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Abstract: The rolling contact fatigue (RCF) model is commonly used to predict the contact fatigue life when the 

sliding is insignificant in contact surfaces. However, many studies reveal that the sliding, compared to the rolling 

state, can lead to a considerable reduction of the fatigue life and an excessive increase of the pitting area, which 

result from the microscopic stress cycle growth caused by the sliding of the asperity contact. This suggests that 

fatigue life in the rolling-sliding condition can be overestimated based only on the RCF model. The rubbing 

surfaces of spiral bevel gears are subject to typical rolling-sliding motion. This paper aims to study the mechanism 

of the micro stress cycle along the meshing path and provide a reasonable method for predicting the fatigue life 

in spiral bevel gears. The microscopic stress cycle equation is derived with the consideration of gear meshing 

parameters. The combination of the RCF model and asperity stress cycle is developed to calculate the fatigue 

life in spiral bevel gears. We find that the contact fatigue life decreases significantly compared with that obtained 

from the RCF model. There is strong evidence that the microscopic stress cycle is remarkably increased by the 

rolling-sliding motion of the asperity contact, which is consistent with the experimental data in previous 

literature. In addition, the fatigue life under different assembling misalignments are investigated and the results 

demonstrate the important role of misalignments on fatigue life. 

 

Keywords: rolling/sliding contact fatigue; stress cycle; spiral bevel gear; mixed elasto-hydrodynamic lubrication; 
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1  Introduction 

Surface pitting is a major form of primary failure for 

mechanical components, such as roller element bearings, 

wheel rails, and various types of gears. When the com-

ponents periodically suffer high contact stresses, cracks 

may initiate near the surface and then propagate towards 

the surface to form a surface spall or pit, although 

the components are properly assembled, loaded, and 

lubricated [1].  

Rolling contact fatigue (RCF) theories have been 

widely used in roller element bearings, rail-wheel 

contacts, and spur gears [1], when the sliding velocity 

between two surfaces is insignificant. In fact, a con-

siderable sliding can be found in the cross-axis gear 

transmission, especially for spiral bevel and hypoid 

gears. The two-disc experiments have demonstrated 

that the relative sliding may result in a great impact on 

fatigue life, and quantitatively, the increasing of the 

sliding ratio from 0% to 10% leads to a reduction of 

fatigue life by two orders of magnitude, as reported in 

the earlier study of Bujold et al. [2]. It is evident that the 

engineering machined surface is not ideally smooth, 

which may complicate the surface contact. Under the  
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pure rolling contact, the number of surface stress cycles 

on a certain piece of material is equal to the rolling 

cycles. With the presence of the relative sliding between 

two mating surfaces, the stress cycles may be con-

siderably high because one of the surfaces is inevitably 

experiencing the many asperities of another surface 

over the contact zone. Most recently, the significant 

influence of sliding on fatigue life has been revealed 

by Ramalho et al. [3], Lee et al. [4], Seo et al. [5], and 

Oksanen et al. [6] experimentally, and Pu et al. [7] 

theoretically. Therefore, conventional RCF theories tend 

to overestimate the fatigue life of spiral bevel gears as 

the sliding between the conjugated gear flanks is not 

considered [8]. 

A famous RCF model for rolling-element bearings 

was proposed by Lundberg and Palmgren [9] by 

relating the probability of failure to the number of 

stress cycles based on the statistical theory developed 

by Weibull [10]. The Lundberg-Palmgren [9] model 

has a few limitations, which include overlooking the 

presence of the lubricant film and surface shear traction. 

In order to overcome these limitations, Ioannides and 

Harris [11], Zaretsky [12], and Tallian [13] improved 

and extended the Lundberg-Palmgren model for a 

wider range of applications. Although the aforemen-

tioned models considered the non-conformal bodies 

to have smooth surfaces or took the roughness into 

account using stochastic parameters, their findings 

have greatly encouraged further modifications. More 

specifically, the models proposed by Ioannides and 

Harris [11] and Zaretsky [12] can predict the RCF life 

through the integration of infinitesimal volumetric 

elements stress and appear to be suitable for a micro- 

scale stress consideration under the asperity contact. 

Then, the roughness was involved in the fatigue analysis 

in Refs. [14] and [15], and the results showed that the 

surface roughness can increase the effective stress, 

leading to the reduction of fatigue life. Similar methods 

can be found in Ref. [16] to study the effect of the root- 

mean-square (RMS) roughness on the line-contact 

fatigue life. Previous reports indicated that the reduction 

of RMS roughness from 0.95 to 0.15 μm can improve 

the fatigue life by 85%. Additionally, Zhu et al. [17] also 

applied the model proposed by Zaretsky [12] for spur 

gear pitting analysis by considering the real three 

dimensional (3D) roughness under the mixed lubrication, 

and the predicted pitting life was in close agreement 

with the test data.  

Pitting fatigue is closely related to stress distributions. 

If the contact surface is sufficiently fine-machined, the 

surface roughness can be neglected. Similar assumptions 

have been applied in Refs. [9, 11–13], where the stressed 

material volumes were calculated by the pure Hertzian 

contact. Due to the presence of machined rough 

surfaces, it is necessary to determine the detailed 

pressure distribution in the mixed lubrication, as the 

localized pressure peaks may be significantly higher 

than the Hertzian pressure, which can cause concen-

trations of subsurface stress and lead to a reduction 

of the pitting life of components. Scholars have made 

great efforts to develop the mixed elasto-hydrodynamic 

lubrication (EHL) model with the consideration of 

roughness. Representative achievements were made 

by Xu and Sadeghi [18], Zhu and Ai [19], Jiang et al. [20], 

Sicuteri and Salant [21], Hu and Zhu [22], Holmes  

et al. [23], Bayada et al. [24], Zhu et al. [25, 26], et al. The 

developed mixed EHL model has been implemented in 

the subsurface stress-based fatigue-life model proposed 

by Zaretsky [12] as an effective approach for pitting 

fatigue analysis, as reported by Ai [15], Epstein et al. 

