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Abstract: Finding the correct category of wear particles is important to understand the tribological behavior. 

However, manual identification is tedious and time-consuming. We here propose an automatic morphological 

residual convolutional neural network (M-RCNN), exploiting the residual knowledge and morphological 

priors between various particle types. We also employ data augmentation to prevent performance deterioration 

caused by the extremely imbalanced problem of class distribution. Experimental results indicate that our 

morphological priors are distinguishable and beneficial to largely boosting overall performance. M-RCNN 

demonstrates a much higher accuracy (0.940) than the deep residual network (0.845) and support vector 

machine (0.821). This work provides an effective solution for automatically identifying wear particles and can 

be a powerful tool to further analyze the failure mechanisms of artificial joints. 
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1  Introduction 

The coronavirus disease (COVID-19) pandemic in 2020 

has made people care more about health problems. 

Indeed, not only these epidemic diseases but also 

chronic diseases should be brought to the forefront. 

Osteoarthritis (OA), mainly caused by the degeneration 

of joints, is one of the chronic diseases that has affected 

the individual quality of life both physically and 

socially. To treat severe cases, artificial joints, e.g., 

artificial hip joint [1], artificial knee joint [2], and 

artificial disc [3], are needed to replicate the functionality 

of a normal and healthy joint [4]. Generally, the lifespan 

of artificial joints is designed to be 20‒40 years [5, 6]. 

However, after long-term service in the human body, 

the articular surfaces will be worn and thus generate  

wear particles. It has been reported that the wear 

particles of artificial joint prosthesis may induce host 

response in the human body and cause a so-called 

“particle disease” [7]. Clinically, wear particles in the 

size of micrometers or less can lower bone density 

through osteolysis and further lead to aseptic loosening 

[8], making particle related disease one of the top 

leading causes for prosthesis failure after long-term 

implantation [9]. Therefore, it is crucial to carry out 

failure analysis through identifying wear particles 

whose shape and surface morphologies are closely 

related to their generation mechanisms and wear 

conditions. 

However, analysis of these wear particles is a 

complicated task. Since the artificial joints are usually 

lubricated by tissue fluids (in vivo) or simulated body  
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fluids (in vitro), extra isolation is always needed to 

remove the biomacromolecules impurities and purify 

the wear particles before characterization [10]. With 

several digestion and isolation protocols, scientists have 

evaluated the wear particles produced by different 

artificial joints recently. McMullin et al. [11] analyzed 

750 wear particle images from the periprosthetic failed 

hip, knee, and shoulder arthroplasties, and based on 

particle morphologies and according to commonly 

used terminology, classified them into three groups, 

i.e., fibers, flakes, or granules. Liu et al. [12] compared 

the wear particles generated from the implanted 

artificial joint (in vivo) and joint simulator (in vitro). 

They indicated that the typical morphologies of wear 

particles were spherical, block, tear, sheet, rod, and 

strip. In our previous study [13], we also investigated 

the wear particles of artificial disc and summarized 

their representative morphologies as flake-like wear 

particles, spherical wear particles, aggregated wear 

particles, rod-like wear particles, and zonal wear 

particles. Indeed, each type of wear particle contains 

its specific information about wear processes and 

wear mechanisms. For instance, flake-like particles 

are contributed by abrasive wear and fatigue wear, 

spherical particles can be attributed to adhesion wear, 

aggregated particles are the products of several 

mechanisms, and rod-like and zonal particles are 

dominated by peeling and fragmentation after fatigue 

wear [13]. Therefore, finding the correct category of the 

wear particle not only helps understand the morphology 

of the particle itself, but also gives the information 

about wear status and wear mechanisms of the artificial 

joints [14]. 

Although the investigations mentioned above are 

good examples of how recent studies have evaluated 

the wear particles generated by artificial joints, most of 

them are recognized manually. It has been proposed 

that up to 2 × 108 wear particles are produced per 

year by the implanted artificial joint in patients [15]. 

