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Abstract: A model is proposed herein to investigate the incipient sliding of contacts in the presence of both 

friction and adhesion, where the interfacial response is modeled based on traction–separation laws. A 

Maugis-like parameter is defined to characterize the response in the tangential direction. Subsequently, the 

model is used to investigate the contact between a smooth cylinder and a flat body, where adhesion–friction 

interactions are strong. A range of behaviors are observed when a tangential displacement is imposed: When 

the parameter is low, the contact pressure exhibits a relatively constant profile; when it is high, a pressure spike 

is observed at the edge of the contact. This difference is caused by a significant interface compliance in the 

former case, which limits the amount of slip. The results for the mid-range values of the Maugis-like parameter 

can qualitatively replicate various experiments performed using polydimethylsiloxane (PDMS) balls. 
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1 Introduction 

Friction in the presence of adhesion is an important 

issue in tribology. A comprehensive understanding  

of this problem is crucial to realize improvements in 

various applications, such as rubber adhesion in tire– 

asphalt contact, adhesion in microelectromechanical 

systems (MEMS) or cells, interaction between nano-

particles [1], positioning methods, and reusable 

bio-inspired adhesives that can be removed without 

residue [2]. It is clear that adhesion and friction are 

correlated: Adhesion serves as a source of friction, 

while it decreases under friction force. The effect of 

this interaction on the contact area, total friction force, 

and contact pressure profile is yet to be elucidated. 

The aim of this study is to investigate the evolution 

of the contact area, total friction force, and pressure 

distribution when a surface is tangentially loaded and 

the relative amount of adhesion, and friction are varied. 

In this study, an adhesive elastic smooth cylinder placed 

in contact with a rigid substrate was modeled, where 

the load applied tangentially was increased until gross 

slip was achieved. We performed this numerical study 

because experimental results in terms of the contact 

area and load are available for similar systems. In fact, 

various groups [2–7] have investigated the contact 

response of a soft polydimethylsiloxane (PDMS) ball 

on a rigid lens. Owing to significant adhesion on large 

areas, the contact area evolution can be measured 

and correlated with the frictional force. The behavior 

of the contact can be summarized as follows: As the 

tangential load increases from a value of zero, the 

contact area decreases through peeling, owing to the 

decrease in the adhesive interaction; additionally, it 

transforms from an initial circular shape to an elliptical 

or irregular shape [6, 7]. At this stage, the relationship 

between the contact area and tangential load follows 

a power law with an exponent of approximately 2 

[2, 5, 6]. Eventually, sticking is no longer possible, and 

either contact loss or steady sliding occurs, depending 

on whether the normal load applied induces tension 

or compression [7]. A sticking-to-sliding transition may  
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Nomenclature 

Dimensional variable 

   Characteristic length of adhesion (m) 

p   Pressure (Pa) 

u   Displacement (m)  

   Work of adhesion (N/m) 


max

  Maximum interface stress in normal  

  direction (Pa) 


fit

  Fitting for the tangential stress at onset  

  of sliding (Pa) 


max

  Maximum interface stress in tangential  

  direction (Pa) 

   Tangential stress at infinite separation (Pa)

G   Green’s functions 

r
a   Contact area (m) 

E   Elastic modulus (Pa) 
*E   Equivalent elastic modulus (Pa) 

g   Gap between surfaces (m) 

1
H   Height of the elastic block (m) 

2
H   Height of the rigid block (m) 

L   Length of periodic cell (m) 

R   Radius of cylinder (m) 

w   Load between the two bodies (N/m) 

x   Coordinate in tangential direction (m) 

Non-dimensional variable 


n

  Maugis parameter 


t
  Maugis-like parameter in the tangential  

  direction 

ijG   Dimensionless Green’s functions 

G   Gap between surfaces 

P   Contact pressure 

U   Deformation at contact surface 

W   Load 

X   Coordinate in tangential direction 

Superscript 

o   Point at which onset of sliding occurs 

S   Contact surface 

Subscript 

app   Applied 

dmp   Damping 

el   Elastic 

int   Interface 

n   Normal direction 

r   Reference parameter used for scaling 

total   Total 

t   Tangential direction 

  
 

occur smoothly [2, 5] or via mechanical instability [3]. 

In the former case, steady sliding is typically preceded 

by a slight decrease in the measured tangential 

force [3, 5] and contact area [2]. 

Herein, we present a model that enables the 

relationship between friction and adhesion to be 

investigated; we verified the model by demonstrating 

that it can qualitatively reproduce experimental 

observations of strong and weak adhesion. Additionally, 

we provide some insights into the effect of adhesion– 

friction interactions on sliding by providing details 

that cannot be easily measured experimentally or 

calculated analytically, such as the tangential pressure 

profiles before and after the onset of slip. The 

tangential pressure distribution has only been 

measured experimentally for cases in which adhesion 

is not relevant [8, 9]. In these cases, the tangential 

pressure is particularly high near the edges, where it 

soon reaches the highest value allowed. Hence local 

slip starts at the edges. Subsequently, the slip zone 

expands from the edges toward the center of the ball. 