[16], Zhu et al. [17], Greco et al. [27], and Pu et al. [7]. 

Similar combinations of fatigue model and mixed 

EHL were also applied by Li and Kahraman [28], Li 

and Anisetti [29], et al. Modifications to the mixed 

EHL model have been attempted in Refs. [30] and [31] 

to simulate the mixed EHL elliptical contacts with 

arbitrary velocity vectors by considering the effect 

of 3D roughness. These modified models laid the 

foundation for the later lubrication analysis in spiral 

bevel gears and hypoid gears by Pu et al. [32] and 

Cao et al. [8].  

According to the above literature review, the RCF 

of rolling element bearing and spur gears have been 

investigated extensively in recent years. However, due 

to the complex contact geometry, relevant studies on 

spiral bevel gears are limited. Theoretical simulations 

by finite element method on the fatigue crack growth 

in spiral bevel gears can be found in Refs. [33, 34]. 

Experiments were reported by Asi [35] and Xi and 

Wang [36] regarding the bending fatigue failure and 

surface contact fatigue failure of hypoid gears. Based 

on the model proposed by Zaretsky [12], Cao et al. [8] 
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studied the contact fatigue of spiral bevel gears under 

different contact paths, but the increased stress cycles 

due to the sliding asperity contact were ignored.  

The present study is aimed to propose a pitting life 

prediction approach for spiral bevel gears considering 

the real 3D surface roughness, as the sliding asperity 

contacts in conjugated surfaces may cause high asperity 

contact pressure and significantly increase stress 

cycles. In order to conduct the mixed EHL analysis 

for spiral bevel gears, the tooth contact analysis (TCA) 

model is needed to obtain the contact geometry, velocity 

vectors, and meshing loads [8, 37]. The surface roughness 

of spiral bevel gears, generated by a certain machining 

process, e.g., grinding, is measured by an optical 

profiler, showing a general sinusoid-like geometry 

as reported in Ref. [38]. Therefore, the sinusoid-like 

roughness is used to fit the roughness profile in the 

present study to develop the equation for counting the 

microstress cycle under the rolling-sliding contact in 

spiral bevel gears. Based on the coupling of the TCA 

model, mixed EHL model, and fatigue model, the 

contact stress and fatigue life, subjected to different 

assembling errors, are investigated numerically.  

2 Equations of meshing considering 

assembling errors 

The first step of the mixed EHL lubrication and fatigue 

analysis is to determine the assembling positions with 

position errors. It is important to clarify that the contact 

geometry, contact paths, and meshing load in spiral 

bevel gears are relevant to the position errors. Figure 

1 plots the 3D assembling relationship between the 

pinion and gear, including the presence of misalign-

ments. Unit vectors pp  and gp  mark the axis of pinion 

and gear, and their relative angular position is called 

the shaft angle  , the offset direction is defined as 

 d p ge p p . Symbols H , J , E , and   represent 

the pinion axial error, gear axial error, offset error, 

and shaft angle error, respectively. Points pO  and gO  

are the design points of the intersection between the 

pinion axis and gear axis, as fixed with the pinion 

and gear axis, respectively. Points pQ  and gQ  are the 

images of points pO  and gO  as a result of the position 

errors H  and J . With zero position errors, point 

pO  coincides with point gO . The meshing of spiral 

bevel gears indicates that the driving surface is con-

jugated to the driven surface. Consequently, position 

vectors bpR  and bgR  are used to describe the contact 

of pinion and gear surfaces mathematically. It is worth 

mentioning that position vectors bpR  and bgR  are  

expressed in coordinates    p p d p d p, , ,O e p e p  and  

   g g d g d g, , ,O e p e p , which are fixed with the  

pinion and gear at points pO  and gO , as depicted in 

Fig. 1. According to the conjugate surface theory, the 

conjugation of the gear and pinion must satisfy the 

following three conditions [39, 40]: 

(a) The unit normal vector of the pinion surface pn  

must be collinear with the unit normal vector of the 

gear surface gn . 

(b) Two surfaces can coincide at a certain point pM . 

(c) The normal vector of the local contact ( pn  and 

gn ) is orthogonal with the relative velocity.  

For the convenience of vector operations, the vectors 

in system p  are shifted to system g: 

 

 

 

  

                   

g

bp
bp

g

p p

g
p

p

R R

n M n

pp

        (1) 

where   ( )M  denotes the transformation matrix  

from system p  to g , which is expressed as 

 
   

   

   
 

   

     
     
     

cos 0 sin

0 1 0

sin 0 cos

M   (2) 

 
Fig. 1 Assembling position between the pinion and gear. 
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To satisfy Condition (a), the pinion and gear need to 

rotate about their axes with angles p  and g , respec-

tively, which can be mathematically described as 

             
      



 

    

  

g g g g g

p p p p p p

g g g

p p p p pcos sin

n n p p p n

p p n        (3) 

     
 

 



     

 

g g g g g g g g

g g g

cos

sin

n n p p p n p

p n  (Ref.[40]) (4) 

It is assumed that normal vectors coincide each other 

after the rotations, i.e.,     p gn n , then the rotational 

angles p  and g  can be solved explicitly as 

       
  

 
    
 
   

g g g

g p p p g g1
p p0g

p g g

sin cos
p p n p p n

p p n
 (5) 

        

  
 

    
 
   

g g g

p g g g p p1
g g0g

g p g

sin cos
p p n p p n

p p n
 (6) 

where  

       
    


 


 

g g g

g p p p

p0 g g

g p p

p p n p

p p n
           (7) 

   
  


 


 

g

p g g g

g0 g

p g g

p p n p

p p n
            (8) 

