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Abstract: Friction is a fundamental force that impacts almost all interface-related applications. Over the past 

decade, there is a revival in our basic understanding and practical applications of the friction. In this review, we 

discuss the recent progress on solid–liquid interfacial friction from the perspective of interfaces. We first discuss 

the fundamentals and theoretical evolution of solid–liquid interfacial friction based on both bulk interactions 

and molecular interactions. Then, we summarize the interfacial friction regulation strategies manifested in both 

natural surfaces and artificial systems, focusing on how liquid, solid, gas, and hydrodynamic coupling actions 

mediate interfacial friction. Next, we discuss some practical applications that are inhibited or reinforced by 

interfacial friction. At last, we present the challenges to further understand and regulate interfacial friction. 
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1  Introduction 

Friction, as a fundamental force in tribology, penetrates 

almost every corner of our lives from solid–solid and 

solid–liquid to liquid–liquid interfaces. Friction at 

the solid–liquid interface impacts many significant 

applications [1, 2] including both bright and dark 

sides. The former lies in maximizing the interfacial 

friction for high-efficient interfacial energy transfer 

or mass transport, involving energy harvesting [3, 4], 

cooling [5], micro-/nano-fluidics [6, 7], wetting [8, 9], 

and water harvesting [10, 11]. On the contrary,    

the latter needs to minimize the interfacial friction  

as much as possible for low energy loss or high 

mechanical reliability, mainly involving biological 

lubrication [12, 13], anti-fouling [14, 15], drag 

reduction [16–18], liquid transfer [19, 20], and liquid 

operation [21, 22] (Fig. 1). Effectively implementing these 

applications recalls our fundamental understanding 

and regulation of interfacial friction behaviors. 

Friction is not a new concept. The fundamental 

understanding of interfacial friction began with the 

distinction of motion resistance in sliding and rolling 

motions by Leonardo da Vinci 500 years ago [23–25]. 

Since then, investigating interfacial friction mainly 

focuses on macroscopic interaction that how the 

interfacial friction behaviors are affected by the applied 

load, contact area, and sliding velocity involved    

in macroscopic solid motions, which lay down the 

foundation of the classical dry friction laws [26–30]. 

Yet, the underlying interfacial friction behaviors at 

microscopic were invisible and mysterious owing 
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Fig. 1 Impact of interfacial friction on diverse fields. 

to the complexity of friction behaviors imposed by 

multi-scale, multi-physic, and multi-phase combinative 

effects, which trigger more curiosity for the 

investigation of interfacial friction. The development 

in microscopic visualization, biomimetic surfaces, 

high-precision probing techniques, and molecular 

dynamics theory led to a revival in the microscopic 

interfacial friction behaviors, as reflected by the 

gradual clarification of the evolution of microscopic 

morphology, the migration of charge carriers, the 

origination of microscopic interfacial interaction, and 

the transformation of phase types. Particularly, many 

fantastic friction behaviors in the nature provide a lot 

of unique insights for our understanding. Recently, a 

new landscape involving macroscopic and microscopic 

interfacial friction, especially in solid–liquid interfaces, 

was revealing the interfacial friction behaviors of 

multi-scale combinative effect with the tremendous 

progress in interface science and techniques, such as 

quantum interaction [31], superhydrophobic surface [32], 

and high-dimensional biomimetic system [6, 33]. 

Currently, interfacial friction can be regulated by 

the control of the macroscopic and microscopic 

interfacial interactions, affected by internal medium 

characteristics and external stimuli. In macroscopic, 

the interfacial interaction mainly relies on the bulk 

structures of internal mediums and their dynamic 

behaviors and can be regarded as interfacial bulk 

interactions. In microscopic, the interfacial interaction 

is dominated by the interfacial molecular interactions, 

mainly affected by the material characteristics of 

interfacial mediums and external stimuli. Notably, 

without delicate control of the bulk and molecular 

interactions, the interfacial friction regulation will 

be limited to relatively poor durability of interfacial 

structures, mass loss, and additional energy 

consumption. However, a timely summary of solid– 

liquid interfacial friction interaction and regulation 

strategies is still lacking. 

In this review, we discuss the latest progress in the 

development of interfacial friction from the perspectives 

of interfaces, especially solid–liquid interfaces. First, 

we review the fundamentals of interfacial friction 

including interfacial bulk interactions and interfacial 

molecular interactions. Then, we take a parallel 

treatment between natural surfaces and artificial 

systems to summarize the interfacial friction regulation 

strategies, mainly focusing on liquid, gas, solid,   

and hydrodynamic coupling-mediated solid–liquid 

interfaces (Fig. 2). We also highlight both sides of 

solid–liquid interfacial friction behaviors and discuss 

their representative applications. At last, we discuss 

challenges and future perspectives for the further 

development of solid–liquid interfacial friction. 

v

 

Fig. 2 Overview of interfacial friction regulation strategies from 
the perspective of interfaces, including phase (liquid, gas, and 
solid)-mediated and hydrodynamic coupling-mediated interfaces. 
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2 Fundamentals of interfacial friction 

Interfacial friction is manifested as a resistance 

phenomenon [34–38], which is rooted in interfacial 

interactions triggered by interfacial dynamic behaviors 

and electromagnetic effects. Following such fundamental 

understanding, interfacial interactions are classified 

as interfacial bulk interactions and interfacial molecular 

interactions. Originating from these interfacial 

interactions, interfacial friction can be delivered as 

diverse types, which will be introduced in detail in 

Section 2. 

2.1 Interfacial bulk interactions 

Interfacial bulk interactions, defined as the interactions 

of inertia forces induced by interfacial dynamic 

behaviors, are closely associated with the dynamic 

characteristics and surface morphologies of the 

interfacial mediums (Fig. 3(a)). On the one hand, 

the dynamic characteristics, such as laminar flow or 

turbulent flow (Fig. 3(b)), provide the basic driving  

force for interfacial bulk interactions. On the other 

hand, the surface morphologies dominate the interfacial 

contact characteristics, which affect the transmission 

of the inertia force. Briefly, the interfacial bulk 

interactions could be considered as a manifestation 

of the dynamic behaviors regardless of macroscopic 

or microscopic interfaces. 