The stick zone disappears gradually, and gross sliding 

commences. The initiation of gross sliding is a smooth 

process instead of an unstable one, as observed in 

some cases where adhesion is present [3]. However, 

we demonstrate that this does not necessarily apply 

when adhesion is significant. In particular, we allow 

the tangential stiffness to vary independently of 

the normal stiffness to determine its effect on the 

contact in general and the tangential pressure profile 

in particular. 

The withdrawal of adhesive balls has been addressed 

analytically by several authors using models based 

on linear elastic fracture mechanics (LEFM) [4, 10–17]. 

These authors successfully replicated most experimental 

observations in which adhesion is strong, including  
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the power law decay of the contact area with increasing 

tangential load, and its shape transformation from 

circular to elliptical [13]. Hence, we present a comparison 

between our model and these models. Although these 

models are effective, they are applicable only to the 

ball-on-flat problem, whereas the numerical model 

presented herein can be applied to any geometry.  

Recently, by applying different local friction laws, 

Mergel et al. [2, 18] successfully developed a two- 

dimensional finite element model (FEM) that can 

describe the reduction in adhesion through material 

expansion at the surface. In particular, an experimental 

trend showing a decrease in the contact area was 

replicated. However, their model predicts that this 

decay will vanish if the material is incompressible. In 

our opinion, this is problematic because the polymers 

used in most of the aforementioned experimental 

studies are incompressible.  

In our model, the behavior of the interface is governed 

by traction–separation laws that describe the interaction 

between adhesion and friction. Specifically, the laws 

that we used are based on the cohesive zone model 

proposed by McGarry et al. [19]. These laws explicitly 

couple normal and tangential tractions; as such, the 

adhesive traction decreases as the tangential gap 

increases. This guarantees a decrease in the contact area 

provided that the adhesion is relevant. The manner 

in which this decrease occurs will be investigated in 

this study. These traction–separation laws predict that 

the contact pressure approaches zero rapidly as the 

tangential gap increases. This implies that sliding 

occurs at zero normal and zero tangential pressures, 

which contradicts with observations. In Ref. [20], this 

was addressed by allowing each grid point on a surface 

to interact with all grid points in the counter-surface 

based on the same traction–separation law. However, 

it was observed that the response was grid-size 

dependent, and that friction vanished when an 

extremely fine discretization was used. As this is 

not an acceptable feature, we modified the model 

presented in Ref. [21] proposing new traction– 

separation laws, which were inspired by those 

presented in Ref. [19], and which can account for 

sliding at non-zero pressures.  

Similar to Salehani et al. [21], we modelled the 

elastic response of the bodies using a Green’s function 

approach [22]. The primary advantage of this approach  

compared with FEM is that meshing is required only 

at the contact surfaces. Although the simulations 

performed in this study did not incur a high cost,   

a fast computation of the fields is beneficial for 

investigating rough surfaces in future studies. The 

proposed model, which adopts the modified traction– 

separation laws, can capture the experimental 

observations described above provided that a certain 

compliance is allowed at the interface. This compliance 

allows the interface to deform before the onset of slip 

and mimics interfacial bonding. It is controlled by a 

Maugis-like parameter that correlates the magnitude 

of the deformations of the interface with those of the 

body. The results obtained using a sufficiently small 

value of the Maugis-like parameter can replicate the 

experimental results presented in Refs. [2–6]. 

2 Modeling approach 

The problem considered is presented in Fig. 1, where 

two linear elastic isotropic bodies are brought into 

contact with each other. One is flat and much more 

rigid than the other, which is incompressible and 

exhibits has the shape of a smooth cylinder with 

radius R. Nonetheless, we assume that the contact width 

is sufficiently small compared with R, and that the 

height of the bodies is sufficiently large such that the  

bodies can be approximated as half-spaces. Hence, the 

response of the system is independent of the manner 

by which the elastic modulus E and the shape of the 

surfaces are partitioned. The flat body was fixed at the 

bottom in both the normal and tangential directions. 

Subsequently, loading was imposed by applying 

displacements u
napp

 and u
tapp
 at the top of the cylinder, 

where the subscripts n and t indicate the normal and  

 

Fig. 1 Schematic representation of the problem considered in 
this study. 
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tangential directions, respectively. The two bodies have 

a finite height H. When the two bodies are sufficiently 

close to each other, an interaction pressure intp  emerges 

at the contact surface. This pressure is controlled by  

a local traction–separation law, which accounts for 

repulsive forces, adhesion, and friction, as will be 

described in Section 2.1.  

The method presented in Ref. [21], which is based 

on Green’s function approach presented in Ref. [22], 

was used in this study to compute the tractions and 

deformations at the interface. The assumptions allowed 

Green’s functions to be defined based on the relationship 

between the elastic recovery force at the interface and 

the deformations of the elastic cylindrical body at 

the contact surface su  and top surface appu . Therefore, 

for this body, elp Gu , where    n t

s s
n t app app, , ,u u u uu ,  

and G  is a matrix of Green’s functions, as provided 

in Ref. [21]; Green’s functions are obtained in the 

Fourier space. The total pressure at the interface is 

expressed as 

  total int el dmpp p p p                        (1) 

where dmpp  is a damping pressure added to enhance 

the convergence and vanishes when the solution is 

obtained. In the same manner, as in Ref. [22], we used 

dmpp  in a Varlet integration scheme to update the 

displacement of the discretization nodes at the surface 

until a stable position was achieved. It is noteworthy 

that, owing to the use of Fourier transforms, periodic 

boundary conditions are implicitly imposed in the 

tangential direction. However, we ensured that the 

width of the periodic cell L was sufficiently large, and 

the indentation was sufficiently small such that the 

contact behaved as isolated. The interfacial loads in 

the normal and tangential directions are calculated as 

follows:  

   nn int
0

d
L

w p x x                       (2a) 

   tt int0
d

L

w p x x                        (2b) 

By convention, tensile and compressive loads are 

indicated by the negative and positive signs, respectively. 