Similarly,  
bpR  and  

bgR  denote the vectors  g

bpR  

and bgR  when rotations p  and g  are performed 

about their respective axes  g

pp  and gp , and they are 

given by 

                         g g g g g g g

bp bp p p bp bp p p pcosR R p p R R p p  

                 g g g g g

p bp bp p p psinp R R p p        (9) 

              bg bg g g g g g g g gcosR R p p R R p p p  

       g g g g gsinR R p p              (10) 

If the gear drive is perfectly aligned, point  pO  

coincides with point  gO , i.e.,     bp bgR R . With the  

existence of assembling errors, the conjugation of the 

pinion and gear surface at point pM  must satisfy Con-

dition (b) and the following relation must hold as 

           bg bp bp dg pR R O O R R         (11) 

As shown in Fig. 1,  dR  can be written as 

       g

d p g dJ H ER p p e          (12) 

Substituting Eq. (11) into Eq. (12) and then dotted by  

   


 
g d

g

p g d

p e

p p e
, 

 

   


 

g

d p

g

p g d

e p

p p e
, and 

 

   


 

g

p g

g

p g d

p p

p p e
, the  

position errors can be analytically described as 

        
    

 

   
    

 

   

 

 

 


   
 

    

  


 
    

  

g d

bg bp g

p g d

g

d p

bg bp g

p g d

g

p g

bg bp g

p g d

H

J

E

p e
R R

p p e

e p
R R

p p e

p p
R R

p p e

     (13) 

When the position vectors of conjugated point pM  

are obtained, the Condition (c) can be expressed as 

   
   

        

 
 

   

 
     

 
         

bg bp

p p

g

p g bg p bg d p 0

s

d d

dt dt

k

R R
n V n

n p R p R R

 

  (14) 

where  zp zgk N N  is the gear ratio, zpN  and zgN   

denote the tooth number of the pinion and gear, and 

p  represents the rotational speed of the pinion. 

It is noted that position errors H , J , E , and 

  are included in Eqs. (13) and (14), which are solved 

to obtain the corresponding conjugation points on 

the pinion and gear tooth surface with the rotation of 

the pinion about its axis. The principle curvature and 

directions are key parameters for lubrication analysis. 

The geometry of tooth surfaces is attained from the 

cutting of blade, i.e., the principal curvatures correlate 

to the relative kinematics between the cutting blade and 

gear blank. Detailed descriptions of surface parameters 

can be found in Refs. [8, 37, 39]. 
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3 Asperity stress cycle model 

In general, grinding is an important method for gear 

machining, in terms of reducing the surface roughness 

and improving the accuracy of the tooth profiles. The 

roughness of the grinded surface can be contributed 

by two parts [42], one is the contact trace between 

the grinding wheel and the gear, and the other is the 

uncut zone due to the discretization of the generating 

movement. As shown in Fig. 2, the curve 
M

l  on the gear 

flank represents the cut trace caused by the grinding 

wheel. In fact, the cut zone and uncut zone both  

 

Fig. 2 The roughness caused by grinding traces. 

have a finite width to form the alternative strip facet. 

Consequently, the topography of the grinded surface 

often presents both periodic and random characteristics. 

Typically, the periodic part corresponds to the waviness, 

while the random part is contributed by the small- 

scale roughness [7]. The roughness of the flank in spiral 

bevel gears can be scanned using an optical profiler, 

as depicted in Fig. 3(a), and the measured 3D roughness 

is shown in Fig. 3(b). The topographic profile in the 

perpendicular direction of the cut traces that are 

defined in Fig. 2 can be treated using a waviness profile 

from a low-pass filter, as plotted in Fig. 3(c). Hence, it 

is reasonable that the grinded surface roughness in 

spiral bevel gears is approximated by sinusoidal waves 

in the mixed EHL and fatigue life analysis. 

For the waviness, the stress peaks caused by asperity 

are concurrent with those of the pressure distributions 

in the contact zone. As mentioned before, the point at 

one surface in contact with another rough surface is 

subjected to several stress cycles, due to the existence 

of sliding. Therefore, an asperity stress cycle model, 

which considers the rolling and sliding velocity vectors, 

is needed to count the actual number of microstress 

cycles. Generally, the contact geometry in the spiral 

 
Fig. 3 Measurement of flank roughness in spiral bevel gears: (a) mounting of the pinion on the optical microscope, (b) measured
surface roughness, and (c) sinusoidal approximation of roughness. 
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bevel gear is elliptical due to the elastic deformation 

[8, 39, 40], as shown in Fig. 4. It is notable that the 

contact ellipse and roughness are both projected in the 

tangential plane   as described in Fig. 2 to express the 

effect of sliding on stress cycles. 

In Fig. 4, 
1

u  and 
2

u  are the velocity vectors of the 

pinion and gear surface, and sV  represents the sliding 

velocity vector. The experienced stress cycle for a 

certain point is closely related to the roughness peak 

density of its mating surface. According to Fig. 4, 

the velocity vector of the pinion surface 
1

u  shows 

angles of 
1x

 and 
1
 with respect to the roughness 

direction 'x  and minor axis of contact ellipse. Then 

the time required for a certain asperity of the pinion 

flank to pass through the contact zone AB can be 

expressed as 

    
 

2 2

1 1

1 1

2 sin cosa bAB
T

u u
     (15)  

where the velocity vector 
1

u  and the lengths of semi- 

major and minor axis (a and b) can be obtained from 

the TCA [8]. 

The sliding distance along the direction of the sliding 

vector sV  is given by 

    
    

2 2

1 1

d s 2 1 2 1

1

2 sin cosa b
s T TV u u u u

u

(16) 

 

Fig. 4 Contact geometry in tangential plane  . 