Different bulk interactions based on dynamic 

behaviors can bring about diverse types of interfacial 

friction, such as sliding, stick–slip, rolling, or lubricated 

frictions (Fig. 3(c)). Among these frictions, the sliding 

and stick–slip frictions are classified by liquid flow 

characteristics. For example, sliding friction [39, 40] 

mainly describes the sliding motion resistance of the 

liquid on solid surfaces. If the interfacial interactions 

are nonuniform in the liquid sliding process, the 

liquid may perform a stick–slip motion behavior, in 

which the motion resistance is described as the 

stick–slip friction combined with dynamic and static 

characteristics [41–43]. Besides, the rolling and 

lubricated frictions mainly involve different motion 

 

Fig. 3 Interfacial bulk interactions and their related interfacial frictions. (a) Solid and liquid structural features and motion characteristics.
(b) Interfacial bulk interactions. (c) Interfacial friction mainly includes sliding, stick–slip, lubricated, and rolling frictions originated 
from the interfacial bulk interactions. 
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behaviors of interfacial solids. For instance, lubricated 

friction [44–50] commonly happens at the interface  

that a lubricant fluid separates two solid surfaces   

in relative motions [49, 51–53], e.g., lubrication of 

machinery [54]. The rolling friction [55, 56] is defined 

as the force, which resists the rolling motion of a ball 

or wheel, e.g., particles in liquid [57, 58]. 

2.2 Interfacial molecular interactions 

Different from the interfacial bulk interactions, 

interfacial molecular interactions originate from the 

interfacial electromagnetic forces, including physical 

and chemical interactions, and mainly involve weak 

intermolecular (such as electrostatic interactions, 

dipole–dipole interaction, van der Waals force, 

electric double-layer force, or Casimir force) and 

strong intramolecular interactions (such as chemical 

bonding), as shown in Fig. 4(a). These interactions 

have been accepted as the origin of many interfacial 

phenomena (Fig. 4(b)), including interface adhesion, 

interface tension, contact electrification, contact-line 

pinning, and interfacial chemical reaction. Among 

them, interface adhesion is a common interfacial 

phenomenon owing to the interfacial intermolecular 

attractive force and the transport of liquid viscous 

action, which is manifested by the molecular 

interactions between adjacent layers of liquid. Unlike 

interface adhesion, the interface tension [59–62] 

origins from cohesive force induced by intermolecular 

interactions, such as hydrogen bonds or van der Waals  

(a)

(b)

(c)

 

Fig. 4 Interfacial molecular interactions and related interfacial frictions. (a) Main interfacial molecular interactions, possibly including 
electrostatic interactions, dipole–dipole interaction, van der Waals force, Casimir force, or chemical bonding. (b) Molecular interactions 
indued interfacial phenomena, including interface adhesion, interface tension, contact electrification, contact-line pinning, or chemical 
reaction. Reproduced with permission from Ref. [33] for “interface tension”, © The Authors 2021; Ref. [69] for “contact electrification”, 
© American Association for the Advancement of Science 2011; Ref. [80] for “contact-line pinning”, © The Royal Society of Chemistry 
2013; Ref. [82] for “chemical reaction”, © The American Association for the Advancement of Science 2002. (c) Interfacial friction mainly
includes viscous friction, contact-line friction, and quantum friction from the perspective of the molecular interactions. Reproduced with
permission from Ref. [99] for “contact-line friction”, © American Physical Society 2018; Refs. [31] for “quantum friction”, © The 
Author(s), under exclusive licence to Springer Nature Limited 2022. 
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attraction forces between similar molecules. It acts as 

the key-driven role in the liquid directional steering 

[33] and the formation of contact angles [63–66]. 

Additionally, the construction and deconstruction 

of the interface are always accompanied by charge 

carrier transfer [67–70] owing to electrostatic 

interactions or dipole–dipole interactions, which are 

regarded as the underlying mechanism of interfacial 

contact electrification [69, 71–75] and electric double 

layer. In the case of overlapping the double layers 

between surfaces, the resulting interfacial interaction 

is often referred to as the electric or electrostatic 

double-layer force [76], which is important to 

understand and further regulate wetting, solid–liquid 

phase separation [77], and other solid–liquid 

interfacial phenomena. Especially, for DLVO theory 

[76] about colloidal stability, the electric double-layer 

force is regarded as one of two fundamental and 

tradeoff forces except for the van der Waals force. 

Different from these interactions occurring at 

single- or two-phase interfaces, the contact-line 

pinning derived from interface tensions involves 

solid–liquid–gas three-phase interactions [78–80] and 

plays critical roles in droplet dynamics at solid 

surfaces. However, all the above mentioned interfacial 

interactions are weak. Strong interfacial interactions 

are still mainly attributed to interfacial chemical 

bonding [21, 81, 82], such as ionic bonding, covalent 

bonding, and polar bonding. 

Diverse interfacial molecular interactions lead to 

some distinctive types of interfacial frictions, such as 

viscous friction, contact-line friction, and quantum 

friction (Fig. 4(c)). Among them, based on the molecular 

interactions inside the continuous liquid or at the 

interfaces with other external matter, the well-known 

liquid viscosity is manifested by viscous friction that 

restricts the movement of molecules either within 

itself or of another medium moving through the liquid 

[83–85], such as liquid uptake by capillaries [86] and 

hydrodynamic drag reduction [16, 87, 88]. For the 

discontinuous liquid, contact-line friction induced by 

three-phase line pinning [64–66, 89–93] is accepted as 

one of the main factors restricting the liquid continuous 

flow behavior [32, 79, 94–98], but the fundamental 

understanding of the contact line dynamic behaviors 

remains very limited [93, 99]. Notably, viscous friction 

and contact-line friction generally act at the contact 

interfaces. For non-contact interfaces, the interfacial 

friction is attributed to the non-contact interfacial 

interactions, such as the Casimir force induced by 

quantum fluctuations [100, 101]. Thus, quantum friction 

has been developing as an important supplement 

for the understanding of these controversial and 

non-contact interfacial interactions [31, 102–105]. 