It is noteworthy that the results will vary slightly if 

loads are applied instead of displacements. However, 

for the range of parameters investigated in this study, 

the difference was insignificant. 

2.1 Traction–separation laws 

As mentioned above, the interaction between the two 

bodies was modeled using local traction–separation 

laws. We used these laws to describe the macroscopic 

behaviors of the interfaces and implicitly incorporated 

all the nano- and micro-scale features that contributed 

to them. Although the model can explicitly describe the 

roughness and nanoscale interactions (such as molecular 

bonds), we decided not to use such details because 

they are typically not available from experiments. 

Traction–separation laws were initially proposed and 

extensively used in various forms in regard to crack 

opening [23]. McGarry et al. [19] proposed a formulation, 

which was also used in Ref. [21], comprising two non- 

potential-based coupled laws designed for mixed-mode 

loading; the results obtained were consistent with the 

observations, i.e., normal loading enhances friction. 

The traction–separation laws, represented graphically 

in Fig. 2, are expressed as follows: 

 
2

t tn n

n

//nn
int

n n

e e
ggg

p


 
                  (3a) 

 
2

t tn n

t

//tt
int

t t

e e
ggg

p


 
                   (3b) 

where 
n

 and 
t
 are the works of adhesion; 

n
 and 


t
 are the characteristic lengths; 

n
g  and 

t
g  are the gaps 

between two discretization nodes in different bodies. 

The maximum values yielded by these functions can 

be calculated as follows: 

  
 


   

n

n
max int n n t

n

1
, 0

e
p g g              (4a) 

  
 


   

t

t
max int n t t

t

2
0, / 2

e
p g g         (4b) 

In the formulation by McGarry et al [19], however, 

both the normal and tangential pressures approach 

zero at large separations in either the normal or 

tangential direction. This condition is realistic when  

a crack occurs in Mode I. In the context of contact  
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Fig. 2 Representation of the traction–separation laws used in 
this study. McG denotes the laws proposed by McGarry et al. [19], 
presented in (3). The other two abbreviations show Eq. (5) for 

  max   and   max / 2  . In the upper row, normal pressure is 
shown as a function of normal gap for three values of tangential 
gap: t t/g   = 0 (solid blue line), t t/g   = 0.5 (dashed orange 
line), and t t/g   = 1 (dash-dotted green line). In the lower row, 
tangential pressure is shown as a function of tangential gap for 
three values of normal gap: n n/g   = −0.5 (solid blue line), 

n n/g   = 0 (dashed orange line), and n n/g   = 0.5 (dash-dotted 
green line). 

mechanics; however, a frictionless glide will occur  

if further tangential loading is applied; based on 

experience, this is an unrealistic situation. Therefore, 

we modified Eq. (3) to obtain a behavior that is more 

similar to observations. A traction–separation law 

that preserves friction and the repulsive normal 

load at large tangential separations can be written 

as follows: 

  
2

t tn n

n

//nn
int

n n

e e
ggg

p H


 
               (5a) 

     

      

 

 


 




 





 

 
 

 
 
 
  

              
  

2

n n

2t
t t t n n

/ /t t
t

t t

t t

int
/ sgn / 2 /t

t

t

t t

2sgn e e

/ 2

2
sgn e e

e

/ 2

t tg g

g g g

g
g H

g
p

g H

g

 (5b) 

where  sgn x  outputs the sign of x ;    1H x  if 


n

0g  and   H x x  if 
n

0g . In this study, we 

considered only cases where   max t t1/ 2e    . 

Figure 2 shows a comparison between the new curves 

with those of McGarry et al. [19]. The only difference 

observed in terms of the normal traction is that    

the repulsive section of the normal traction remains 

unchanged when the tangential gap increased, which 

prevents interpenetration. Meanwhile, the difference 

observed in terms of the tangential traction is that 

the load levels at a finite value   instead of at zero, 

unlike the formulation proposed by McGarry et al. 

[19]. It is noteworthy that selecting a non-zero value 

for   results in an unbounded energy required to 

displace the body tangentially to infinity against the 

friction force. This should be interpreted as follows: 

The traction–separation curve is segregated in two 

regions. The first region, where 
t t

g , represents 

a reversible stretching of the bonds formed between 

two surfaces, with a finite energy 
t
 associated to 

it; the second region, where 
t t

/ 2g  represents 

irreversible frictional sliding. 