Thus, we may be still far away from appreciating the 

full range of wear particles for which more useful 

wear information can be provided. Indeed, with the 

development of artificial intelligence, some neural 

networks have been employed to establish wear particle 

classifiers [16‒19]. For instance, a multi-level belief 

rule base system [20] and a linear support vector 

machine [21] were employed to optimize the wear 

information and classify wear particles. Wang et al. 

[17] proposed a two-level classification procedure: 

the first-level to determine the three classes by a 

back-propagation network and the second-level to 

further identity fatigue particles and severe sliding 

particles by a six-layer convolutional neural network. 

Peng et al. [22] developed a hybrid convolution neural 

network that mainly consisted of transfer learning 

and support vector machine techniques to identify 

four types of wear debris. However, most of them 

are not designed for the wear particles of artificial 

joints, and their efficiency and accuracy still need to 

be improved.  

In addition to the differences highlighted above, 

another specific point of wear particles from artificial 

joints that we should note is the imbalanced distribution 

of particle types. Compared to other industry cases, 

the applied load and resulting-in wear rates are much 

smaller, i.e., wear particle harvest is more difficult 

and a smaller amount can be collected. Therefore, the 

imbalanced distribution of particle types may be more 

prominent. It is suggested that the subsphaeroidal 

wear debris from the artificial hip joints took up the 

majority of the debris but shared a smaller percentage 

of the total volume, indicating the type distribution 

was imbalanced [12]. Eckold et al. [23] suggested that 

the majority of the morphological occurrences of wear 

particles from artificial discs was fibril. Regarding the 

artificial knee and hip joints, it was concluded that 

the particle morphology can be strongly influenced 

by the lack of experimental precision with different 

quantitative approaches and the in vivo wear particle 

distribution was not homogeneous owing to the 

clumping and clearing of particles through drainage 

[10]. When being recognized by a neural network, 

such imbalanced distribution poses a challenge for 

predictive modeling, as most of the machine learning 

algorithms used for classification were designed around 

the assumption of an equal number of examples for 

each class, meaning normal models may demonstrate 

poor predictive performance, especially for the minority 

ones [24]. Therefore, a specific recognition model is 

required to address the imbalanced sample size issue, 

which affects the accuracy of particle classification 

using a machine learning approach.  
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Based on the wear particles we obtained in our 

previous work [13] and motivated by the considerations 

above, in this paper, we propose a morphological 

residual convolutional neural network (M-RCNN) as 

an automatic wear particle classification model to tackle 

the extremely class imbalance problem. Specifically, 

the morphological priors are extracted using a Canny 

detector, which then uses them to pick out spherical 

wear particels by matching them to Houghcircle. To 

further alleviate the data imbalance problem, the 

remaining four highly geometric similarity classes— 

the flake, aggregated, rod-like, and zonal wear 

particles—are used to synthesize more training images 

by the data augmentation technique. Finally, all training 

images, including the synthesized images and their 

corresponding morphological priors, are imported 

into the residual convolutional neural network to 

extract the key features and then adaptively train a 

classification model.  

The rest of the paper is organized as follows. The 

details of data preprocessing and data augmentation 

are illustrated in Section 2 to alleviate the class 

imbalance problem. The working principle of wear 

particle classification using the morphological residual 

convolutional neural network (M-RCNN) is presented 

in the same section. Afterwards, Section 3 describes two 

experiments to examine the reliability and accuracy 

of the proposed method as well as discussion on the 

presented results. Finally, the conclusions are drawn 

in Section 4. 

2 Recognition network construction 

2.1 Datasets and implementation details 

Wear particles were generated and isolated from our 

previous in vitro wear simulations. Those wear particles 

were isolated and then imaged using scanning electron 

microscopy (SEM, FEI Quanta 200FEG, Eindhoven, 

The Netherlands) as presented in Ref. [13]. Prior to 

the SEM observation, a thin platinum (Pt) layer was 

coated onto the samples to improve the image  

quality. The schematic of the particle imaging system 

is demonstrated in Fig. 1. In this study, we collected 

~900 images of wear particles, 80% of the samples 

were randomly selected as the training dataset while 

the rest (20%) were used for testing. As mentioned 

above, the distribution of the wear particles we obtained 

is inhomogenous. More specifically, the ratio of the 

maximum class samples to the minimum class samples 

is 15.8 (flake 553: spherical 35: aggregated 170: rod-like 

69: zonal 106). For implementation details, an adaptive 

moment estimation (ADAM) optimizer is used with a 

batch size of 64 for training [25]. The initial learning 

rate is set to be 0.0005, which is divided by 2 every 

100 epochs. The whole training process takes 1,000 

epochs with an NVIDIA Titan X GPU. 