Considering the asperity peak densities are s1d  and 

s2d , the number of asperity contacts for Surface 1 

during a loading cycle is described as 

   



 


 


  

1 d s2 s1

2 2

1 1

2 1 s2 s1

1

1 cos( )

2 sin cos
1 cos( )

x

x

n s d

a b
du u

u
   

(17a) 

where  s1x  denotes the angle between sV  and 'x  axis 

(the waviness direction of gear flank roughness). Note 

that the asperity density is commonly measured along 

the waviness direction, hence, s2 scos( )xd  represents 

the component of sliding distance in the direction 

of 'x . For Surface 2, the number of asperity contacts 

can be easily obtained through the similar procedure 

using Eqs. (15) and (16). For brevity, the analogical 

expression of asperity contacts for Surface 2 is 

described as 

   



 


 


  

2 d s1 s2

2 2

2 2

2 1 s1 s2

2

1 cos( )

2 sin cos
1 cos( )

x

x

n s d

a b
du u

u
   

(17b) 

According to Eq. (17a), it is evident that the number 

of stress cycles for Surface 1 is related to the velocity 

vectors 
1

u  and 
2

u , and angles 
1

 and  sx . Taking 

Surface 1 as an example, mathematical derivations are 

described to make Eq. (17a) executable. Note that the 

subsequent derivation process of Eq. (17b), which is 

omitted here, follows a similar procedure to that of 

Eq. (17a). 

The angle 1( )  between the velocity of the pinion 

surface and minor axis of the contact ellipse is com-

puted through vector operations, as described in  

Ref. [8]. The velocity vectors are given by 

        
 

 





 

   


  

g g

1 p p bp p bg d

2 p g bg

= =u p R p R R

u p R
      (18) 

According to Eqs. (9) and (10),  
bpR  and  

bgR  are 

transformed from position vectors bpR  and bgR .   

denotes the tooth number ratio between the gear and 

pinion. During the meshing process, the position 

vectors bpR  and bgR  are calculated based on the 



Friction 8(6): 1083–1101 (2020) 1089 

∣www.Springer.com/journal/40544 | Friction 
 

http://friction.tsinghuajournals.com

rotational projection, and the projection plane is defined 

by an axial plane   in Fig. 5.  

For the meshing position      g g
,ai aiA x y  on the gear 

flank, the position vector bgR  is computed by 

 

 

  


  

g

bg g

g

bg g

ai

ai

x

y

R p

R p
            (19) 

Similarly, the position vector bpR  can also be obtained 

from above relationship.  

The tangential plane varies at different meshing 

positions and consequently, the waviness roughness 

direction, which can be attained from the optical 

profiler, is first projected in the axial projection plane 

to determine the direction of the roughness in the 

gear flank for convenience. In the coordinate system 

 g g g( , , )o i j  of the axial plane as shown in Fig. 5, gi  

and gj  are introduced as 

  
 





  
  

  

g g

g bg g

g

bg g

i p

p R p
j

R p

            (20) 

Note that, as plotted in Fig. 2, the surface unit normal 

vector of gear flank  
gn  is orthogonal to the tangential 

plane  , and the direction unit vector gs  of roughness 

exists in the tangential plane  . According to vector 

operations, gs  can be solved by 

 




 



 

g g

sg

g g

g d

×
tan

×

× 0

s j

s i

n s

              (21) 

 

Fig. 5 Gear flank and roughness direction in axial plane Ω. 

Finally,  s1x  in Eq. (17) can be easily obtained by 

    s1 g sarccos
2

x s V            (22) 

4 Mixed EHL and fatigue prediction model 

4.1 Mixed EHL model in spiral bevel gears 

A mixed EHL model for spiral bevel gears has been 

employed to simulate the asperity contact and lubricant 

pressure distributions [8]. The mixed EHL model for 

line and point contact has been unified by Zhu et al. 

[19, 22, 25, 26], and then modified in Refs. [8, 32] to 

investigate the lubrication performance of spiral bevel 

gears, in which the entraining vector has an angle with 

the minor axis of the Hertzian ellipse. The modified 

Reynolds equation is expressed as 

 
 

   

    
         
  

    
  

3 3

e e e e

12 12

( ) ( ) ( )
cos sin

p ph h

x x y y

h h h

x y t
U U

  (23) 

Note that the directions of x and y axes for the 

Reynolds equation coincide with the minor and major 

axes of the contact ellipse, respectively, which are 

different from the coordinates described in Fig. 4. 

The entraining velocity vector   e 1 2 2U u u  has an 

angle e  with the minor axis of the Herztian contact 

ellipse. The computation method for e  has been 

explained in Ref. [8] in detail. p denotes the pressure 

distributions in the contact zone, including the asperity 

contact and film pressure. 

The local film thickness and pressure in the 

Reynolds equation are interdependent. As mentioned 

earlier, the 3D roughness may cause pressure peaks, 

which can further cause a high stress concentration. 

The film thickness introduced in the 3D roughness is 

expressed as 

     
0 1 2
( ) ( , , ) ( , , ) ( , , ) ( , , )h h t g x y t x y t x y t V x y t   

(24) 

where 
0
( )h t  denotes the normal approach of two 

surfaces, 
1
( , , )x y t  and 

2
( , , )x y t  represent the 3D 

roughness of two surfaces measured from the optical  
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interferometer.  2 2( , , ) 2 2
x y

g x y t x R y R  describes  

the contact geometry by contact curvatures, where the 

equivalent radius 
x

R  and 
y

R  along the minor axis 

and major axis of contact ellipse are obtained from 

the TCA as described in Ref. [8] in detail. The elastic 

deformation ( ( , , ))V x y t , can be attained by 

 

   

 
 

     
e 22

,2
( , , ) = d d

p
V x y t

E x y
   (25) 

The commonly used lubricant viscosity model, as a 

function of pressure and temperature, can be given 

by  

     
  

    
   

0

0

1 1
= exp p p

T T
   [43]  (26) 

The lubricant density is assumed dependent on 

pressure, which is written as 

 
 

  
 

-9

0 -9

0.6 10
1+

1+1.7 10

p

p
           (27) 

The load between the tooth mating surfaces is 

supported by the lubricant and asperity contact, and 

the balance equation is given as 


 ( ) ( , , ) d dmF t p x y t x y            (28) 

The friction computation is based on the film and 

pressure distributions that are derived from Eqs. (23– 

28). Newtonian fluid model or non-Newtonian fluid 

model can be used as the rheological model for different 

lubrication and operating conditions. Generally, the 

lubricant presents non-Newtonian behavior, especially 

under the high load and large sliding condition in spiral 

bevel gears. In the present study, the shear stress in the 

hydrodynamic areas is estimated using a viscoelastic 

non-Newtonian fluid model proposed by Bair and 

Winer [44] expressed as 

 
 

  
     

 
sL

L

ln 1
G h

V
         (29) 

In Eq. (29), the limiting shear stress (L ) and the 

limiting shear elastic modulus ( G ) are empirically 

defined as functions of pressure and temperature, as 

described in Refs. [19, 43].  