2.2 Dimensionless formulations 

To reduce the number of parameters, we set the 

problem in dimensionless form by adopting the 

following scaled parameters: 

    

 

r r r r

r r

n t n
n t n

r n t n t

tn
n t

n t

, , , , ,

,

t
t

p p uux
X P P U U

x p p u u

ww
W W

w w

     (6) 

where the variables with subscript r are reference 

parameters, defined by 

  
     

  r r r

1/ 32 2
1/ 3* 2n n

r n n n n*
n

, , ,
R

x u p w E R
E R

  


(7) 

      


  
r r r

2
1/3

* 2t
t t t n t t n n

t

, / , /p u w E R
R

  (8) 

where  * 2/ (1 )E E . It is noteworthy that the scaling 

used for the parameters in the normal direction is 

based on that used in Ref. [24]. Using this scaling, the 

relevant equations for the problem are expressed as 

follows:  

  
n n

s
el n 44 app 24

n

1

2
p U G U G


                  (9a) 
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  
t t

s
el t 33 app 13

t

1

2
p U G U G


                   (9b) 


 

2
0

0

n
2

GX
G                               (9c) 

  s

n 0 n
G G U                                (9d) 

 s

t t
G U                                    (9e) 

 
n nint int n t n t, , ,p p G G                         (9f) 

 
t tint int n t n t, , ,p p G G                         (9g) 

   r

nn n int0
d

L

xW p X X                         (9h) 

   r

tt t int
0

d
L

xW p X X                           (9i) 

where 
0

G  is the initial (normal) gap, and  *

r
/

ij ij
G G x E  

is the dimensionless Green’s function. In Eqs. (9a) and 

(9b), only terms that do not vanish, when the height 

of the bodies is extremely large, are included. These 

terms vanish only because we assume that the elastic 

body is incompressible. Otherwise, they will be present 

and a more complex problem will be encountered, 

with an additional parameter describing the coupling 

strength between normal pressures and tangential 

deformations, and vice versa.  

Owing to this normalization, the response of the 

contacting body to a specified loading is determined 

by only two parameters, 
n

 and 
t
, defined as follows: 

 
 

    

   
         

   

r r

1 1

3 3
n t n tn

n t* 2 * 2
n n t tn n

,
( ) ( )

u uR R

E E
   

(10) 

where 
n

 is the well-known Maugis parameter (also 

known as Tabor’s parameter) [24]. When only normal 

contact is considered, the limit   
n

 signifies short- 

range adhesion, as compared with the normal elastic 

deformations, and corresponds to the Johnson, Kendall, 

and Roberts (JKR) solution. Here, 
t

 is defined 

equivalently for the tangential direction and should 

therefore be regarded similarly, i.e., large values of 
t
 

correspond to short-range friction. More precisely, large 

values of 
t

 indicate that the elastic deformation 

induced by the loading in the body are insignificant 

as compared with the length scale of the tangential 

separation allowed by the interface,
t
. When  

t n
 

and  
t n

, it was found that  
n t

, as expected. 

Additionally, it is noteworthy that 
n

 appears, perhaps 

unexpectedly, in the definition of 
t

: An increase 

in 
n

 results in an increase in the contact area; the 

contact enables a larger tangential load to be sustained 

and hence more significant elastic deformations prior 

to sliding. We comprehensively investigated the effect 

of 
t
 on the results of this study. 

It is noteworthy that the results depend on 
r

/H x  

and 
r

/L x . However, the value selected for H 

(   3

r
2 10H x ) was sufficiently large to guarantee 

that a further increase in H would only result in a 

decrease in the total force resulting from an applied 

displacement. This will not affect the results, which are 

presented in terms of forces and applied displacements. 

Similarly, 
r

100L x  was chosen, which is sufficiently 

large to ensure that the contact behaves as isolated. 

Therefore, the dependences of the results on 
r

/H x  

and 
r

/L x were not considered. 

2.3 Definition of contact area 

The definition of the contact area becomes nontrivial 

when adhesion is present. Without adhesion, the contact 

area can be defined as the area in which the contact 

pressure is greater than zero. When adhesion is present, 

however, the pressure is negative when there is a 

positive gap between the surfaces, but these are close 

enough to feel each other’s influence. To facilitate a 

meaningful comparison with analytical theories and 

experimental results, a fraction of the surface under 

adhesion must be considered when computing the 

contact area. 

Analytical theories, such as JKR, often include all 

adhesive components in the definition of the contact 

area. In this theory, a singularity occurs at the edge  

of the contact, rendering the total contact area well 

defined. Moreover, when comparing the results with 

experimental values, one should be aware of the 

parameters detected by the measuring technique used. 

For example, in the experimental setup used by Sahli 

et al. [5], the contact area was measured owing to the 

different reflective properties of light when it is in 



Friction 10(6): 963–976 (2022) 969 

www.Springer.com/journal/40544 | Friction 
 

contact or otherwise with the interface. It is clear that 

separations smaller than the wavelength of the light 

used (~500 nm) will be blended in with the contact. 

Therefore, we also included on the definition of the 

contact area parts of the surfaces that are under 

attractive interaction when the separation is small.  

In this regard, a separation threshold must be defined 

so that points are in considered to be in contact if 

their separation is below the threshold. This threshold 

should be in the order of 
n

, as this is the length scale 

at which adhesive forces act. As shown in Fig. 3, the 

threshold value affected the calculated contact area, 

although convergence was observed for sufficiently 

large values. In this study, we selected a threshold 

equal to 
n

e , which yielded results that were similar 

to the JKR solution. As shown in the inset of Fig. 3(a), 

the work of adhesion in the model corresponds to the 

work caused by a constant pressure 
max

 from 0 to the 

selected threshold. 