2.2 Data preprocessing and augmentation 

Since data preprocessing plays an important role   

in our overall framework, we here aim to employ a  

 

Fig. 1 Diagram of the particle imaging system. 
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simple but effective image preprocessing on both the 

training and held-out testing sets. The main motivation 

of data augmentation is to help our network to grasp 

more typical features and then build up a good 

mapping function by creating and exploring more 

variants of images (e.g., geometric and color trans-

formations). The data augmentation does not ruin the 

input pixel distribution which is vital information for 

the network to learn but only boost the data diversity 

especially for the minimum class. The process of data 

augmentation is guided by the following three steps. 

In order to ensure a uniform image size of all data 

imported into the M-RCNN in the training and test 

stages, we crop and downsample each subject to a 

uniform 256×256 image size with three channels. 

Secondly, we implement the Gaussian normalization 

on the pixels’ intensity whose range changes from  

[0, 255] to [‒1, 1]. This step aims to normalize the pixel 

intensity and further reduce variation among the 

pixels to avoid the performance deterioration of the 

model stemming from the non-uniform data range. 

Finally, we endow the classification model with the 

desired invariance and robustness for class imbalance 

problems by performing data augmentation to 

synthesize more input images that better represent 

input distribution. 

Indeed, data augmentation is an effective way to 

equip the model with the ability to resist the training 

data imbalance and scarcity. More information can  

be extracted from the original dataset through data 

augmentation. This inflates the training dataset size 

by data warping which transforms existing images  

while their label is preserved. The warp augmentation 

encompasses geometric and color transformations, 

random erasing, adversarial training, and neural style 

transfer. In the case of wear particles among different 

classes, due to the variations of camera orientations, 

resolution, and noise, we primarily perform the rotation, 

flip, noise, affine, and blur transformations (Fig. 2). 

The rotation degree is in a range of [‒90°, 90°] and 

represents the variation of camera orientations. A 

9×9 kernel is used to blur images to highlight their 

shape information and weaken texture information. 

Meanwhile, we add random noise to images to make 

the model more stable and robust [26]. 

For data preprocessing, the input images are center- 

cropped as RGB channels. After the data preprocessing, 

we can obtain a dataset that is three times larger 

than the original one and the imbalanced distribution 

problem is alleviated to some extent.  

2.3 Morphological residual convolutional neural 

network (M-RCNN) 

The convolutional neural network (CNN) has proven to 

be an effective computational model for automatically 

extracting image features [27‒29]. A morphological- 

based convolutional neural network is constructed to 

grasp more morphological priors, which then guides 

the network to categorize the input wear particles 

images. Consequently, two parts are involved in this 

model: a morphological-priors generation block and a 

convolutional neural network classifier. The reasons 

for worse classification performance usually come 

from two aspects: (1) lack of reliable priors to guide 

 
Fig. 2 An example of data augmentation. From left to right: the original axial slice, slice after rotation, slice after shear mapping, and
slice after scaling. After data augmentation, we can obtain a dataset three times larger than the original one while the class imbalance 
problem is alleviated to some extent. 
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the classifier to make a reasonable judgment; (2) the 

knowledge interference caused by inhomogeneous 

distribution among classes. Thus, the main motivation 

of morphological-priors is to embed the network or 

classifier with more faithfully shape-based knowledge 

that is greatly different among various swear particles.  