3 Solid–liquid interfacial friction theories 

Friction can date back to prehistoric times (before 

3500 before Christ (BC)) [24]. The basic theoretical 

framework of friction was defined by Leonardo    

da Vinci (1452–1519), who is widely credited with  

the first quantitative investigations of friction in the 

1500s [23–25]. Since that, the past 500 years witness a 

tremendous development of interfacial friction [26–28], 

ranging from macroscopic to microscopic, from 

single-phase interface to multi-phase interface [106] 

and from contact to non-contact [107–112]. The 

interfacial friction theory also has significant progress. 

The initial interfacial friction theory was established 

at single-phase solid–solid interfaces by investigating 

the effects of interfacial applied load, contact area, 

and relative sliding velocity systematically [26–30]. 

Following by this initial theory, the classical Amontons’ 

law of friction in the 1800s [26–28] consisting of the 

Amontons’ 1st law, the Amontons’ 2nd law, and the 

Coulomb’s law [29, 30] is presented and has created 

a great value for modern industry. Compared to that 

of solid–solid interfacial friction, the development of 

solid–liquid interfacial friction is relatively lagging 

but become more and more important. In Section 3, 

given the multi-scale properties of the interfacial 

interaction, we summarize the solid–liquid interfacial 

friction theories on two research lines, which are based 

on bulk interactions and molecular interactions. 

On the research line of bulk interactions, the study 

of solid–liquid interfacial friction theory started from 

confusion by Navier [113] in the 1820s that a thin 

liquid layer adjacent to a flat surface could exhibit a 

viscosity with a value quite different from that of the 

bulk liquid. Furthermore, the theory was developed 

by Stokes [114] in the 1850s based on the explanation 

for the origin of the hydrodynamic drag, resulting 
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from aspheric objects with a very low Reynolds number 

in a viscous liquid. Notably, these theories, which 

are based on the macroscopic dynamic behaviors of 

either Amontons’ laws of friction or Navier–Stokes 

fluid theory, are limited to the macroscopic bulk 

interactions. Despite the continuum description of 

the bulk flow for water remaining valid down to 

typically 1 nm [116], the Navier–Stokes equation of 

the fluid with no-slip boundary condition will fail 

when liquid–solid friction is low enough [117, 118]. 

To avoid unacceptable evaluation shifts, some new 

methods, like the lattice Boltzmann method [119–123], 

were developed to describe cross-scale interfacial 

friction behaviors. The lattice Boltzmann method 

originated from lattice gas automata and discrete 

particle kinetics utilizing a discrete lattice and discrete 

time, and is the fusion of the macroscopic kinetic 

models and the essential physics of microscopic or 

mesoscopic processes [119]. 

On the research line of molecular interactions, the 

interfacial friction theories were started from the 

molecular theory of friction, based on intermolecular 

attractive and repulsive force, presented by Tomlinson 

[124] in the 1920s, and extended to the adhesion 

theory of friction for static friction by Bowden   

and Tabor [44, 45, 125] in the 1940s. Then, interfacial 

friction theories at microscopic have been developed 

rapidly after the birth of molecular dynamics theory 

in the 1950s [126]. Diverse molecular dynamics 

approaches including equilibrium molecular dynamics, 

non-equilibrium molecular dynamics [127], alternative 

equilibrium molecular dynamics [128], and ab initio 

molecular dynamics [129] greatly promoted our 

microscopic fundamental understandings of the 

interfacial friction [130, 131]. Among them, to obtain 

highly accurate and high computational efficiency, 

the linear response method [118, 132–136] based on 

the equilibrium molecular dynamics [118, 127, 132–136] 

was presented for the calculation of the solid–liquid 

interfacial friction. This method starts from the 

Kubo-like equation [118], and then has been developed 

into the Green–Kubo relation [134–136]. However, 

some mechanism of liquid–solid friction remains 

unknown, with neither current theories nor classical 

or ab initio molecular dynamics simulations. Notably, 

liquid–solid quantum friction theory has been becoming 

an important supplement to microscopic interfacial 

friction theories to reveal some elusive phenomena at 

extremely confined interfaces [31]. 

4 Solid–liquid interfacial friction regulation 

strategies 

Fundamentals of interfacial friction have told us how 

important the interface is. An in-depth understanding 

of these fundamentals is essential for our exploration 

of a blueprint for interfacial friction regulation 

strategies from the perspective of the interface, 

although there are many developed strategies [137], 

such as temperature [138–142], pressure [143], electrical 

[144–148], photo [149, 150], magnetic [151], and 

vibration [152], for interfacial friction regulation.  

As we discussed in Section 2, interfacial friction is 

dominated by interfacial bulk interactions and 

interfacial molecular interactions, which are closely 

associated with interfacial dynamic behaviors and 

types. Therefore, it is reasonable to achieve interfacial 

friction regulation by tuning the interfacial dynamic 

behaviors and interfacial types. With this in mind, we 

summarize the interfacial friction regulation strategies 

manifested in both natural surfaces and artificial 

systems, focusing on how liquid, solid, gas, and 

hydrodynamic coupling mediate the friction. 

4.1 Liquid-mediated interfaces 

Liquid-mediated interfaces are usually used for dry 

friction regulation using liquid mediums to transform 

the interface from solid–solid to solid–liquid. This 

liquid-mediated strategy has become a well-known 

friction regulation strategy to reduce the motion 

resistance or prevent the resultant wear damage. 

Generally, to ensure that the liquid medium, such 

as liquid organic matter or water, can reside at the 

interface for a long time, the liquid medium is 

constrained in space or on a solid surface. Thus, in 

Section 4.1, we discuss the liquid-mediated strategies 

for interfacial friction regulation according to two 

constraints of liquid medium, including both spatial 

[153] and surface [95, 154, 155] constraints. 

One typical spatial constraint example in biological 

system [156, 157] is the synovial joint mainly consisting 

of bones, joint cavity, and synovial fluid, which is 
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constrained in the joint cavity composed of bones 

[158, 159] (Fig. 5(a)). The constrained synovial fluid is 

critical to avoiding joint injury and maintaining the 

long-term mechanical durability of the joint. For spatial 

constraint, the liquid-mediated interfaces consist of 

spatial constraint boundaries and the confined 

liquid medium. The spatial constraint boundaries 

with different dynamic behaviors dominate the 

stability of liquid-mediated interfaces. The confined 

liquid medium acts as a lubricant at the interface. 