3 Selection of Maugis parameter nλ  

The model presented herein allows us to vary 
n

 to 

consider the entire range between the JKR and DMT 

limits. However, to ensure a low number of cases, 

we fixed 
n

. Indentation was performed to select a 

suitable value. Because the bodies were assumed to be 

incompressible, normal loading caused no displace-

ment in the tangential direction, and the results were 

therefore independent of 
t
. In most experiments 

performed with PDMS, the increase in contact area 

during normal loading was similar to the JKR 

solution [2]. Therefore, we selected an appropriate 

value of 
n

 to reproduce the JKR solution, except 

for the singularity of the tractions at the edge of the 

contact. Figure 4(a) shows the evolution of the contact 

area and the pressure distribution obtained for 
n

 = 

3, 10, and 20. Focusing on the area, the difference was 

insignificant for the three larger values of 
n

 (less 

 

Fig. 3 (a) Contact area for various thresholds. The value tresh 0  corresponds to consideration of only the repulsive section of the 
contact area. The values  ntresh 8  and  ntresh 10  correspond to when 

nintp  decreased to 1% and 0.1% of their maximum value, 
respectively. The interpretation of the value  ntresh e  is shown in (b), where the two shaded areas are both equal to the work of 
adhesion n . 

 

Fig. 4 (a) Contact area vs. normal load for three values of n . Black line corresponds to the JKR solution. The inset shows the 
zoomed-in section of curve and (b) pressure distribution for the same cases, at a load of 

rn n/ 10.4w w . Dashed red line corresponds to 
the JKR solution. 
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than 5%), whereas it increased as 
n

 increased. This 

is to be expected, as Johnson and Greenwood [24] 

reported that  
n

3  was sufficient to obtain a con-

verged result for the contact area.  

The pressure distribution together with the JKR 

solution is shown in Fig. 4(b). The numerical curves 

were similar to the analytical curves except at the edge 

of the contact, where the analytical solution is singular, 

and the numerical solutions exhibited a pressure peak 

that was broader and lower for smaller values of 
n

. 

To accurately describe this peak, a 
n

 value larger than 

that required for computing the contact area is required. 

Therefore, we selected  
n

10 . It is noteworthy that 

we did not select a higher value of 
n

 to avoid a finer 

discretization. In this study, we used 132  points to 

discretize the surface. 

4 Effect of tangential Maugis-like  

parameter tλ  

Based on a fixed value of  
n

10 , we investigated the 

effect of three different tangential Maugis parameters, 

i.e.,  
t

10 ,  
t

1 , and  
t

0.1 . It is noteworthy that 

 
t n

 indicates that  
t n

 and/or  
t n

. We first 

considered the area evolution with increasing applied 

tangential displacement 
tapp

u , as presented in Fig. 5(a). 

Two values of the normal displacement were applied, 

i.e., 
t rapp n

/ 40u u  and 
t rapp n

/ 2u u , which resulted 

in normal forces of 
rn n

/ 25w w  and 
rn n

/ 0.8w w , 

respectively. For both normal loads, when  
t

0.1 , the  

contact area decreased rapidly after tangential loading 

was applied. Subsequently, gross sliding commenced 

unstably (the displacement at which occurred is 

indicated in Fig. 5(a) with a marker), as adhesion 

vanished abruptly. By contrast, when  
t

10 , the 

contact area decreased slowly until the onset of gross 

sliding. As indicated by the marker, the minimum 

contact area, which indicates that adhesion has 

completely vanished, was attained prior to the onset of 

gross sliding; hence, the contact area did not decrease 

abruptly. However, it is noteworthy that the transition 

toward gross sliding remained unstable because 

  
max

. The case with  
t

1  was similar to the case 

with  
t

10 , although the presence of an abrupt 

decrease in the contact area at the transition toward 

gross sliding depended on the magnitude of the normal 

load. When the load was low, an abrupt decrease was 

observed, although it was much smaller than that of 

the case with  
t

0.1 . However, when the load was 

higher, such an abrupt decrease was not observed. This 

dependence on the load is due to the contact area; a 

larger area can sustain larger tangential stresses prior 

to gross sliding. This larger tangential load results  

in a more significant deformation at the edge of the 

contact, which increases the tangential gap locally 

and reduces adhesion. It is noteworthy that, in the 

experimental studies by Mergel et al. [2] and Sahli et al. 

[5], it was observed that the contact area decreased 

after the onset of gross sliding, although it was less 

abrupt compared with the observations of the current 

study. For all values of 
t
, after gross sliding began, 

the contact area remained constant, which is consistent 

with the results presented in Ref. [3]. However, in the 

study presented in Ref. [2], where the setup used was 

the same as that reported in Ref. [3] but with a 

displacement applied at a higher rate, a slight decrease 

in contact area was observed. This is attributed to the 

viscoelastic effects, which were not captured by the 

current model.  

Furthermore, it is unclear whether adhesion vanishes 

completely or whether some remnant adhesive pressure 

prevails at large tangential separations. To capture 

the remnant adhesive pressure, one can modify the 

traction–separation law by prescribing the normal 

traction to yield a non-zero value at large tangential 

displacements. With this modification, the results will 

not change qualitatively, but the contact area will 

stabilize at a slightly higher value. 

