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Abstract: Adhesion is one of essences with respect to rubber friction because the magnitude of the friction force 

is closely related to the magnitude of adhesion on a real contact area. However, the real contact area during 

sliding depends on the state and history of the contact surface. Therefore, the friction force occasionally exhibits 

rate-, state-, and pressure dependency. In this study, to rationally describe friction and simulate boundary 

value problems, a rate-, state-, and pressure-dependent friction model based on the elastoplastic theory was 

formulated. First, the evolution law for the friction coefficient was prescribed. Next, a nonlinear sliding surface 

(frictional criterion) was adopted, and several other evolution laws for internal state variables were prescribed. 

Subsequently, the typical response characteristics of the proposed friction model were demonstrated, and its 

validity was verified by comparing the obtained results with those of experiments conducted considering the 

contact surface between a rough rubber hemisphere and smooth acrylic plate. 
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1  Introduction 

The interactions involving the frictional contact 

phenomena between solids constitute a fundamental 

topic in engineering and science. The prediction and 

control of friction at the maximum, minimum, and 

optimum levels are required for the design and 

maintenance of advanced equipment and structures. 

Under this background, considerable research efforts 

to understand and control friction have been made in 

various fields such as tribology, solid dynamics, and 

geophysics, in a wide range of scales ranging from 

the molecular level to that of a continental plate. 

Pioneering contributions such as those of Vinci L da, 

Amontons G D, and Coulomb C A indicate that 

frictional sliding has been focused on for a long time, 

however, several unexplained aspects remain even 

today. A likely reason for this is that the sliding 

friction phenomenon depends on the rate and state 

(or history) of the contact surface. In particular, when 

two solid bodies in contact slide slowly past each other, 

an intermittent vibration phenomenon might occur. 

Such rate-dependent frictional behaviors are referred 

to as stick-slip motions [1, 2], and they can impair 

the stability of machines and structures. Meanwhile, 

stick-slip motions are also strongly related to the 

occurrence mechanism of earthquakes [3]. 

Since the 1700s, a scalar quantity called the friction 

coefficient has been used as an engineering indicator 

for the sliding friction phenomenon. Despite being an 

empirical parameter, the friction coefficient is used in 

a wide range of fields. However, the friction coefficient 

is not a parameter in a strict sense, and it is well known 

that the rate- and state-dependency of the friction 

coefficient is quite complex [4−9]. For instance, when 

sliding between bodies commences, a high friction 

coefficient is first observed, termed the static friction. 

Next, the friction coefficient decreases and approaches  
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its lowest stationary value, which is called the kinetic 

friction. Thereafter, if the sliding stops for a while 

and restarts, the friction coefficient recovers, and a 

behavior similar to that pertaining to the initial sliding 

is reproduced. In addition, in general, the friction 

coefficient exhibits velocity-weakening or -strengthening 

behaviors. Therefore, as indicated by Oden and Martins 

[2], in the analysis of the rate-dependent frictional 

sliding, including stick-slip motion, instead of a friction 

model that is simple but deviates from experimental 

facts, a model that can appropriately describe the 

relationship between the friction force and sliding 

displacement is required, even if it is somewhat 

complex to use. 

The “state variable approach,” termed the Dieterich– 

Ruina friction (DRF) law [10−13], is an approach to 

model the complex friction phenomena described above. 

In this approach, the rate- and state-dependency are 

directly introduced into the friction model, and the 

internal state variables are introduced to express the 

dependency of the friction coefficient on the relative 

velocity and contact history. The DRF law was originally 

developed to describe the seismic dynamic process, and 

it has been used in the context of frictional contact of 

rock, as well as that of a wide range of materials such 

as steel, glass, plastic, and wood [14−16]. 

Different from the state variable approach, another 

modeling method, termed the rate form approach, 

which describes the sliding friction behavior in the 

same manner as in the elastoplastic constitutive model, 

considering the relationship between the frictional 

stress rate and sliding velocity, was proposed in the 

1980s. This approach, until recently, has been employed 

mainly in the domain of computational solid mechanics 

[17−19]. Since the implementation method of the 

frictional contact behavior as a constraint condition 

into the finite element method was established for 

such a friction model, it has generally been used in the 

analysis of frictional contact boundary value problems. 

Based on the approach of the elastoplastic theory, a 

rate- and state-dependent friction model, called the 

rate-dependent subloading-friction model (SF model) 

has been proposed [20−22]. According to this model, 

it is possible to express a smooth transition from the 

stick state to the sliding state. Further, by prescribing 

an evolution rule for isotropic hardening or softening 

of the sliding surface (frictional criterion), it is also 

possible to reasonably express the mutual transition 

of static-kinetic friction and velocity-weakening of 

the frictional resistance. Moreover, the anisotropic 

friction behavior can also be described using the SF 

model by introducing an orthotropic frictional criterion 

and rotational hardening [23]. 