In the mixed lubrication regime, the asperity contact 

and hydrodynamic area can coexist. The friction 

coefficient in the contact area (boundary lubrication) 

is commonly considered as a constant to be determined 

experimentally. Therefore, the total friction is obtained 

through the integration of the shear stress covering 

the hydrodynamic area and contact area [19, 43]. As 

mentioned in Eq. (29), friction can be affected by 

temperature, whilst the temperature rise is caused by 

the generated friction heat. Consequently, it is necessary 

to take into account the mutual effects between the 

friction and flash temperature in the calculation of shear 

stress. The solution for flash temperature is based on 

the case of a moving heat source over a semi-infinite 

solid, and the detailed derivation can be found in  

Ref. [43]. 

 

 




  
  



   
        



1 b1
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(30) 

 
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  


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        


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f

x

T T

k q d
T T
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(31) 

where 
1

T  and 
2

T  denote the flash temperature for 

two mating surfaces, 
1

C  and 
2

C  are the specific heat of 

two bodies, 
1

k =
2

k  represents the thermal conductivity 

of the lubricant, and 
1

 and 
2
 are the density of 

pinion and gear materials.   sq V  represents the 

friction heat generated by the viscous force and asperity 

contact shear. 

4.2 Fatigue life model 

A famous RCF model for rolling element bearing was 

proposed by Lundberg and Palmgren [9] and then 

modified by Ioannides and Harris [11] and Zaretsky 

[12] for a wider application, such as spur gears and 

helical gears. In comparison with the Ioannides-Harris 

model, the Zaretsky model dropped the stress depth 

factor (first introduced in Ref. [9]) and the fatigue 

limit stress (first involved in Ref. [11]). In the present 

study, stress is obtained from the mixed EHL model  
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deterministically, therefore, the stress depth factor is 

no longer needed. Besides, the fatigue limit stress is 

difficult to be determined for engineering applications 

due to the lack of reliable experimental data [17]. 

Therefore, the Zaretsky model [12] is adopted in this 

study for the fatigue prediction of spiral bevel gears. 

The fatigue life is defined by the number of stress 

cycles M until pitting under a given probability of 

failure sP , as expressed by 

  ec
eff

s

1
ln de

V
M V

P
          (32) 

where the Weibull slope e and stress exponent c can be 

determined experimentally. V represents the material 

volume affected by effective stress 
eff

. The octahedral 

stress is used as the effective stress 
eff

, as given by 

      

  

     

    

2 2 2
eff

1
2 2 2 2

1
( ) ( ) ( )

3

6( ) ( , , ; , , )

x y y z z x

xy yz zx i x y z j x y z   (33) 

where 
i

 and 
ij

 are the normal and tangential 

components of the octahedral stress. The interior stress 

components are calculated based on the pressure 

distribution and friction shear stress obtained from 

the mixed EHL model (detailed derivations can be 

found in Ref. [45]). 

The number of stress cycles M of the RCF fatigue 

model is conventionally assumed to equal that of 

loading cycles or revolution cycles, rather than the 

number of the actual loading-unloading cycles at a 

certain point experienced by a series of micro asperities. 

The RCF fatigue model has been verified theoretically 

and experimentally in spur gears [17] and rolling 

element bearings [11] with insignificant sliding. However, 

as discussed, the actual stress cycles may be significantly 

enlarged due to the presence of sliding for transverse 

rough surfaces, i.e.,  M N n , where N is the number 

of revolutions or component loading cycles, and n is 

the number of asperity experience per revolution or 

loading cycle as derived in Eq. (17). Consequently, 1/n, 

as the reduction factor for the fatigue life M introduced 

by asperity cycle counting, is a function of velocity 

vectors, contact geometry, and asperity density of the 

mating surface in spiral bevel gears. 

5 Results and discussion 

5.1 TCA results under different misalignments 

In this study, a spiral bevel gear pair with 25–34 teeth 

is employed and its parameters and machining settings 

are summarized in Tables 1 and 2, respectively. As 

shown in Fig. 1, there are four types of misalignments, 

which can be denoted as H , J , E , and  .  Due 

to the assembling errors and the deflections of the 

support system, the position of the contact area on the 

tooth surface is different from the designed contact 

position in the actual operation. To ensure a better 

transmission under different working conditions, it is 

necessary to observe simultaneously the contact quality 

under the change of the relative positions of the two 

axes, so that the contact area is moved to the heel 

and toe of the tooth surface. In addition, the relative 

positions of the pinion and gear can also be affected 

by the angle between two axes, and the contact pattern 

needs to be tested under different angle errors during 

the machining process. Hence, four representative 

cases of displacement errors are shown in Table 3 and 

their corresponding contact trajectories, as obtained 

from the proposed method in Section 2, are plotted in 

Fig. 6. The contact geometry (expressed by curvatures 

zx
R  and 

zy
R  along the minor and major axis of the 

contact ellipse), velocity parameters, and contact loads 

are the main input data for the mixed EHL analysis [8]. 

As shown in Figs. 8 and 9, the varying assembling 

misalignments can significantly affect the meshing 

parameters, which may further influence the lubrication  

Table 1 Parameters of gear and pinion. 