Such a strategy is also evolved in many other biological 

systems [156, 160], in which the constrained body 

liquid also acted as the interfacial lubricant to maintain 

their functional integrity during the whole life with 

minimized wearing damage. Similarly, the spatial 

constraint strategy is also widely adopted by artificial 

systems. Despite the developed liquid mediums 

being diverse, such as oil [161], ionic liquid [162–166], 

or solid melting [142, 167–174], the artificial liquid 

mediums [158, 159, 175–177] are developing to reach 

an equivalent performance to the biological system. 

Except for the above-mentioned friend-side effects 

of these liquid-mediated strategies, liquid-mediated 

interfacial friction strategies may also lead to some 

 

Fig. 5 Liquid-mediated interfacial friction through spatial and surface constraints to maintain the confined liquid. (a) Spatial constraint 
strategies, such as synovial joint lubrication and artificial drug-eluting joint lubrication. Note: UHWMPE represents ultrahigh molecular
weight polyethylene, and RVPE reprensents rifampin-vancomycin-eluting UHMWPE. SLIPS represents slippery liquid-infused porous 
surface. Reproduced with permission from Ref. [158] for “synovial joint”, © IMechE 2007; Ref. [177] for “artificial drug-eluting joint”, 
© Macmillan Publishers Limited, part of Springer Nature 2017. (b) Surface constraint, such as topographical micromorphologies of 
natural peristome surface and bioinspired self-repairing slippery surfaces. Reproduced with permission from Ref. [155] for the left inset of 
“peristome surface”, © by The National Academy of Sciences of the USA 2004; Ref [181] for the main figure and two right insets of
“peristome surface”, © The Author(s) 2018; Ref. [95] for “bioinspired self-repairing slippery surfaces”, © Macmillan Publishers 
Limited 2011. 
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dark-side effects. For example, melted ice-mediated 

friction of the ice surface causes unstable motion 

[142, 167–174]. Water-mediated friction of the Longsnout 

catfish skin greatly reduced by muscle hardening leads 

to the difficulty of hunting [178]. Also, fluid-mediated 

faults with low friction properties may cause an 

unstable movement of the active plate and even leads 

to an earthquake [179, 180]. 

Different from spatial constraint, the liquid-mediated 

interfaces can also be formed on solid surfaces through 

unique surface engineering or physiochemical 

interactions. Thus, the liquid-mediated strategies 

based on surface constraint can be furtherly delivered 

into two types, including the surface-structured 

and electromagnetic-force constraints. In terms of the 

first type, liquid-mediated interfaces, especially 

liquid mediums, are maintained by the mechanical 

constraint of the surface structures. For example, a 

water-mediated low-friction topographical surface 

[155, 181] (Fig. 5(b)), allowing continuous directional 

water transport [182–184], has been accepted as the 

essential reason for insect aquaplaning on the 

peristome of Nepenthes pitcher plants. Inspired by 

this low-friction topographical surface [182, 183], an 

artificial liquid-mediated porous surface strategy [95] 

was successfully demonstrated in anti-fouling. As 

for the second type, the surface electromagnetic-force 

constraint mainly originated from physical or 

chemical interactions. For instance, an ordered 

water monolayer possibly on the superhydrophilic 

surface [185–187] has been paid attention to due to 

its unusual interfacial friction properties that a water 

droplet on a superhydrophilic surface has a friction 

coefficient similar to that on a weakly hydrophobic 

surface. 

4.2 Solid-mediated interfaces 

Compared with the liquid-mediated interfaces, the 

solid-mediated interfaces are equipped with a relatively 

higher stability due to the better constrained ability 

of the solid medium. Generally, the solid medium 

can be served as a layer of armor armed on solid or 

liquid surfaces. Based on the defense objects, the 

solid-mediated friction regulation strategies can be 

classified as both besieging solid and besieging liquid. 

In the besieging solid strategy, solid-mediated friction 

regulation strategies focus on the modification of the 

solid surface using solid mediums, which are discrete 

particles or solid oil with weak intermolecular 

interactions but with relatively strong interactions 

with the besieging solid. Common solid-mediated 

friction regulation strategy is mainly based on the 

physical adhesion or adsorption to construct a layer 

of solid medium on solid surfaces. For example, a 

hydrophobic wax-mediated leaf surface (Fig. 6(a)) 

can protect the leaf from injuries of the accumulated 

pathogens and particulate [188, 189]. Yet, this strategy 

is inevitably limited by the poor durability in practical 

applications due to these weak interactions between 

the solid medium and the defense solid surface. In 

contrast, artificial chemical coatings on solid surfaces 

exhibit robust performance due to strong interfacial 

interactions [190, 191]. For example, an elastomeric 

flat surface can be tailored using mechanically assembled 

monolayers to obtain a long-lived superhydrophobic 

surface [153]. 

Opposite to the besieging solid strategy, the 

besieging liquid strategy is relatively rare but also 

significant for some natural surfaces or practical 

applications. This approach is mainly achieved by 

using the additional solids to reduce the contact area 

between the original interfaces, especially high viscous 

interfaces. In nature, this approach may be a matter 

of life and death for some living. For instance, sticky 

waste disposal of galling aphids is completed by the 

transformation of interface types from solid–liquid 

interfaces with high contact area and adhesion to 

solid–solid interfaces with low contact area and 

adhesion [192, 193] (Fig. 6(b)). During this process, 

the interfacial friction experienced a great reduction 

due to the fundamental reason that the viscous liquid 

was separated from the body of galling aphids by 

solid particles, which formed a rough liquid surface 

and greatly decreased the contact area between the 

liquid waste and the body of galling aphids. In our 

lives, these besieging liquid approaches are also 

common. For example, a stable solid–liquid system, 

liquid marbles [194, 195], is not difficult to be formed 

by a liquid droplet on a solid surface with a lot of 

solid hydrophobic particles [194, 196]. The liquid 

marble exhibits low friction on the smooth sold 

substrate due to low contact area and low adhesion 
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between solid particles on the liquid surface and the 

solid substrate. Moreover, interfacial friction of liquid 

marble can sustain the system to stably float on a 

liquid surface [197], which has been used for evaluating 

the friction coefficients of the floating marbles based 

on the dynamic balance of the friction force and 

capillary force. 