Both the state variable approach and the rate form 

approach are based on the adhesive friction theory 

related to the real contact area, and they can describe 

the fundamental rate- and state-dependent behavior. 

However, in the case of a soft material such as rubber, 

because the ratio of the real contact area Ar to the 

apparent contact area Aa is relatively large, the pro-

portional relationship of rA W  (W: normal load) is 

no longer guaranteed in the high-contact pressure 

regime [24−29]. As the normal load increases, the 

distance between the real contact points decreases, and 

the mutual interference between the contact points 

slows down the increase in the real contact area, 

resulting in a rA A  [26, 27, 29]. Therefore, the friction 

coefficient decreases with increasing normal load 

(contact pressure). Thus, a friction model capable  

of describing these parameters and relationships is 

required, because the friction of soft materials exhibits 

not only rate- and state-dependency but also pressure 

dependency. 

In this study, we formulate a rate-, state- and 

pressure-dependent friction model based on the rate 

form approach, in which a pressure-dependent 

frictional criterion can easily be introduced. Further, 

we demonstrate the typical response characteristics 

of the proposed model for various frictional sliding 

behaviors, including stick-slip motion. Moreover, the 

validity of the proposed model is demonstrated by 

comparing the test results pertaining to sliding between 

a rough rubber plate and smooth acrylic plate to the 

analytical results. 

In this paper, superscripts e( )  and p( )  respectively 

denote elastic and plastic components, and the subscripts 

n
( )  and 

t
( )  respectively denote the normal and 

tangential components. 

2 Evolution law for real contact area 

In this section, we describe the evolution law for a real 

contact area, which is the basic concept for the elastop-

lastic formulation of the rate- and state-dependent 
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SF model.  

Coulomb’s frictional criterion (sliding surface in 

contact stress space) can be defined as follows 

   
t n

f f                (1) 

where   is the friction coefficient. 
n

f  and 
t

f  are the 

normal and tangential stress vectors, respectively. 

   denotes the magnitude. During sliding under the 

plastic-sliding velocity pv ,   varies, and the Eq. (1) 

must be satisfied. Hence, the consistency condition 

can be obtained as the material–time derivative of  

Eq. (1), as follows 

       
t n n

t f f n f              (2) 

where n and t are the unit outward-normal and 

tangential vectors on the apparent contact surface, 

respectively, and they are defined as   
n n
/n f f  and 

  
t t
/t f f . 

In the plastic-sliding state, the contact stress always 

lies on the sliding surface, thus, the consistency con-

dition refers to a condition between the contact stress 

rate and the variation in the internal state variables 

induced by the plastic-sliding velocity, and this 

condition must be satisfied. Because the friction 

coefficient can be regarded as a state variable, the 

evolution law of the friction coefficient has to be 

defined. In this study, we phenomenologically define 

the following evolution law for the friction coefficient 

[20−22]. 

    
 

      p

min max

1 1
( ) ( )v      (3) 

where, 
min

 and 
max

 are the minimum and maximum 

values of  .   is a parameter prescribing the 

characteristic length, and   is a parameter denoting 

a delay time. 

It is understood that the friction coefficient is a state 

variable that depends on the sliding velocity, time, 

and its own state. The first term in Eq. (3) contributes 

to the reduction of the static friction to the kinetic 

friction as softening behavior owing to the plastic 

sliding. The second term in Eq. (3) contributes to 

the recovery of the friction from kinetic friction to 

static friction as hardening behavior due to the  

creep deformation of asperities. These terms lead to a 

competition between the deterioration and formation 

of adhesions, inevitably leading towards the velocity- 

weakening of the friction coefficient. On the other 

hand, kinetic friction laws having a similar physical 

and mathematical nature as Eq. (3) were proposed by 

Ostermeyer [30].  

Meanwhile, based on the adhesive friction theory, 

the tangential stress vector can be defined as 

 
t a r

A Af               (4) 

where 
a

A  and 
r

A  are the apparent and real contact 

areas, where respectively.   is the shear strength of 

the adhesive part. If we define the ratio of the real 

contact area to the apparent contact area as 
r r a

/S A A , 

the Eq. (4) can be rewritten as     

      p

t r r s n
, ( , , )S S f tf f u      (5) 

where 
r

S  is regarded as a function of the normal 

stress 
n

f , the irreversible (plastic) sliding displacement 
pu , and the contact time t . 

