 

to rise to attain a peak and gradually drops to reach a 

steady-state wear as shown in Fig. 7.  

In addition, the oxide formation in the contact 

creates a denser third body layer which is unlikely  

to be evident in the real field scenario [172–174]. 

Additionally, the contact pressure can be changed 

when the specimen is worn due to continuous 

interaction. Thus, it is necessary to select the number 

of test cycles (/length) as per the relevant technical 

requirement. An extensive insight has been provided 

on test cycle issues in Ref. [171]. And the importance 

of maintaining the temperature at the level of the 

actual contact and how it is performed is elaborated 

upon in Refs. [142,158,170]. 

 Normal load calculation 

Another challenge is to determine the normal load 

for the test. The normal load is directly proportional 

to the maximum pressure required in the test (refer 

to Table 4). The maximum pressure required is derived 

from the multibody dynamic simulation. For the given 

maximum pressure, the normal load is calculated 

from the equation provided in Table 4.  

 Environmental conditions 

Environmental conditions influence the wear rates 

and wear mechanisms observed in the field. An 

extensive review of how the environmental conditions 

affect the wear between wheel and rail was conducted 

 

Fig. 7 Two most common non-linear sliding wear behavior 
patterns (redrawn from Ref. [171]). 

in Ref. [175]. The authors observed that the wear 

rate decreased with increasing ambient humidity or 

the presence of water in the wheel–rail interface. 

Additionally, the authors highlighted the influence 

of low temperatures on the wear mechanisms. Ma 

et al. [176] observed that wear rates doubled at very 

low temperatures (–40 °C, –30 °C, –15 °C), compared 

to room temperature tests using a twin-disc 

experimental setup. Hence, appropriate selection and 

control of environmental conditions is a challenging 

aspect to consider when performing a wear test in a 

laboratory setup.  

5 Discussion and conclusions 

This study starts with the explanation of relationships 

and differences between RCF and wear during 

wheel–rail interaction. It is essential to understand 

such distinctions because these parameters have often 

mistakenly been used as interchangeably.  

Moreover, from the extensive analysis of the different 

RCF testing approaches, it can be observed that each 

testing approach has some benefits. Thus, the key 

take-away message for conducting RCF testing is  

to select the proper approach as per the necessity  

of the test conditions, project budget, timelines, and 

previous investigations performed in comparable 

wheel–rail materials. It is also advisable for complex 

test conditions to implement more than one approach 

simultaneously. 

Wear and RCF are complex phenomena in the 

railway environment, influenced by numerous 

tribological parameters that include wheel-profile 

geometry, third body materials, environmental 

conditions, vehicle dynamics, and friction conditions 

that vary along space and time, among others. Field 

tests allow the most accurate results, considering all 

the tribological parameters, but are expensive, offer 

poor repeatability, and are time consuming as wear 

and RCF can only be quantified after they have 

occurred. Laboratory scaled and full-scale wear and 

RCF tests offer less expensive alternatives, with more 

repeatability and control but a reduced spectrum of 

tribological parameters in terms of vehicle dynamics, 

wheel–rail contact behaviour, and environmental 

conditions. Nevertheless, the results of laboratory 
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experimental programs can be scaled and expanded 

through numerical multibody dynamics studies. 

Furthermore, recent advances in high performance 

computing allow conducting numerical experimental 

programs that consider vast amounts of particular 

combinations of vehicle–track operational and 

tribological parameters that were previously unviable. 

Additionally, the reduction in costs of technology and 

recent advances in digital manufacturing, sensors, 

and vision systems now permit laboratory and field 

test that are less expensive and at the same time 

produce more wear and RCF data. All the RCF defect 

detection technologies analysed in this review can 

be implemented in the field as well as in laboratory 

setups.  

For a wear and RCF experimental program to 

produce results that are truly representative of the 

conditions in the field, it is necessary to use the  

same wheel–rail material combinations along with 

equipment that allows reproducing the friction   

and normal loads that occur in normal operation. 

Furthermore, the literature reviewed did not find a 

precise and defined method for determining the 

values of the variables that govern the test (number 

of cycles, normal load, speed, torque/traction force) 

according to a specific vehicle configuration-track 

layout combination. Further research is required to 

develop a method that allows condensing a train trip 

(or series of train trips) for a single railway vehicle, 

considering traction, braking, lateral coupler forces, 

speed tables, and other parameters affecting the 

vehicle’s dynamics. Such a tool would allow more 

advanced wear and RCF studies involving laboratory 

experimental programs that evaluate the performance 

of wheel–rail material combinations taking into 

account all the possible operating slip and contact 

pressure conditions for specific track layouts–vehicle 

combinations.  

From the analytical study of the recent wear testing 

approaches, the key take-away messages to conducting 

the testing are as follows: 

 Specimen material selection: obtain the specimens 

for the actual wheel and rail if possible. If not, the 

best representative material could be used. 

 Specimen temperature: maintain the usual operational 

temperature using cooling airflow and/or pausing 

the test. 

 Environmental condition: though it is relatively 

difficult to replicate the environmental conditions, 

it is recommended to attempt to do so as much as 

possible.   

 Contact condition representation: replicate the most 

representative contact conditions by testing across 

different scenarios to generate ample data. 

 Number of test cycles: use enough test cycles to 

represent different stages of wear. 

 Test type selection: shifting from field trials to 

reduced scale tests decreases the experimental 

complexity, but creates less representative contact 

conditions. Additionally, there are many other 

parameters as shown in Fig. 8 to consider in making 

the testing approach fit for purpose. 

 

Fig. 8 Classification of wear testing approaches according to 
their degree of applicability and interaction. 
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