For the morphological-priors generation block, we 

apply a Sobel Kernel framework to extract the shape- 

priors. Specifically, we utilize a Gaussian filter to blur 

and smooth the image to suppress random and sharp 

noise that can affect the mainly shape-based edge 

extraction of wear particles. Then the intensity gradients 

of images are traced to delineate the complete shape 

of wear particles. The smoothed image is filtered 

with a Sobel Kernel in both horizontal and vertical 

directions to get the first derivate in the horizontal 

direction ( xG ) and vertical direction (
y

G ). Then, we 

find the edge gradient and direction for each pixel as 

follows: 


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Non-maximum suppression is executed to avoid the 

spurious response and then double threshold is to 

determine potential edges. The final shape is determined 

by suppressing all the edges which are weak and not 

connected to strong edges. 

In a next step, we employ a Canny detector to 

extract useful structural information (e.g., shape-based 

boundary and morphological-based texture) and 

highlight the shape information. Specifically, Houghcircle, 

controlled by the parameters including minimum 

and maximum circle radius and minimum distance 

between the centers of the detected houghcircles, is 

registered and matched into the morphological space. 

After the houghcircle registration, the morphological 

judgment block picks out the highest geometric 

discrepancy class (spherical wear particles in our case).  

In the following CNN-based classifier, wear particle 

images and their corresponding morphological priors 

are imported into the classifier. The classification model 

is mainly composed of three layers: convolutional layer, 

residual connection layer, and fully-connected layer. 

The convolutional layer is to characterize image 

features by local receptive fields and shared weights. 

The motivation for residual connection over layers  

is to avoid the problem of vanishing gradients, by 

reusing activations from a previous layer until the 

adjacent layer learns its weights. After the full 

connection operation, all the local features are integrated 

for object recognition. By doing so, these three layers 

can provide shift, scale, and distortion invariance of 

the extracted features.  

As shown in Fig. 3, wear particle images are 

cropped and downsampling in a uniform size of 256 × 

256 × 3. The effective combination of convolutional 

Fig. 3 The proposed intelligent recognition architecture of wear particles. This model consists of two branches: the top block is a feature
extractor to grasp the morphological priors and the bottom block is dedicated to wear particles recognition by employing the residual 
learning. 
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layer, batch normalization, and rectified linear unit  

is repeatedly used in the model. The information 

transformation process of the convolutional layer is 

executed by a filtering operation. The convolutional 

transformation is described as follows: 

     
   
 

k k
2 2

1, 1,
H H p W W p

O n
S S

     (2) 

where H and Hk are the height size of input features 

and kernel, respectively. Accordingly, W and Wk are 

the width size of input features and kernel. p and S 

denote the padding and stride size, and n stands for 

the RGB channels. 

The distribution of each layer’s inputs can change 

during training, leading to the internal covariate shift 

[30]. Thus, we perform the batch normalization for 

each training min-batch. Here, batch normalization 

acts as a regularizer, which allows us to use much 

higher learning rate and relax the restriction of the 

initialization. For a layer with d-dimensional input  

 1( )dx xx , the batch normalizing transform is 

illustrated as follows: 
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where 
B

,
B

 denote the mean and variance of 

d-dimensional input x. x̂  is the normalized output. For 

each activation ˆ ix , a pair of parameters   and   are 

the scale and shift processing of the normalized x̂ . 

These parameters are learned along with the original  

model parameters. By setting  Var[ ] x  and  [ ]E x , 

it could recover the original activations. 

The sigmoid and hyperbolic tangent activation 

functions cannot be used in networks with many layers 

due to the vanishing gradient problem and saturate 

phenomena, while the rectified linear activation function 

can overcome the limitations, allowing models to 

learn faster and perform better [31]. Therefore, in our 

model, the rectified linear unit activation function   

is inserted behind convolutional layers and batch 

normalization layers as follows [32]: 

 T( ) max(0, )R x w x b             (4) 

where R is the function output, x is the input imported 

into the convolutional layer, and w and b denote   

the weight matrix and bias of convolution layers, 

respectively. 

In addition, to solve the problem of vanishing 

gradients, we adopt residual learning to the stacked 

layers (Fig. 3). A neural network without residual parts 

explores more of the feature space. This makes it more 

vulnerable to perturbations that cause it to leave  

the manifold, and necessitates extra training data to 

recover. After introducing the skipping connection, 

on the contrary, it simplifies the network effectively 

and speeds the learning by reducing the impact of 

vanishing gradients and using the shallower layers. 