The consistency condition can be obtained as the 

material–time derivative of Eq. (5), as follows 

t
  

   
  

  

      
   

pt r r r
t n p

t n

S S Sf
f f v

f f u
  (6) 

Regarding the second and third terms on the right- 

hand side of the Eq. (6), we adopt the same evolution 

law of Eq. (3), as follows 




  
  

r
r minp

1
( )

S
S S

u
          (7) 

t 


 


r
max r

1
( )

S
S S             (8) 

where, 
min

S  and 
max

S  are the minimum and maximum 

values of 
r

S . The Appendix contains the physical 

motivation of the derivations for Eqs. (3), (7) and (8). 

On the other hand, in general, the shear strength 

  is a function of the sliding velocity [31], as follows 

   ( )f v                (9) 

Thus, we can consider that the shear strength does 

not vary at a certain moment of constant sliding velocity, 

i.e., at v 0 .  
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3 Formulation of friction model 

In this section, we describe the formulation of the 

rate-, state-, and pressure-dependent SF model based 

on the concept of the evolution law described in 

Section 2.  

3.1 Decomposition of sliding velocity 

The sliding velocity v  between contact surfaces is 

additively decomposed into the normal component 

n
v  and the tangential component 

t
v , as follows 

 
n t

v v v                (10) 

where  

    
     

n

t n

( ) ( )

( )

v v n n n n v

v v v I n n v
          (11) 

I is the identity tensor. The symbol   denotes the 

tensor product. Based on the elastoplastic theory, v  

is assumed to be additively decomposed into the 

elastic-sliding velocity ev  and the plastic-sliding 

velocity pv , as follows [17−23, 32] 

     p p pe e e

n n t t
( ) ( )v v v v v v v        (12) 

First, consider that the elastic part can be defined 

using the hypo-elasticity property, as follows 

       


e e e

n t
, ( )f C v C n n I n n     (13) 

where eC  is the contact elastic tensor, and 
n

 and 


t
 respectively denote the contact elastic moduli in 

the normal and tangential directions to the apparent 

contact surface. These moduli are, at times, referred to 

as the penalty coefficients, because the sliding velocity 

is equivalent to the gap velocity in finite element 

analyses based on the penalty method [17−19]. The 

variable f  is the contact stress vector applied to a unit 

area of the apparent contact surface, and 


( )  denotes 

the co-rotational rate with objectivity.  

3.2 Normal-sliding and subloading-sliding surfaces 

Let Eq. (5) be assumed as one pertaining to an isotropic 

sliding surface considering the pressure dependency. 

Here, based on the concept of SF model within the 

framework of the unconventional elastoplastic theory, 

it is assumed that the interior of the sliding surface is 

not a purely elastic domain, and plastic sliding also 

occurs by the change in the contact stress inside the 

sliding surface [20−23, 32]. Thus, we call the Eq. (5) as 

the normal-sliding surface. 

Next, we introduce the subloading-sliding surface, 

which always passes through the contact stress f, and 

maintains a shape similar to that of the normal-sliding 

surface in the tangential stress plane (
t1

f , 
t2

f ), as 

shown in Fig. 1(a). The subloading-sliding surface can 

then be described as 

 
t r

R Sf                  (14) 

where  (0 1)R R  is called the normal-sliding ratio. 

R plays the role of a three-dimensional measure of the 

degree of approach to the normal-sliding state (R = 1) 

corresponding to a gross sliding state. Referring to 

Eq. (6), the material–time derivative of Eq. (14) can be 

written as 

t
   

  
    

 

   
   

pr r r
t nr p

n

S S S
R S R R Rt f f v

f u
   

(15) 

 

Fig. 1 Concept of subloading-friction model: (a) normal-sliding and subloading-sliding surfaces; and (b) evolution rule of normal-sliding 
ratio. 
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where the first term on the right side of Eq. (15) 

corresponds to a variation in the subloading-sliding 

surface resulting from microscopic sliding, the second 

term corresponds to the pressure dependency, the third 

term corresponds to the sliding-weakening (deterioration 

of the real contact area), and the fourth term corresponds 

to the recovery of the contact state (increase in the real 

contact area, due to creep). As described in Section 2, 

the velocity-weakening of the frictional resistance   

is naturally described by the competition between  

the third and fourth terms. Note that the velocity- 

strengthening can be described by separately con-

sidering the rate dependency of the shear strength  , 

as in Eq. (9).  