 Pinion Gear 

Number of teeth 25 34 

Module 5.0 mm 

Tooth width 30 mm 

Average pressure angle 20° 

Mean spiral angle 35° 

Shaft angle 90° 

Face angle 39°38′ 56°00′ 

Pitch angle 36°20′ 53°40′ 

Root angle 34°00′ 50°22′ 

Outside diameter 133.29 mm 173.97 mm 

Hand of spiral Left Right 
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Table 2 Machining settings. 

Pinion 
 

Concave Convex 
Gear 

Mea cutter radius 146.07 mm 158.65 mm 165.00 mm 

Point width 2.79 mm 2.79 mm 2.79 mm 

Blade angle 18°00′ 22°00′ Concave: 18°05′
Convex: 21°55

Root angle 34°00′ 50°22′ 

Work head –2.09 mm 2.10 mm 0.00 

Sliding base 1.16 mm –1.18 mm 0.00 

Offset 1.99 mm –2.11 mm 0.00 

Cradle angle 124°10′ 124°57′ 16°19′ 

Eccentric angle 40°390′ 41°33′ 41°06′ 

Radial distance 77.21 mm 78.83 mm 78.01mm 

Ratio of roll 1.69 mm 1.68 mm 1.24 mm 

Table 3 Four representative misalignment combinations. 

 H  J  E    

Case (a) 1.35 mm 0.83 mm –1.63 mm 0 

Case (b) –0.30 mm –0.77 mm 0.86 mm 0 

Case (c) 0 0 0 –0.40°

Case (d) 0 0 0 0.40° 
 

performance and fatigue life. Note that the applied 

rotational speed and the torque acting on gear are 

100 r/min and 93.0 N·m, respectively.  

5.2 Fatigue life analysis 

As mentioned previously, the contact pressure and 

shear stress distribution from the mixed EHL analysis 

is the key to the fatigue life prediction. Taking the 

TCA results as the input, the lubrication performance 

is investigated for further fatigue life estimation, as 

shown in Fig. 10. The material properties of the pinion 

and gear are characterized by the effective elastic 

modulus ( E = 219.78 GPa) and hardness (7.0 GPa). A 

typical mineral lubricant is used with the dynamic 

viscosity 
0

= 0.09 Pa·s and viscosity–pressure 

coefficient  = 12.5 GPa−1. As depicted in Fig. 3, the 

grinded surface profiles in spiral bevel gears are 

measured by the optical profiler, and the roughness 

is 0.36 μm for the pinion and 0.41 μm for the gear 

flank, with a RMS roughness of 0.55 μm. After the 

sinusoidal approximation for the grinded roughness, 

the densities of roughness s1d  and s2d  are found to  

be 9.265 and 9.486 per millimeter, respectively. The 

 

Fig. 6 Contact trajectories under different error combinations. 
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Fig. 7 Radii of curvatures zxR  and zyR  along the minor and major 
axes of contact ellipse. 

 

Fig. 8 Entrainment velocity and sliding velocity in a mesh cycle. 

 

Fig. 9 Contact load and the maximum Hertzian pressure under 
different error combinations. 

 

Fig. 10 Methodology of fatigue prediction with microstress 
cycle. 

solution domain for the Reynolds equation are defined 

by  2 2X x a   and  2 2Y y a  , and the dimen-

sionless time step is given by   e(| | )/ 0.005.t aU   

A grid with 257 257  equally spaced nodes is used 

to discretize the solution domain, resulting in a 

dimensionless equal spacing of     0.015625X Y . 

The judgment for pressure convergence is set by  

    New Old New
p , , , 0.0001i j i j i jp p p . 

The normal micro-pressure distribution related to 

the subsurface stress is an important parameter in 

Zaretsky’s fatigue model [12], especially for the case 

of asperity contact. The pressure distributions for the 

no misalignment case at different meshing points 

are shown in Fig. 11. The top left corner of Fig. 11 

describes the pressure contour at the meshing-in 

position, in which the contact zone is of the shape of a 

circle due to the non-dimensionalization of the contact 

ellipse, and the pressure along X direction is shown 

in Fig. 11. It is obvious that the pressure and oil film 

distributions appear differently at different positions, 

and the pressure is relatively high with zero film 

thickness due to the asperity contact. According   

to Fig. 9, the maximum Hertzian pressure for the 

meshing-in point and the pinion angle of 0.084 rad are 

0.807 and 1.32 GPa, respectively, although the pressure 

peak of the former (3.5 GPa) is larger than that of the 

latter (1.86 GPa). This is because the difference in the 

contact position can result in 7 and 13 asperity contacts 

for meshing-in point and pinion angle of 0.084 rad, 

respectively. There are also 13 pressure peaks for  

the pinion angle of 0.31 rad (the meshing-out point). 

Obviously, smaller Hertzian contact pressure causes 

lower asperity pressure peak compared with that  

of the meshing-in point, as shown in Figs. 9 and 11. 

Hence, the mesh load, contact geometry, and asperity 

can all affect the pressure distributions, which may lead 

to the variations of subsurface stress and consequently, 

a significant influence on fatigue life. 

As manifested in Fig. 11, the pressure peaks resulted 

from the asperity contact are considerably higher than 

the maximum Hertzian pressure, whilst the micro 

pressure at the roughness valley is apparently low as 

compared to the pressure peaks. It is shown that the 

surface of the gear flank experiences the “loading- 

unloading” cycle under the rolling-sliding motion. 