Figure 5(b) shows a plot of the total tangential force 

against displacement. As the applied displacement 

increased, the tangential force increased almost linearly, 

and the response was primarily governed by the 

elasticity of the body. Eventually, gross sliding occurred, 

and the tangential force decreased abruptly. This abrupt 

decrease is attributed to the following two reasons: 

(i)   max  , which implies that the tangential stress 

that can be withstood by the interface during slip is 

smaller than that at its onset; (ii) the contact area 

decreased abruptly. The tangential force at which 

sliding occurs depends on both 
n

w  and 
t
. It is 

noteworthy that increasing 
n

w  results in a larger 

contact area. 
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To clarify the effect of 
t
 on the manner in which 

the contact area is reduced, it is instructive to consider 

the compliance of the system. The displacement at the 

contact is governed by the compliance of the body 

and that of the interface. If they are of the same 

order, as is the case with small values of 
t
, then the 

compliance of the interface can accommodate some 

interfacial displacements before sliding. This situation 

resembles ductile Mode II failure. By contrast, if the 

compliance of the interface is much smaller, any local 

point will shift rapidly from zero displacements to slip. 

In this case, the onset of slip resembles brittle Mode II 

failure. To visualize the relative compliance of the 

contacts based on different values of 
t
, we plotted 

the ratio s

t t
/u  (Fig. 5(c)), where s

t
u  is the average of 

the deformation at the surface, including both contact 

and non-contact regions. Hence, the ratio provides 

the relative displacement of the body with respect  

to the displacement of the interface. It is noteworthy 

that 
t
 is the length scale of the traction–separation 

law and therefore provides the upper limit to the 

deformations that the contact can accommodate prior 

to an irreversible slip. Hence, a high value of this ratio, 

e.g.,  
t

10 , indicates that the contact interface is 

extremely stiff as compared with the body. For smaller 

values of 
t
, particularly  

t
0.1 , the compliance of the 

interface becomes much more significant. In this case, 

the change in the slope corresponds to gross sliding. 

Images of the pressure profile are shown in 

Figs. 5(d)–5(f) for the three abovementioned values of 


t
. The colors of the curves correspond to the values 

of the applied tangential displacement, as indicated 

in Fig. 5(a). The pressure values were normalized by 

   
rt t t max

/p , which increases with 
t
. At high 

values of 
t
 (Fig. 5(d)), the low compliance of the 

interface resulted in high stresses, which formed a 

spike near the edge of the contact. As soon as the spike 

reached the value of 
max

, the abrupt decrease in the 

tangential pressure toward   triggered an early 

unstable transition toward gross sliding. For  
t

1 , 

the additional compliance of the interface resulted  

in a shallower, rounder spike. Because the stresses 

at the edge of the contact were smaller, the tangential 

displacements and decay in the contact area occurred 

at a slower pace. Finally, when  
t

0.1 , the compliance 

of the interface was extremely large, resulting in a 

 

Fig. 5  (a) Contact area vs. tangential displacement for three values of t . Two values of applied normal displacements are shown: 

n r rapp n n n/ 40 ( / 25)u u w w   and 
n r rapp n n n/ 2 ( / 0.8) .u u w w 

 
Markers indicate the onset of gross sliding (stars for 

rn n/ 25w w  , 
and circles for 

rn n/ 0.8w w  ). (b) Tangential force vs. tangential displacement for the same cases as in (a). Solid and dashed lines
correspond to 

n r rapp n n n/ 40 ( / 25)u u w w   and 
n r rapp n n n/ 2 ( / 0.8),u u w w  respectively. (c) The ratio s

t t/u   for the force 

rn n/ 25w w  , where s
tu  indicates the average displacement at the surface. (d–f) Tangential pressure profile for the indicated traction–

separation laws and the three values of t  used in (a–c). In all cases, 
rn n/ 25w w  , and the load corresponds to the small vertical lines 

in (a). Dotted purple lines indicate max  and  . 
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constant pressure profile. Finally, it is noteworthy that 

  did not significantly affect the incipient tangential 

loading prior to gross sliding.  

To better visualize the comparison with the 

experimental results presented by Refs. [2, 5], the 

simulation results shown in Fig. 5(a) are presented in 

Fig. 6 by correlating the contact area with the tangential 

force instead of with the applied displacement. It is 

noteworthy that more values of 
t
 were added, and a 

non-monotonic trend was observed, similar to Fig. 5. 

For  
t

1 , an increase in 
t
 resulted in a more rapid 

decrease in the contact area. As shown in Fig. 5, an 

increase in 
t
 resulted in a higher but narrower 

pressure spike at the contact edge and a faster peeling 

toward the center, and hence a faster decay of the 

contact area. Eventually, convergence was observed 

when  
t

10 . It is noteworthy that the convergence 

of the normal component occurred at  
n

10  as well. 

However, when  
t

1 , the contact area decreased 

with 
t
. In this case, the pressure profile was similar 

to that shown in Fig. 5(f), i.e., the tangential pressure 

profile was relatively constant. In this case, the load 

that can be sustained by the contact was limited    

by 
max r

a . Because 
max

 decreased with 
t
, an early 

transition toward gross sliding was observed. 