3.3 Evolution laws of internal state variables 

According to the progress of plastic sliding inside the 

normal-sliding surface, the normal-sliding ratio R 

gradually approaches 1. In other words, when the 

tangential stress increases under constant normal stress, 

the tangential stress increases almost elastically when 

the tangential stress is zero, and thereafter, it gradually 

increases to approach the normal-sliding surface but 

does not increase further after reaching the normal- 

sliding surface [20−23, 32]. Thus, the evolution law of 

the normal-sliding ratio can be defined as follows 

  pR U v                  (16) 

where the function U is the monotonically decreasing 

function fulfilling the following condition (Fig. 1(b)), 

i.e., 

  
  
  





for 0

0 for 1

0 for 1

R R

R R

R R

             (17) 

Regarding the pressure dependency, we adopt the 

following equation: 




  
r

r

n

S
S

f
               (18) 

Furthermore, for the third and fourth terms on the 

right-hand side of Eq. (15), we adopt Eqs. (7) and (8), 

respectively, which have already been derived 

previously. 

By substituting Eqs. (7), (8), (16), and (18) into Eq. (15), 

the consistency condition for the subloading-sliding 

surface can be obtained as follows 

  





    

 

 
   p p

t nr r r min

max r

1
( )

1
( )

U S R S R S S

R S S

t f v f v

 (19) 

3.4 Relationships of contact stress rate and sliding 

velocity 

We assume the following sliding-flow rule for the 

plastic-sliding velocity 

  pv t               (20) 

where  (> 0)  is the magnitude of the plastic-sliding 

velocity, and it is often termed as the plastic positive 

proportionality factor or the plastic multiplier [32]. Note 

that, in this study, the normal plastic-sliding velocity 

is not taken into account, i.e., p

n
v 0 .  

By substituting Eq. (20) into Eq. (19), the magnitude 

of the plastic-sliding velocity   can be obtained as 

 


 


   


 




t nr max r

r r min

1
( )

1
( )

R S R S S

U S R S S

t f f

      (21) 

Meanwhile, to derive the relationship between the 

contact stress rate and the sliding velocity, the plastic 

positive proportionality   must be expressed as a 

function of the sliding velocity v . The substitution of 

Eqs. (12) and (13) into Eq. (19) yields 

   

 
 

      

   

 

 

p p p

t t t r n n n r

p

r min max r

( ) ( )

1 1
( ) ( )

U S R S

R S S R S S

t v v v n v v

v
  

(22) 

which, using Eqs. (11) and (20), can be further 

rewritten as 

    

  
 

     

   

  


t r n r

r min max r

{( ) )}

1 1
( ) ( )

pU S R S

R S S R S S

t v v n v

 (23) 

The magnitude of the plastic-sliding velocity, 

expressed in terms of the sliding velocity, and denoted 

by   instead of  , can be obtained as follows:  
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   


  


    


  


n r t max r

t r r min

1
( ) ( )

1
( )

R S R S S

U S R S S

n t v

    (24) 

Thus, the sliding-flow rule in Eq. (20) can be written 

as 

   


  


    
 

  

n r t max r
p

t r r min

1
( ) ( )

1
( )

R S R S S

U S R S S

n t v

v t    (25) 

Figure 2 shows the schematic diagram of relations 

between the elastic stress increment edf  and the plastic 

relaxation stress increment pdf  during the hardening 

and softening processes. When the point “a” is a start 

point, the line “a-b-c” is a stress cycle during loading 

and unloading. Here,  

  p pe e e,d d d df C u f C u          (26) 

where du  and pdu  are the sliding increment and the 

plastic where sliding increment, respectively. Based on 

Eqs. (12) and (13), the contact stress increment df  is 

given by the sum of the elastic stress increment and 

the plastic relaxation stress increment. Thus, the for-

mulation of elastoplastic constitutive equation holds 

  ped d df f f               (27) 

Further, Eq. (27) is equivalent to the following equation, 

which is also given by Eqs. (12) and (13) 

 


pe( )f C v v               (28) 

Consequently, the contact stress rate can be obtained 

by substituting Eq. (25) into Eq. (28) and considering 

the relations of Eqs. (10) and (11), as follows 

 


ep cCf C v t             (29) 

where 

    

  


 
  

  

ep e t n r t t

t r r min

1
( )

R S

U S R S S

n t
C C t     (30) 

 


  





  

t max r
c

t r r min

1
( )

1
( )

S S

C

U S R S S

R
        (31) 

Here, if we ignore the rate dependency of the real 

contact area, Eq. (29) degenerates to the following 

equation 

    
 

        


e t n r t t

t r

  
R S

U S

n t
f C t v      (32) 

The loading criterion is given by 




  


  




p

p

: 0

: 0

v 0

v 0
           (33) 

where the judgement of whether the contact stress 

reaches the sliding surface is not required because 

the plastic-sliding velocity is induced continuously as 

the contact stress approaches the normal-sliding surface 

[20–23, 32].  