This kind of cycle is used to define the fatigue life M 

as described in Eq. (32). As mentioned in Zaretsky’s 

model [12], the fatigue life is evaluated through the 

effective stress and the material volume affected by 

stress. For the rolling-sliding contact, both normal  
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contact pressure and friction shear, as obtained from 

the mixed EHL analysis for spiral bevel gears, contribute 

to the normal and tangential stress components, 
i
 

and 
ij

. The subsurface stress distributions at different 

meshing points for the case of no misalignment are 

plotted in Fig. 12 and the octahedral stresses along 

the centerline cross section is summarized (Z direction 

points to the body of the gear flank). It can be observed 

that the local high stress concentrations at meshing-in 

points are induced by pressure peaks caused by the 

asperities that move toward the surface of the gear 

flank, as compared to the stress distributions of smooth 

surfaces. If the machined surface is ideally smooth, 

the critical stress plane occurs beneath the surface and 

its stress experiences are equal to the macro-loading 

cycles. However, these discontinuous asperities result 

in high-low stress cycles in the contact zone under 

the sliding condition, which may lead to a reduction 

of fatigue life due to the increased number of asperity 

contacts as explained mathematically in Eq. (17). 

Additionally, with further meshing, the maximum 

stress decreases and occurs at the subsurface. 

For each transient meshing position, the stress 

distributions obtained from Eq. (33) are used in Eq. (32) 

 
Fig. 11 Pressure distributions at different meshing positions. 

 

Fig. 12 Subsurface stress distributions at different meshing positions. 
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for fatigue life analysis. If the failure probability, 

Weibull slope e, and stress exponent care determined, 

Eq. (32) can be solved to simulate the fatigue life at 

the number of cycles M before the fatigue failure. The 

fatigue life is estimated for a survival probability of 

50% with Weibull slope e = 2.0 and stress exponent  

c = 5.0. Note that the present study focuses on the 

comparative evaluation of fatigue life under assembling 

misalignments with the consideration of the stress cycles 

of asperity contact, and hence, the material parameters 

are considered irrelevant in this study.  

Considering the case of no misalignment, the fatigue 

life M is investigated for a gear pair during the meshing 

process with and without asperity stress cycles, and 

the results are plotted in Fig. 13. If the stress cycle is  

 

Fig. 13 Fatigue life during the meshing process for the case of 
no misalignment. 

not considered, the fatigue life is predicted by Eq. (32) 

through the integration of stress 
e

 and stressed 

volume V. Note that the stressed volume and high 

interior stress caused by roughness have been included 

on right side of Eq. (32). When the microstress cycle 

is counted, the actual stress cycle becomes  M N n . 

Consequently, the asperity stress cycle n would reduce 

the fatigue life time since  1N n M . As demon-

strated in Fig. 13, the fatigue life, without the stress cycle 

counting, generally increases from the meshing-in point 

to meshing-out point. It is worth noting that the 

Hertzian pressure was used as the equivalent stress 

criteria proposed by Ioannides and Harris [11]. The 

maximum Hertzian contact pressure at the meshing-in 

point is lower than that of the pinion angle of 0.028 

rad, as shown in Fig. 9, whereas their fatigue lives show 

a reverse trend. To investigate the mechanism behind 

this observation, the distributions of octahedral stress 

at these two points are summarized in Fig. 14. It is 

observed that higher Hertzian contact pressure leads 

to larger subsurface stress along Z direction as 

manifested in Fig. 14(d), whilst the surface stress peaks 

along X direction of the meshing-in point (pinion 

angle = 0.0 rad) caused by asperities are greater than 

those of the pinion angle of 0.028 rad as shown in 

Fig. 14(c). It can be concluded that surface stress 

 

Fig. 14 Octahedral stress at the pinion angle of 0.0 and 0.028 rad (no misalignment). 
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concentrations, resulted from asperity contact, have  

a significant effect on fatigue life, even when the 

corresponding subsurface stress is relatively small. 

Hence, under the considerable sliding contact with 

the rough surface, it seems unreasonable to take the 

maximum Hertzian contact pressure as the effective 

stress in the fatigue life model as done in Ref. [11]. 

The roughness effect on the reduction of fatigue 

life includes two physical mechanisms, one is the 

increased stress number due to the sliding motion  

of asperities, and the other is the high surface stress 

concentrations resulted from asperity contacts. As 

summarized in Fig. 13, the asperity contact leads  

to an obvious reduction in comparison with the case 

without the asperity stress counting, and the reductions 

of fatigue and the slide-roll ratio  1 2( 2| |/SRR u u  

1 2( ))u u  are depicted in Fig. 15. According to Eq. (17), 

the asperity stress cycle is related to the contact 

geometry (Hertzian contact ellipse) and sliding velocity. 

Except for the area near the meshing-in and meshing- 

out point, the trend of fatigue life reduction with the  

pinion angle is the same as that of the SRR, which 

indicates that the sliding velocity is the dominant 

factor of the fatigue reduction in this meshing range. 

 

Fig. 15 Variations of SRR and reduction of fatigue life in a mesh 
cycle. 

The surface fatigue failure and bending failure type 

in spiral bevel gears have been tested experimentally 

as reported in Refs. [35, 36]; however, there is no 

available data for the fatigue life in these studies. The 

experimental investigations on the fatigue life under 

the rolling-sliding contact can qualitatively support 

the mechanism of fatigue reduction in spiral bevel 

gears. Seo et al. [5] measured the fatigue life through 

two-steel discs experiments, and the results showed 

that the increase of the SRR, from 0.0% to 0.5% and 

1.5%, caused about 3 and 37 times of increase in the 

number of pitting occurrences on the contact surface, 

respectively. Similarly, Rabaso et al. [46] also found 

that the increase of the SRR from 6% to 20% and 40%, 

resulted in 2.8 and 3.2 times of enlargement in the 

surface pitting area, respectively. The abrasive wear 

appeared when the SRR reached 80%, which seemed 

to remove the pits [46]. Note that the slide-roll ratio for 

the spiral bevel and hypoid gears are generally less 

than 50% in this study and thus, the abrasive wear is 

not involved in the current fatigue model. The fatigue 

life reductions of steels under different SRRs were 

tested by Govindarajan and Gnanamoorthy [47] and 

Gao et al. [48]. Their experimental results are employed 

to verify the fatigue predictions (obtained from the 

present numerical model) in this study, as summarized 

in Table 4. For items B-1 and B-3, their maximum 

Hertzian contact pressure, RMS roughness, and 

SRR are very close to each other, and the fatigue life 

reduction for items B-1 and B-3 are observed to be 

68.95% and 69.06%, respectively. Items A-2 and A-3 

denote the meshing area near the pitch cone line 

where the SRRs are low (1.89% and 1.57%). Their 

corresponding fatigue life reductions are compared 

with experimental results in Ref. [47], in which item 

A-1 generally shows a good agreement. As manifested 

Table 4 Qualitative comparison between simulations and available experimental data in literature. 