The network then gradually restores the skipped 

layers as it learns the feature space. Towards the end 

of the training, when all layers are expanded, it stays 

closer to the manifold and thus learns faster. Formally, 

we consider a building block defined as: 

 ( ,{ })
i

Wy F x x                (5) 

where x and y are the input and output vectors of 

the layers considered. The function ( ,{ })
i

WF x  denotes 

the residual mapping to be learned. Here, we assume 

that the function F has two layers, then 
2 1

( )W WF x  

in which   means the activation function and biases 

are omitted for simplifying notations. The operation 

F x  is performed by a shortcut connection and 

element-wise addition. The shortcut connection is 

attractive in practice because it does not introduce 

extra parameter and computation complexity. 

The dimensions of x and F must be equal in 

Eq. (5). If this is not the case (e.g., when changing the 

input/output channels), we can perform a linear 

projection 
s

W  by the shortcut connections to match 

the dimensions: 

 ( ,{ })
i s

W Wy F x x             (6) 

In a next step, the multi-class identification of wear 

particles is implemented by softmax function, a last 
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activation function to normalize the output of a 

network to a probability distribution over predicted 

output classes [33]:  



   


e
( | , , ) soft max( )

e

i i

i i

w R b

w R b

j

P Y i R w b wR b     (7) 

where R is a given input feature vector, w and b are a 

weight and bias vector. i is the input belongs to the 

i-th category of particles and j is the category index. 

The probability summation of different categories  

P  should be 1. The maximum probability value of  

all categories is regarded as the corresponding particle 

type. 

To measure the distance between the prediction of 

wear particle and its true labeled value, we construct 

a multi-categorical cross-entropy loss as follows [32]: 



 
1

loss log ( )
j

i i
i

y f x               (8) 

where x is the input of wear particles and j is the 

number of classes. yi is the true label of i-th class 

and ( )
i

f x  is the prediction output of the classification 

model. Based on this, model weights and offsets are 

iteratively updated and learned until the objective 

function reaches a satisfactory value. 

Moreover, we combine the predictions of the original 

model and morphological model to improve the 

generalizability and robustness. The original model 

means that the inputs are four original class images 

of wear particles where the morphological priors are 

only used to pick out the spherical particles. Different 

from the original model, the input of the morphological 

model is only morphological images (as shown in 

morphological feature extraction in Fig. 3) without 

original images. For orginal model and morphological 

model, they both first take out the spherical particles 

from five classes and make a classification on remaining 

four classes wear particles. The particles identification 

can be summarized as: 
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where c is the four classes of wear particles, P1 is a    

4 × 4 matrix obtained by the original model, and P2 is 

a 4 × 4 matrix obtained by the morphological model. 

o and m are the input of original and morphological 

wear particles, respectively. Each element of P means 

the credible score belongs to the specific class. W1 

and 1‒W1 are the weight of models P1 and P2, and we 

set the W1 as 0.9. Finally, the final prediction of classes 

is a weighted summation with two models.  

3 Experiments and discussion 

3.1 Performance evaluation of particle recognition 

network 

We analyze our morphological residual convolutional 

neural network (M-RCNN) on the 181 unseen test 

data to show our superiority compared with the con-

ventional networks, i.e., support vector machine (SVM), 

deep residual network (ResNet), and deep residual 

network with data augmentation (ResNet+Aug) 

models. To evaluate the recognition accuracy, the 

precision, recall and F1-score values are calculated. 

Their expressions are described as follows: 



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

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Accuracy
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FN TP

2 precision recall
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       (10) 

where TP, TN, FN and FP are the number of true 

positive, true negative, false negative, and false positive, 

respectively.  

For comparative analysis, the recognition accuracy, 

precision, recall, and F1-score criteria of different 

configurations are listed in Table 1 and Table S1   

in the Electronic Supplementary Material (ESM). It 

indicates the SVM and ResNet models are not able to 

identify the minimum class (spherical wear particles) 

which suffered by very limited data, only 4% of 

whole database. Besides, after embedding the data 

augmentation, ResNet+Aug model improves its 

precision slightly from 0.612 to 0.649, but still fails to 

distinguish the high-geometric similarity classes among  
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the zonal, aggregated and flake-like wear particles. 