The superimposed dotted gray lines indicate the 

best fit to the power law. In all cases, the exponent 

was approximately 2 (it was between 1.8 and 2.2 in 

all the cases considered). Such a power-law behavior, 

as well as the measured exponent, is consistent with 

the experimental observations presented in Refs. [2, 5]. 

However, our results are consistent with the power 

law only at low tangential loads. For high tangential 

loads, this law is only suitable for some values of the 

normal load and 
t
. When 

rn n
/ 25w w , the best 

agreement was observed when  
t

1 . For lower values, 

the decay was faster than that of the power law. For 

higher values, the fit was excellent initially; however, 

the contact area formed a tail with a slower decay. By 

contrast, when 
rn n

/ 0.8w w , the decay was too fast 

to conform to the power law for  
t

10 . However, at 

higher values, the agreement was the best.  

Finally, we focused on the effect of normal loading 

on the relationship between the contact area and 

tangential force. Figure 7 shows the evolution of the 

contact area as the tangential force increased until the  

 
Fig. 6 Decay in contact area for indicated load and various t  values. Dotted gray lines show the best fit with power law, with exponent
ranging from 1.8 to 2.2 for all cases. 

Fig. 7 Decay in contact area with increasing tangential force for t 0.1  and the indicated traction–separation laws. Dotted black line 
indicates the line t max rw a , whereas red ones indicate the same relation but with fit  fitted from the data. 
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onset of gross sliding. When  
t

0.1  with different 

normal forces was considered, all the points representing 

the start of gross sliding can be fitted with a straight 

line passing through the origin. Therefore, we can write 

o o

t fit r
w a , where the superscript o indicates the point 

at which the onset occurs, and  
fit max

. This is because 

the tangential pressure is approximately equal to 


max

 in the contact area immediately prior to the onset 

of gross sliding. As 
t
 increases, a line can still be 

fitted, albeit not the fit is not as good. It is noteworthy 

that 
fit

 differs significantly from 
max

. This is because 

unlike in the case with  
t

0.1 , 
max

 is only attained 

at the edge of the contact, and the tangential pressure 

is much lower in other locations.  

The linear relation obtained between the contact area, 

and tangential force is consistent with the experimental 

observations reported in Refs. [2, 5–7] as well as with 

the interpretation of Amonton’s law. In fact, several 

authors (e.g., Refs. [18, 25]) expressed the friction force 

as follows: 

  
t fit r n

w a w                           (11) 

where the constant term is attributed to adhesion, 

and the term linear with 
n

w  arises from the presence 

of roughness. In our case, the ball was smooth, and 

only the first term was present. Experimentally, it 

was observed that 
fit

 should increase with the work 

of adhesion [25]. In our case, assuming that 
t
 and 


n

 are of the same order of magnitude, we observe 

that 
fit

 should scale as 1/ 3

n
. Furthermore, 

fit
 increases 


t
, which increases with 

n
. Hence, our results are 

qualitatively consistent with those reported in Ref. [25]. 

However, it is noteworthy that an exponential law 

was used in Ref. [25] to fit the experimental results 

correlating 
fit

 and 
n

w . 

To summarize, we can conclude that the case with 

 
t

0.1  showed the best agreement with experimental 

observations from Refs. [2, 5, 6] when focusing only 

on the onset of gross sliding. However, the contact area 

decay was too rapid. Hence, the cases with  
t

1  and 

 
t

10  provided a better overall agreement. 

5 Discussion 

The model presented herein can qualitatively replicate 

experimentally observed results from Refs. [2, 5, 6]. 

Unfortunately, it presents several limitations that 

disallow a quantitative comparison with the experi- 

ments. Because our model is two-dimensional, it might 

overlook some inherent three-dimensional features. 

For instance, it has been shown experimentally that a 

decreasing contact area does not maintain the radial 

symmetry of the initial contact [6]. In addition, interface 

behaviors such as reattachment, which was considered 

in Ref. [20], are not captured by the model. Therefore, 

the stick–slip behavior of the system cannot be captured. 

Similarly, the rate dependencies of the properties at 

the interface [26] were not considered. In addition, 

because our model is limited to quasi-static elastic 

deformations, it cannot capture some phenomena, such 

as viscoelastic effects [2] or dynamic Schallamach 

waves [4, 27–29]. Finally, it is clear that our model 

specifies, by construction, that the contact area should 

be reduced by increasing the tangential load. While 

this is typically observed experimentally, we point out 

that, in some studies (see Krick et al. [30] and Menga 

et al. [31]), an increase was observed. This is attributed 

to viscoelastic effects, which were not considered in 

this study. 

It is instructive to compare our model with those 

that addressed the same problem using the concepts 

of LEFM. These models have been used successfully 

to replicate experimental observations and yielded 

compact, nearly closed-form solutions that are 

convenient to use. However, our method does not pre- 

specify the geometry of the contacting bodies and can 

hence manage problems other than cylinder-on-flat 

or ball-on-flat contacts. It is noteworthy that, similar 

to our model, all these models have fitting parameters 

that are needed for them to replicate the experimental 

observations. 

The first model based on LEFM was Savkoor’s model 

[10], which assumes that a negligible slip occurs when 

the contact area decreases. More precisely, it is assumed 

that the tangential stress field increases in a square 

root manner toward the contact edge. The singularity 

at the edge was avoided owing to a small process zone 

surrounding the contact edge. This implies that any 

possible (small) slip must be confined within this small 

process zone. This model can be considered as the 

tangential counterpart to JKR theory. To improve this 

model, which was found to predict a too rapid decay 
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of the contact area, two approaches were adopted.  