Item  
number 

Experimental/simulation results ph 

(GPa) 
RMS roughness 

(μm)  
SRR(%) Reduction of 

fatigue (%)

A-1 Experimental results by Govindarajan and Gnanamoorthy [47] 1.00 0.438 0.1→1.40 24.45 

A-2 Present results, pinion angle 0.17 rad for no misalignment case 1.05 0.55 0.0→1.89 23.71 

A-3 Present results, pinion angle 0.19 rad for Case (c) 1.17 0.55 0.0→1.57 22.39 

B-1 Experimental results by Gao et al. [48] 1.20 0.546 0.0→22.0 68.95 

B-2 Present results, pinion angle 0.0 rad for no misalignment case 0.77 0.55 0.0→23.1 62.77 

B-3 Present results, pinion angle 0.0 rad for Case (d) 1.17 0.55 0.0→22.4 69.06 
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in Table 4, the numerical fatigue predictions are 

consistent with the experimental data from previous 

studies for similar operating conditions. 

As shown in Figs. 7–9, the contact load, contact 

geometry, and sliding velocity, which can affect 

fatigue life, are different under various assembling 

misalignments. Figure 16 demonstrates the fatigue 

life without the asperity stress cycle counting during 

a meshing cycle, and it can be seen that the fatigue 

life generally increases from the meshing-in point  

to meshing-out point. According to Fig. 6, the contact 

trajectories are different for different cases of assembling 

errors, i.e., the contact paths under Cases (a) and (d) 

are shifted to the heel of the gear flank, while the 

contact paths under Cases (b) and (c) are shifted to the 

toe of the gear flank, as compared to those of the no  

 

Fig. 16 Fatigue life under different cases of assembling misalign-
ments (without asperity stress cycle counting). 

misalignment condition. Hence, as revealed in Fig. 16, 

the contact paths near the toe of the gear flank can 

reduce the fatigue life. Figure 17 shows the fatigue life 

with the asperity stress cycle counting, and the trend 

of the results under various misalignments are similar 

to that in Fig. 16. As expected, the fatigue life in different 

cases is considerably decreased owing to the moving 

asperity stress cycles. In order to explain the difference 

in the fatigue life under four assembling errors, the 

octahedral stress distributions at the meshing-in point 

are plotted in Fig. 18 for Case (a), no misalignment case, 

and Case (b), which represent three types of contact 

trajectory. No significant difference is found between 

the maximum Hertzian contact pressure for these three 

cases at the meshing-in point, but the maximum 

octahedral stress peaks are significantly different due  

 

Fig. 17 Fatigue life under different cases of assembling misalign-
ments (with the asperity stress cycle counting). 

 

Fig. 18 Octahedral stress at the meshing-in point for Case (a), no misalignment, and Case (b).  
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to the variation in the number of asperity contact caused 

by the change of contact ellipse area. In general, 7, 5, 

and 9 asperity contact stress peaks are found for Case 

(a), no misalignment case, and Case (b), respectively. 

Therefore, as indicated by the contact geometry in Fig. 7, 

the elliptical contact area is small when the contact 

trajectory is near the toe of the gear flank, which results 

in high stress and a significant reduction of fatigue 

life. Note that long fatigue life is found under the 

contact path near the heel of the gear flank. However, 

this does not mean that the contact path should be used 

as a reasonable trajectory. If the predesigned path is 

the same with that of Case (a), the edge contact loss 

or teeth contact loss may occur when the contact path 

moves further to the heel of the gear flank due to the 

assembling errors deformations of supporting shaft, 

which can lead to serious edge damage or impact 

vibration.  

6 Conclusions 

In this study, a numerical model is established to predict 

the fatigue life of spiral bevel gears with grinding 

surfaces. The grinding surface roughness measured by 

the optical profiler is fitted by sinusoid-like profiles to 

derive the equation for asperity stress cycle counting, 

with the consideration of rolling-sliding contact and 

contact geometry in spiral bevel gears. TCA and mixed 

EHL model for spiral bevel gears, as developed in 

previous studies, are applied to obtain pressure, 

shear stress, and subsurface stress, which are the key 

parameters for bridging the mixed lubrication analysis 

with the fatigue life model. The fatigue life is simulated 

under different assembling misalignments using 

Zaretsky’s fatigue model and asperity stress cycle 

counting equation.  

Simulation results show that the contact pressure 

peaks decrease during the meshing process and similar 

trends can also be observed for the corresponding 

maximum octahedral stresses. Despite the small 

maximum Herztian contact pressure at the meshing-in 

point, the roughness asperity causes significant 

pressure peaks and stress concentrations, showing a 

significant effect on fatigue life and indicating that 

using the maximum Hertzian pressure as the effective 

stress is improper under significant roughness asperity 

contact. The fatigue life during the meshing process 

for both with and without asperity stress cycle counting, 

are compared and the results show that the fatigue life 

is reduced significantly by the rolling-sliding motion 

of asperity contact. In addition, based on the qualitative 

comparison in this study, a good agreement is shown 

between fatigue life reductions under different contact 

conditions and available experimental results. Finally, 

the fatigue life is predicted under various assembling 

misalignments, and relative low fatigue life is found 

when the contact trajectory shifts to the toe of the gear 

flank, due to high stress peaks caused by a small 

contact curvature radii.  
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