Regarding the M-RCNN model we developed in this 

study, it achieves the best performance in all criteria 

including the precision (0.851), recall (0.851), F1-measure 

(0.851), and accuracy (0.940) compared with other 

conventional methods. This method not only dis-

criminates the high-geometric similarity classes but 

also effectively picks out the minimum class (spherical 

wear particles in this study) using the morphological 

priors for the extremely class imbalance problem. To 

evaluate the efficiency, we calculate the computation 

test time of each image on a server with an Intel 

Xeon W-2123 CPU and an NVIDIA TITAN X GPU. The 

obtained results indicated that the computation 

test time of M-RCNN is 4.7 ms, which is similar to 

the reported ones [22], indicating the algorithms we 

proposed achieve state-of-the-art accuracy and still 

keep a comparable test time.  

To evaluate the classifiers’ quality, the multi-class 

receiver operating characteristic curves (ROC) of 

different models are shown in Fig. 4, which is created 

by plotting the true positive rate (TP) against the 

false positive rate (FP) at various threshold settings. 

For the micro-average method, it computes the metrics 

based on the global confusion matrix to get the true 

positives, false positives, false negatives, and true 

negatives of the system, by assigning equal weight 

on each data (not each class). The macro-average  

calculates the metrics independently based on the 

local confusion matrix of each class and then takes 

the average, assuming that the weight or contribution 

of each class is equal. The closer ROC value to 1, the 

better a classifier is [34]. As can be seen in Fig. 4, 

although data augmentation has been applied to the 

ResNet model, its macro-average ROC area is only 

0.68, which is just 71.6% of our M-RCNN algorithm. 

Indeed, the M-RCNN demonstrates the best per-

formance from the ROC point of view. In addition, 

as presented in Fig. 5, the features of wear particles 

extracted both by ResNet and ResNet+Aug models 

are mixed while the M-RCNN model we developed 

here can clearly separate the four resting classes in a 

large distance, indicating an excellent performance 

of our morphological model on features extraction. 

3.2 Performance evaluation of morphological priors 

In this section, we aim to demonstrate the effec-

tiveness of the morphological priors. Here we compare 

the proposed network with and without using the 

morphological priors in terms of precision and accuracy 

values (see Eq. (10) for details) which are listed in 

Table 2 and Table S2 in the ESM. Although the 

precision and accuracy of M-RCNN model without 

morphological priors are relatively high compared to 

the conventional models, applying the morphological 

priors can further boost both the precision (from  

Table 1 The precision and accuracy values of wear particle recognition using different methods: support vector machine (SVM), deep 
residual network (ResNet), deep residual network with data augmentation (ResNet+Aug), and morphological residual convolutional 
neural network (M-RCNN). A, B, C, D, and E donate the flake-like, spherical, aggregated, rod-like, and zonal particles, respectively.  

 Wear particle SVM ResNet ResNet+Aug M-RCNN 

A 0.584  0.632  0.656  0.855  

B NAN NAN NAN 0.714  

C 0.250  0.545  0.667  0.821  

D 0 0.500  0.615  0.857  

E 0 0  0.333  0.933  

Precision 

Overall  0.553  0.612  0.649  0.851  

A 0.559  0.617  0.670  0.872  

B 0.963  0.963  0.963  0.979  

C 0.787  0.835  0.840  0.915  

D 0.915  0.926  0.941  0.979  

E 0.883  0.883  0.883  0.957  

Accuracy 

Overall  0.821  0.845  0.860  0.940  
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Fig. 4 Receiver operating characteristic curves (ROC) with different configurations: (a) M-RCNN , (b) ensembled model, (c) M-RCNN 
without morphological knowledge, (d) ResNet without data augmentation, and (e) ResNet with data augmentation. 