4.3 Gas-mediated interfaces 

Different from the above-mentioned solid- or liquid- 

mediated strategies, interfacial friction regulation based 

on gas/vacuum-mediated interfaces is a spontaneous 

process in some extremely confined spaces or extreme 

physical conditions. The spontaneously generated gas 

bubbles, gas layer, or vacuum is critical to switching 

the interfacial types or hydrodynamic coupling 

interactions. Based on the gas/vacuum generated 

mechanisms, the interfacial friction regulation strategies 

based on gas/vacuum-mediated interfaces can be 

classified as the Leidenfrost effect, superhydrophobicity, 

and cavitation. 

Leidenfrost effect [198] is old but still a research 

hotspot in the field of high-temperature interfacial 

thermal transfer or dynamics. Interfacial friction 

regulation by the Leidenfrost effect mainly origins 

from the generated vapor layer at solid–liquid 

interfaces [199, 200]. Generally, the vapor layer was 

created by liquid gasification at high temperatures 

and became a separatist at the original interfaces  

to achieve the transformation of interface types  

from hydrodynamic drag interface to relatively low 

aerodynamic drag interface. For example, high-velocity  

droplet transportation on a substrate with a selective 

Leidenfrost effect [201] can be completed on the ratchet 

 

Fig. 6 Solid-mediated interfacial friction through besieging solid or liquid strategies. (a) Besieging solid strategies, such as wax-coated 
leaf surface of desert plants and poly(dimethylsiloxane) (PDMS) network film polymer surfaces through mechanically assembled 
monolayers. Note: UVO represents ultraviolet/ozone. Reproduced with permission from Ref. [189] for “wax-coated leaf surface of desert 
plants”, © The author(s) 2015; Ref. [153] for “artificial superhydrophobic surface”, © The American Association for the Advancement 
of Science 2000. (b) Besieging liquid strategies, such as sticky waste disposal of galling aphids and liquid marble. Reproduced with
permission from Ref. [193] for “sticky waste disposal of galling aphids”, © American Chemical Society 2019; Ref. [197] for “liquid 
marble”, © The Author(s) 2016. 
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structure surface at high temperatures (Fig. 7(a)) 

[198, 202, 203], which was mainly attributed to the low 

interfacial friction by the Leidenfrost effect. Except for 

the investigations on exploiting the friend side of the 

Leiddenfrost effect for applications, the dark side of 

the Leidenfrost effect has become a critical challenge 

in thermal cooling. To inhibit the Leidenfrost effect at 

high temperatures, a recently reported rational design 

of structured thermal armors [5] are successful to 

inhibit the formation of the vapor layer at 1,150 °C, 

which is a record performance. 

Similar to the Leidenfrost effect, surface 

superhydrophobicity also introduces gas to regulate 

interfacial friction. The main difference in surface 

superhydrophobicity is the way of gas formation that 

the superhydrophobic surfaces can trap ambient gas 

based on surface microcavities [8, 204–208]. Leveraging  

on the trapped gas, superhydrophobicity can regulate 

 

Fig. 7 Gas-mediated interfacial friction through high-temperature induced Leidenfrost effect, microstructured superhydrophobic 
surface, and high-velocity induced cavitation. (a) Strategies based on Leidenfrost effect, such as Leidenfrost effect on a ratchet and 
inhibiting Leidenfrost effect. Note: δ, T, and h represent the distance, temperature, and height, respectively. Reproduced with permission 
from Refs. [203] for “Leidenfrost effect on a ratchet”, © Nature Publishing Group 2011; Ref. [5] for “inhibiting Leidenfrost effect”, 
© The Author(s), under exclusive licence to Springer Nature Limited 2022. (b) Strategies based on superhydrophobic surface, such as 
lotus leaf and micromorphology, Salvinia paradox superhydrophobic surface, self-assembled superhydrophobic surface, and 
micromachined superhydrophobic surface. Note: θ represents the contact angle. Reproduced with permission from Ref. [216] for “lotus 
leaf” (left figure of “natural superhydrophobic surfaces”), © Klima-und Umweltforschung an der Universität Bonn 1992; Ref. [215] for 
“its micromorphology” (left inset of “natural superhydrophobic surfaces”), © Springer-Verlag 1997; Ref. [324] for “Salvinia paradox 
superhydrophobic surface” (right figure and inset of “natural superhydrophobic surfaces”), © WILEY-VCH Verlag GmbH & Co. 
KGaA, Weinheim 2010; Ref. [222] for “self-assembled superhydrophobic surface” (left figure and inset of “artificial 
superhydrophobic surfaces”), © The American Association for the Advancement of Science 2003; Ref. [210] for “micromachined 
superhydrophobic surfaces” (right figure and inset of “artificial superhydrophobic surfaces”), © Nature Publishing Group 2007. 
(c) Strategies based on cavitation, such as cavitation generated by biological hammer impact behavior and supercavitation generated 
at high-velocity water jet. Reproduced with permission from Ref. [228] for “cavitation of a biological hammer”, © The Company of 
Biologists Limited 2005; Ref. [226] for “high-velocity induced supercavitation”, © CaltechCONF 2001. 
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the interfacial friction by transferring part of 

solid–liquid interaction to relatively weak solid–gas 

interaction or mediating the pressure of the trapped 

gas [209–214]. For instance, it is well known in 

nature that the self-cleaning mechanism of the lotus 

leaf (Fig. 7(b)) originated from the microstructured 

surfaces [215, 216]. To keep the air layer for longer 

times and under rough conditions typically occurring 

in turbulent flows, the pinning of the air–water 

interface at a predefined level by hydrophilic 

patches is critical. For artificial applications, these 

nature-inspired microstructured surfaces can be 

achieved by micromachining [204, 217] and self- 

assembly [218–221] methods. For example, a porous 

polypropylene superhydrophobic surface can be 

obtained by using a suitable selection of solvents 

and temperatures [222] (Fig. 7(b)). Compared to the 

self-assembled methods, the micromachining patterned 

superhydrophobic surfaces are better controllable, 

so it is possible to turn the interfacial friction from 

lubrication to anti-lubrication through high-precise 

changing the liquid–gas menisci of the trapped gas 

[210]. To enhance the mechanical stability, natural 

superhydrophobic surfaces also provide us with 

more feasible solutions, such as Salvinia-like slippery 

surface [223] and springtail-inspired superomniphobic 

surface [224, 225], even for some extreme conditions. 