In the first approach [4, 12, 13], the assumption of 

negligible slip is maintained, and based on the idea of 

Hutchinson [32], a mixed-mode function is introduced 

to capture the decrease in the work of adhesion during 

tangential loading more accurately. This resulted in  

a slower decrease in the contact area. The second 

approach, pioneered by Johnson [11] and further 

extended by McMeeking et al. [14], and Ciavarella and 

Papangelo [15], allows slip and assumes that a portion 

of this slip is reversible. This reversible slip accumulates 

energy at the interface and hence reduces the work of 

adhesion. Consequently, the contact area is reduced. 

Johnson [11] argued that no reversible slip should be 

expected after a certain amount of slip 
0

s , because the 

mechanism to accumulate energy saturates. However, 

the effects of this limit have not been investigated 

comprehensively. Despite the differences in these two 

approaches, both yielded equivalent results under the 

appropriate mixed-mode function [15].  

Hence, our model can be regarded having 

characteristics of the two abovementioned approaches. 

In fact, the coupled traction–separation laws in our 

model have similarities with the mixed-mode function 

proposed by Hutchinson [32]; additionally, they allow 

for a slip that can be separated into reversible and 

irreversible components, which is consistent with the 

approach pioneered by Johnson. At low values of 
t
, 

our model predicted a negligible slip. In this case, the 

assumptions made in Hutchinson’s approach application. 

At higher values of 
t
, slip occurs instead, and the 

results are more similar to those of Johnson’s approach. 

However, our model and Johnson’s approach differed 

significantly: The slip in our model is fully reversible 

for tangential gaps smaller than t / 2  and fully 

irreversible otherwise, whereas in Johnson’s approach, 

both reversible and irreversible slip occurs at a fixed 

ratio [11, 14, 15]. In reality, one can expect dissipation 

to begin as soon as slip occurs, with most of the slip 

being reversible initially and the irreversible component 

increasing rapidly until it dominates at large distances.  

As discussed earlier, the experimental results were 

successfully replicated qualitatively within a certain 

range of 
t
 and for high values of 

n
. The definition 

of these parameters includes length scales 
n

 and 
t
, 

which are difficult to measure in macroscopic experi- 

ments. One may expect them to be associated with 

the dominant features at the interface. These lengths 

can be estimated from the known quantities and the 

values of 
n

 and 
t
. Based on Eq. (10), 

n
 and 

t
 can 

be expressed as 

 
 

  

   
       

   

1/ 3 1/ 3

t nn
n t* 2 * 2

n tn n
)( )

,
(

R R

E E
      (12) 

If we set  
n

30 mN/m,  
t

30 mN/m, * 2E  MPa, 

and  10R mm, which are similar to those in Refs. [2, 5], 

as well as assuming 
n

3  and 
t
 ranging from 1 to 

3.6 (according to Figs. 4(a) and 6), then 
n

0.4 µm 

and  t 0.6 m  are obtained. These lengths can be 

correlated with the surface roughness, which exists 

inevitably on macroscopically smooth surfaces, and 

which have been shown to dominate adhesion [33, 34]. 

Hence, they are expected to affect the adhesive 

friction. In fact, surface roughness was considered in 

Ref. [35] as a factor that can affect the stiffness of the 

interface. It is noteworthy that, even if at present, 

roughness might not be observable in contact area 

measurements. For instance, in Ref. [5], the pixel size 

was 25 m , which would render any rough feature 

with wavelengths smaller than that unnoticeable. 

6 Conclusions 

A model that can describe the contact response of 

adhesive bodies under mixed-mode loading was 

presented herein. This model was applied to investigate 

tangentially loaded cylinder-on-flat contacts under 

adhesive conditions. A Maugis-like parameter, 
t
, 

was defined in the tangential direction and varied to 

change the relative stiffness of the body and interface. 

When 
t
 is high, the interface is stiff as compared with 

the body, and a pressure spike is formed at the edge 

of the contact, similar to that observed in the adhesive 

normal pressure. In this case, the transition toward 

gross sliding occurred unstably with negligible local 

slip prior to the transition. When 
t
 is low, the interfaces 

are compliant as compared with the body. This resulted 

in significant displacements at the interface prior 

to gross sliding and an almost constant tangential 

pressure throughout the entire contact area. 

To validate the test model, the results yielded by it 

were compared qualitatively with experimental data 
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in the literature. It was found that the model can 

qualitatively replicate the experimental observation, 

i.e., the contact area decreased according to a power 

law with an exponent of approximately 2. In addition, 

a transition to gross sliding, in which the friction force 

and contact area decreased abruptly, was observed 

and is consistent with the experimental observations, 

although the transition was faster in our model. In 

general, the best agreement with the experimental 

observations was obtained when  
t

1.   

The model was compared with analytical models 

based on the LEFM to identify the similarities and 

differences. The main advantages of the proposed 

model compared with the analytical theories are that 

it can be used to investigate contacts with arbitrary 

geometries and various Maugis parameters, and that 

the values of difficult-to-measure parameters can be 

estimated. 
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