Table 2 The ablation study of wear particle recognition using our different schemes: with/without morphological priors and 
with/without ensemble mechanism: M-RCNN without morphological priors, M-RCNN and ensembled models. A, B, C, D, and E 
donate the flake-like, spherical, aggregated, rod-like, and zonal particles, respectively. 

 Wear particle M-RCNN without 
morphological priors 

M-RCNN  Ensembled 

A 0.811  0.855  0.856  

B 0.571  0.714  0.714  

C 0.806  0.821  0.852  

D 0.818  0.857  0.857  

E 0.750  0.933  0.933  

Precision 

Overall  0.798  0.851  0.856  

A 0.824  0.872  0.878  

B 0.968  0.979  0.979  

C 0.920  0.915  0.920  

D 0.963  0.979  0.979  

E 0.920  0.957  0.957  

Accuracy 

Overall  0.919  0.940  0.943  
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0.798 to 0.851) and accuracy (from 0.919 to 0.940) of 

M-RCNN model. We can also observe from Fig. 4, the 

macro-average ROC area of M-RCNN is improved 

by nearly 10% after adding the morphological priors. 

Regarding the feature extraction capability, as pre-

sented in Figs. 5(a) and 5(c), the model exploiting the 

morphological priors performs a stronger ability in 

extracting and identifying the wear particle features.  

Since aggregated particles have similar geometric 

characters as flake-like and zonal particles, it is difficult 

to split them from the other two categories. Thus, we 

also ensemble two models in this study: the one is 

based on the morphologic priors input and the other  

is on the original wear particle samples. The obtained 

 

Fig. 5 Dimensionality reduction results of the features extracted by different methods using the t-SNE algorithm: (a) M-RCNN, 
(b) ensembled model, (c) M-RCNN without morphological knowledge, (d) ResNet without data augmentation, and (e) ResNet with data 
augmentation. “t-SNE” donates “t-Distributed Stochastic Neighbor Embedding”, which is a non-linear dimensionality reduction algorithm 
used to analyze or visualize high-dimensional data by mapping multi-dimensional data to two or more dimensions that is better for human 
observation. 
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results indicate that incorporating morphologic models 

can not only enable the algorithm to get a better 

recognition (3% higher) on the similar wear particles 

classes, but also make the accuracies of other criteria 

do not deteriorate. 

3.3 Outlook  

M-RCNN developed in this study is tailored based 

on real scenarios of wear particles from artificial joints, 

breaking the imbalance barrier that each type of wear 

particle appears in largely different numbers. Since 

our M-RCNN well exploits the morphological priors, 

it is better to apply it to other scenarios in which each 

type of class presents different distinct-geometry 

morphology. However, owing to the limited numbers 

of wear particles we collected in our previous studies, 

this model has not been well trained to some extend. 

Future investigations could continue to analyze the 

generalization ability of M-RCNN by collecting much 

more wear particles or testing in other similar   

wear particles data. Another direction of interest lies 

in the GANs-based data augmentation, which is also 

a potential way to enhance the diversity of input data 

beyond the operation of rotation and flip 

transformations.  

4 Conclusions 

Recognition and understanding the morphology of 

wear particles generated from artificial joints are of 

importance to study their wear mechanisms and 

further improve the wear performance. One of the 

biggest challenges of the task is the imbalance 

distribution of each group. In this paper, we proposed 

a morphological residual convolutional neural network 

(M-RCNN) incorporating the morphological priors to 

solve the recognition problem under inhomogeneous 

distribution conditions. The morphological priors are 

extracted by the Canny detector to highlight useful 

structural and shape information, and then matched 

by the specific shape (spherical wear particles in this 

study) to pick out the geometry-different class. To 

further alleviate the data imbalance problem, the 

data augmentation technique is utilized to synthesize 

more training samples of the high geometric similarity  

classes. The M-RCNN is tested using a large number 

of wear particles images to show its better performance 

as compared with several available classification models 

which are suffered from class imbalance problems. 

Therefore, M-RCNN is a promising tool for the 

automatic artificial joint wear particle classification no 

matter how the distribution is and has the potential 

for applications in further tribological analysis of 

artificial joints. 
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