Compared to the first two strategies, cavitation is 

also based on vapor but is relatively rare. The vapor 

is obtained by a high-velocity body traveling through 

the liquid [226, 227]. For instance, an extreme impact 

of the peacock mantis shrimp [228] can generate 

cavitation by a high-velocity moving hammer under 

low fluid friction (Fig. 7(c)). Due to the interface 

transfer from solid–liquid to solid–gas, cavitation is 

promising to obtain ultra-low interfacial friction, which 

is a benefit for achieving high-velocity movement  

in liquid. This idea evoked broad investigation on 

cavitation due to its great potential for high-velocity 

underwater weapons. To leverage this strategy at 

low-velocity sceneries, artificial cavitation methods, 

such as adding bubbles or ejecting air/gas [209–212], 

also drive rapid development. Furthermore, 

supercavitation, as the use of a cavitation bubble   

to drag reduction, is being developed as a critical 

technique for high-velocity underwater vessel [226]. 

4.4 Hydrodynamic coupling-mediated interfaces 

In striking contrast to the usage of the phase (liquid, 

gas, and solid)-mediated interfaces, hydrodynamic 

coupling-mediated interfaces take advantage of 

inherent mechanical coupling interaction rather 

than the transformation of interface types based on 

the generated, trapped, or added liquid, solid, or gas.  

In Section 4.4, based on the driving types of the 

mechanical coupling interaction, the hydrodynamic 

coupling-mediated strategies can be classified as 

passive and active strategies. 

The passive strategies are widely used for our 

practical applications and rely on numerous energy 

consumption to maintain. Based on mechanical 

coupling interaction, the passive friction regulation 

strategies mainly rely on the liquid flow characteristics, 

relative motion characteristics, and external stimuli. 

Among them, liquid flow characteristics and relative 

motion characteristics are predicted by Navier–Stokes 

equation [229–233] and Newtonian mechanics or 

dynamics, respectively. Unlike the solid or liquid 

dynamic characteristics, the external stimuli, such  

as temperature [138–142, 234–238], pressure [143], 

electrical [144–146, 239–242], photo [149, 150], magnetic 

[151], and vibration [152], mainly take advantage of 

the sensitive characteristics of the interfacial intrinsic 

properties to affect the mechanical coupling interaction. 

For example, through low interfacial friction property 

of shark skin has been well-known attributed to the 

three-dimensional microstructured rib pattern, the 

imparted streamwise vortices at interfaces, which 

relies on Refs. [18, 243, 244] (Fig. 8(a)). However, this 

skin interfacial friction is known to reduce in the 

external turbulent-flow regime [244]. Even for a fully 

flexible biomimetic shark skin [245], the performance 

of friction regulation remains in close relationship 

with special motion behaviors. 

Different from passive strategies, active strategies 

for interfacial friction regulation do not suffer from 

additional energy consumption, which is unexpected 

for green or low-carbon development. For the active 

strategies, the interfacial friction is mainly balanced 

by the interfacial forces, such as capillary force, 

gradient force of surface, gravity, and electrostatic 

force. Typically, common interface tension-induced 
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capillary flow [246] could balance the fluid viscous 

friction and contact-line friction to achieve spontaneous 

liquid flows, such as water transport in plant 

vessels [6], slippery ventral skin of Lampropeltis 

pyromelana [247], and droplet uphill [248]. In addition, 

these actively spontaneous liquid flows are also 

affected by the liquid inherent characteristics, such 

as liquid directional steering in the Araucaria leaf 

structure [33] (Fig. 8(b)). Similar approaches have 

been developed in the artificial system to construct a 

liquid rectifier for liquid flow control. For example, 

nature-inspired liquid diodes [20, 183, 249–253] relying 

on capillary force regulate the transport of liquids 

spontaneously. Or a programmed droplet transport 

with high velocity relies on the surface charge density 

gradients [242]. 

5 Applications 

Interfacial friction mainly involves two sides of 

applications: From the perspective of the bright side, 

interfacial friction can obtain interfacial mass and 

energy transfer for surface cleaning, energy harvesting, 

or liquid harvesting. From the other perspective    

of the dark side, friction causes energy loss, surface 

wearing, or surface corrosion [254]. Considering both 

sides of the interfacial friction in certain applications, 

we summarize the applications of interfacial 

friction from two classifications: friction-inhibited 

and friction-reinforced applications. 

5.1 Interfacial friction-inhibited applications 

In friction-inhibited applications, the interfacial 

 

Fig. 8 Hydrodynamic coupling-mediated interfaces through passive and active strategies. (a) Passive-mediated strategies, such 
as drag reduction of shark skin and flexible biomimetic shark skin. Reproduced with permission from Ref. [243] for “shark skin”, 
© Springer-Verlag 2000; Ref. [245] for “artificial shark skin”, © Published by The Company of Biologists Ltd 2014. (b) Active-mediated 
strategies, such as liquid directional steering on Araucaria leaf and topological liquid diode. Note: R, Lp, Ls, and α represent the radius, 
droplet in the major spreading direction, droplet in the pinning direction, and apex angle of the diverging side-channel, respectively. 
Reproduced with permission from Ref. [33] for “liquid directional steering on Araucaria leaf”, © The Authors 2021; Ref. [252] for 
“directional liquid transport at artificial surface”, © The Authors 2017. 
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friction is expected to be reduced as much as possible 

through interfacial mediations, which can break the 

contact-line pinning, overcome the liquid viscous 

resistance, or transfer the interface interaction from 

strong to weak. Main friction-inhibited applications 

include three aspects, which are drag reduction, 

anti-wearing, and anti-fouling (Fig. 9(a)). 

Drag reduction is the most important application 

in investigating interfacial friction regulation strategies 

due to the tremendous economic cost resulting from 

the huge shipping [255] each year and the vast 

networks of pipes crisscrossing our cities globally [256]. 

Drag reduction mainly lies in achieving low-energy 

consumption for solid or liquid medium transport 

and pipeline flow [256–261]. In terms of solid 

transport, drag reduction is mainly achieved by 

compliant surface coating, interface type switching 

from high friction to low friction, and structural 

design by hydrodynamics, such as common bulb 

bow design and air/gas layer construction [255, 262, 

263] in ships or underwater vehicles. Considering the 

liquid transport, drag reduction in pipes mainly 

relies on the adjustment of the fluid viscosity [257], 

Reynolds number [256], and the relative roughness 

of the inwall [229–233] based on the hydrodynamics 

and traditional friction laws. However, these friction 

correlations at the macroscale may not apply to 

micro/nanoscale scenarios [264, 265]. Friction in 

micro/nanochannels with a large surface-to-volume 

ratio performs more sensitive-to-surface properties 

[266–268]. Exploring size-dependent solid–liquid 

interfacial friction in micro/nanochannels has become 

a research hotspot due to unexpected water- and 

ion-transport phenomena [269–272], such as electronic 

friction from the inwall [273–275], water thermophoresis 

[276], phonon-induced oscillating friction [277],  

and fast water transport [130, 278]. Following these 

explorations, developing effective drag reduction in 

micro/nanochannel is also very significant. Currently, 

lots of the corresponding approaches, such as 

superhydrophobic surfaces [266, 279, 280], surfactant 

[281], microchannel cross-section shape [282, 283], 

capillary-condensed water [284, 285], and some strategies 

to reduce the liquid viscosity [286], have been presented 

and will play a key role in micro-/nano-fluidic 

applications. More efforts still need to be made for 

their practical applications. 

Different from drag reduction, anti-wearing mainly 

 

Fig. 9 Representative applications of interfacial friction. (a) Friction-inhibited applications, such as drag reduction, biological 
lubrication, and anti-fouling. Reproduced with permission from Ref. [261] for “drag reduction”, © American Association for the 
Advancement of Science 2021; Ref. [12] for “biological lubrication”, © Macmillan Publishers Limited 2014; Ref. [287] for 
“anti-fouling”, © Macmillan Publishers Limited 2015. (b) Friction-reinforced applications, such as wetting, micro-/nano-fluidics, 
energy harvesting, and cooling. Reproduced with permission from Ref. [255] for “wetting”, © AIP Publishing 2021; Ref. [115] for 
“micro-/nano-fluidics”, © The Royal Society of Chemistry 2017; Ref. [3] for “energy harvesting”, © The Author(s), under exclusive
licence to Springer Nature Limited 2020; Ref. [20] for “cooling”, © American Chemical Society 2021. 
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focuses on preventing mass transfer in the process 

of interfacial friction. Anti-wearing mainly involves 

the durability of machinery [54] and artificial 

bio-devices or implants in biological systems. To 

achieve anti-wearing, solid- or liquid-mediated 

interfacial friction regulated strategies are common in 

practical applications. For example, a polymer–peptide 

surface coating is potential to treat tissue-lubricating 

dysfunction [12]. Remarkably, mimicking these 

biological systems has been a promising anti-wearing 

approach to obtaining an efficient and durable 

engineering system for the rehabilitation of disabled 

people or industrial applications. 

Except for the widely concerned drag reduction 

and anti-wearing, anti-fouling has also been gradually 

paid more attention in many recent applications.   

In anti-fouling, the friction inhabitation as much   

as possible is a benefit to obtain a low surface 

adhesion for easy falling off the contaminants [287]. 

At present, anti-fouling is a major challenge in 

marine engineering equipment and medical settings 

[14, 15]. For the marine engineering equipment,   

the formed biofouling film can accumulate on the 

surfaces followed by the attachment of larger marine 

organisms and greatly increases the fuel burn of 

seafaring vessels [288]. The movement of biofouling 

film is generally achieved by hydrodynamic coupling- 

mediated strategies, such as high-velocity water 

shearing. The faced challenge is that most marine 

engineering equipment works at a quasi-static state, 

which needs to pay additional energy consumption 

for the hydrodynamic coupling-mediated strategies. 

Recently, gas-mediated strategies were paid more 

attention to solving the challenges in these applications 

and were expected to achieve a combinative effect 

on both drag reduction and anti-fouling. In medical 

settings, biofouling may cause persistent infections 

through blood or body liquid. To ensure the robustness 

of the solid surface, current anti-fouling mainly relies 

on strong chemical bonding strategies to obtain   

low friction. However, chemical coatings may cause 

secondary pollution to the liquid, which is not 

preferred for the environment or health. Therefore, 

robust superhydrophobic surface, such as armor- 

defense nature-inspired design [225, 289, 290], has 

been presented as the potential solution for this 

question. 

5.2 Interfacial friction-reinforced applications 

Except for the dark side in friction-inhibited 

applications, interfacial friction also has a bright side 

and can reinforce the interfacial properties in some 

practical applications, if the friction process with 

energy and mass transfer is reasonably leveraged. 

According to the fundamental physical processes of 

interfacial friction, the developed friction-reinforced 

applications (Fig. 9(b)) are mainly classified into 

three types based on the various frictional functions, 

including interfacial interactive force, charge carrier 

transfer, and energy dissipation. 

Leveraging on the friction-induced interfacial 

interactive force, it is expected to obtain high-precise 

liquid operation [21, 22], perfect surface wetting 

performance [8, 9], high-performance micro-/nano- 

fluidic devices [115], and efficient liquid harvesting 

[19]. In terms of liquid operation, well controlling 

and employing the liquid viscous friction is essential 

to obtaining precise droplet generation, high-efficient 

liquid flow, and sufficient mixing, which are critical 

for printing technology, heat management, and 

chemical reactions. Unlike liquid operation, wetting 

as a three-phase interfacial dynamic process mainly 

lies in the force balance between adhesive and 

cohesive forces, which can be regulated by surface 

topography [8, 9] or surface tensions. Thus, wetting 

is significant in the bonding or adherence of two 

materials. As for the micro-/nano-fluidics, interfacial 

friction can provide an expected balance force to 

control the fluid flow behavior [6, 7]. To well balance 

the interfacial friction, numerous approaches were 

presented, mainly including external mediation 

approaches, temperature [138–142], pressure [143], 

electrical [144–148], photo [149, 150], magnetic [151], 

and vibration [152], and internal mediation approaches, 

such as liquid pH [291], ionic liquid lubricants 

[162–166], bubble additives [209–212], the conformation 

of the surface polymers [292], and surface molecular 

shape [293]. Generally, these external mediation 

approaches are with better controllability and flexibility 

than the internal one. Besides, it has been accepted 

that the water collection efficiency from vapor is 

limited by the intrinsic trade-off between fast droplet 

nucleation and efficient droplet removal [10, 11]. Low 

interfacial friction is promising to provide a low 
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adhesion surface and effectively decouple the inherent 

trade-off [10] so that the droplet can easily move 

and collect. 

Except for the interfacial interactive force, the 

frictional process is accompanied by charge carrier 

transfer at the interfaces. Leveraging on the friction- 

induced interfacial charge carrier transfer, interfacial 

friction regulation is promising to improve the 

performance in interfacial energy harvesting [3, 294–298] 

and sensing [299]. Fundamentally, high-efficiency 

interfacial charge carrier transfer is essential for a 

high-performance solid–liquid energy harvester or 

sensor. However, the interfacial friction regulation 

faces a fundamental challenge of the trade-off between 

a large interfacial contact area and contact time as 

short as possible. Recently, a droplet-based electricity 

generator performs excellent electrical energy output 

and may be potential to overcome this concern by 

using the impinged water droplet for large contact 

area and the liquid slippery polytetrafluoroethylene 

surface for droplet fast slipping [3]. 

As is known, friction is always accompanied by 

energy dissipation. Leveraging on the intrinsic energy 

dissipation, the interfacial friction could be used for 

collecting or transferring some undesired energy at 

the surface, such as chaotic motion stabilizing and 

thermal cooling. However, under some extreme 

conditions, achieving this process faces giant challenges, 

such as low-efficiency thermal cooling at high 

temperatures due to the limitation of the Leidenfrost 

effect, which creates a gas-mediated interface to get an 

ultralow friction property. To inhibit the Leidenfrost 

effect, the gas should be removed at a high 

temperature for the achievement of the high friction 

property. Recently, a rational design of structured 

thermal armors was presented for efficient cooling at 

1,150 °C [5]. The gas was evacuated by U-shaped 

channels to skillfully modulate the interfacial friction 

for efficient interfacial energy transfer during full 

contact. 

6 Summary and challenges 

Interfacial friction is essential to revealing almost 

all interface-related natural phenomena or achieving 

high-efficiency and high-performance industrial 

applications. Fundamental understanding and flexible 

regulation strategies of interfacial friction are significant 

for many key applications. This review provides a 

timely summary of interfacial friction interaction and 

regulation strategies from the perspectives of interfaces, 

including liquid-, gas-, solid-, and hydrodynamic 

coupling-mediated interfaces. Meanwhile, this review 

also highlights both sides of interfacial friction and 

some representative applications. 

Despite great advances in friction that have been 

created, many fascinating friction problems, such as 

the origin of friction [31, 52, 81, 99, 102, 300, 301]  

and some counterintuitive phenomena in extremely 

confined boundary [107–112], still occupy a key 

position in the current research owing to their 

massive impact on various areas [302]. The origin of 

interfacial friction remains elusive involving contact 

electrification, contact line moving mechanism, and 

interfacial quantum interactions. In terms of contact 

electrification, Refs. [303–305] have demonstrated 

that interfacial contact electrification has both 

electron transfer and ion transfer. However, it is not 

clear who plays a dominant role in this process and 

whether there are some other unknown mass or 

energy transfers in this process. In the aspect of 

contact-line moving, many theoretical models and 

proposals have been developed for resolving the 

incompatibility with the nonslip boundary condition 

over the past years [9, 93, 306–309], but experimentally 

verifications are challenging. As for interfacial quantum 

interactions, despite remarkable and exciting progress 

over the past decade, some controversial sounds 

remain. It is unknown whether the interfacial 

quantum friction theory on account of water–carbon 

interfaces is suitable for revealing some other 

counterintuitive phenomena at other extremely 

confined interfaces [269, 310]. Besides, some interfacial 

friction behaviors in the extremely confined boundary 

are intriguing and counterintuitive. For instance, 

superhydrophobic surfaces with multi-level structures 

would not only reduce friction in liquid flows under 

pressure but also enable directional control of the 

slip [311]. Transistor-like electrohydrodynamic effect 

can be found in molecular-sized slit-like channels 

[269] using two-dimensional materials [130, 278], 

such as graphene [312–317], hexagonal boron nitride 
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(hBN) [129, 318–320], MoS2 [321, 322], and atomically- 

smooth α-Fe(100) slabs [143]. 

Fundamentally understanding the interfacial friction 

is essential to achieving well interfacial friction 

regulation. The available interfacial friction regulation 

strategies refer to solid surface morphology, liquid 

characteristics, environmental stimuli, and structural 

dynamic behaviors. Obtaining desired interfacial 

friction still faces some key challenges, especially 

inhibition of the interfacial friction and dynamic 

tunability of friction properties. In terms of inhibiting 

interfacial friction, the development of drag reduction 

seems to have reached a limit based on traditional 

approaches mainly involving solid- and liquid- 

mediated strategies. The combination of gas phase 

may provide a significant improvement in current 

drag reduction because aerodynamic drag is very 

small in comparison to hydrodynamic drag. This is 

the partial reason why superhydrophobic surfaces 

can get a considerable effect on interfacial friction. 

However, most of these solid surfaces are fabricated 

with a fragile micro/nanostructure of materials to date, 

which calls for more novel designs and fabrication 

processes to improve this concern. 

Additionally, interfacial friction regulation in 

anti-wearing and anti-fouling encounters a great 

challenge that how to maintain long-term stability 

and mechanical reliability of the lubrication and low 

surface energy coating. In contrast, interfacial friction 

regulation in energy harvesting and cooling is also 

difficult to achieve high-efficient energy conversion 

and mass transfer. As for wetting and micro-/nano- 

fluidic, how to provide custom friction is critical in 

practical applications. Besides, obtaining the dynamic 

tunability of the interfacial friction is interesting and 

promising for greatly broadening the surface function 

by the fusion of smart materials [151, 323] or structures 

[242] and advanced actuating approaches. 
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