Figure 3 shows the schematic for a typical variation  

 

Fig. 2 Schematic diagram of the relation between the elastic stress increment edf  and the plastic relaxation stress increment pdf : 
(a) hardening process; and (b) softening process. 
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Fig. 3 Schematic response of rate-, state- and pressure-dependent 
SF model: (a) sub-sliding state (R < 1); (b) maximum friction 
state; (c) sliding-weakening state; (d) minimum friction state; and 
(e) unloading and subsequent holding state. 

of the tangential stress with sliding displacement 

during a sliding–holding–sliding state. Figure 3 also 

shows the relevant variations of the normal-sliding 

and subloading-sliding surface in the (
r

S , 
n

f ) plane. 

When we input a constant tangential sliding velocity 

under a constant normal stress, first, preliminary 

microscopic sliding occurs. In this (a) sub-sliding state 

(R < 1), the contact stress vector lies on the subloading- 

sliding surface. Further, the subloading-sliding surface 

expands and the normal-sliding surface shrinks owing 

to the occurrence of the plastic sliding. Hence, the 

system demonstrates a smooth transition from the stick 

to the sliding state. Subsequently, the contact stress 

reaches (b) the maximum friction state after going 

through the normal-sliding state (R = 1). Next, the 

contact stress demonstrates (c) the sliding-weakening 

(softening) state, while the normal-sliding and 

subloading-sliding surfaces overlap and shrink together 

towards (d) the minimum friction state. After reaching 

the kinetic friction value, the tangential stress is 

unloaded to zero. During the cessation of sliding ((e) 

holding state), the normal-sliding surface expands 

with the elapsed time while R = 0. Hence, if a sliding 

velocity is provided again, larger recovery of the static 

friction occurs for a longer holding time. 

3.5 Concrete functions 

As described above, we adopted Eqs. (7) and (8) to 

prescribe the evolution law of the real contact area. 

In the following section, we explain other concrete 

functions for evolution laws, which were applied to 

the numerical analysis performed in this study.  

We adopted the following function for the evolution 

law of the normal-sliding ratio: 

   
   

  
( ) cot

2
U R r R             (34) 

where r is a parameter, and its dimension is the 

reciprocal of length. The use of Eq. (34) leads to notable 

advantages in the numerical simulation [20−23, 32]: 

1) The realistic smooth transition from the stick to 

the sliding state, i.e., the preliminary microscopic 

sliding displacement, is rationally represented; 

2) The accumulation of sliding is described for the 

cyclic loading process, even for a low amplitude of 

the tangential contact stress 
t

f ; 

3) The contact stress is automatically attracted to 

the normal sliding-surface in the frictional loading 

process (i.e., if  1,R  then  0R ) (Fig. 1). This aspect 

leads to high efficiency, and robustness in the numerical 

analysis conducted in finite calculation steps. In addition, 

the return mapping method for integrating Eq. (29) 

in quickly and accurately is applicable [32]. 

The transition from the preliminary microscopic 

sliding to gross sliding is caused by the deformation 

of microscopic asperities and the non-uniform 

occurrence of slip on the apparent unit contact area 
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(from partial occurrence to total occurrence). Note that 

the parameter r is related to the characteristic length 

of preliminary microscopic sliding. Based on the 

tangential contact theory and the method of dimen-

sionality reduction (MDR) [33], it was demonstrated 

that the length of preliminary sliding is purely of 

contact mechanical nature and can be calculated exactly 

if the elastic properties and the shape of the contacting 

bodies are known, – without requiring any fitting 

parameters [34, 35]. Therefore, it is thought that the 

value of parameter r could be determined by referring 

to a series of works [34, 35]. 

Regarding the pressure dependency, we adopt 

the following simple function for the ratio of the real 

contact area to the apparent contact area Sr: 

    
r n

1 exp( )S b f             (35) 

where b is parameter, and its dimension is the reciprocal 

of stress. Then, 
r

S  in Eq. (18) can be obtained as 

    
r n

exp( )S b b f              (36) 

Meanwhile, referring to the results by Lorenz et al. 

[31], we adopt the following concrete function for 

the rate dependency of the shear strength   defined 

in Eq. (9). 

   
0

dc v               (37) 

where 
0

 is the value during quasistatic sliding. c 

and d are parameters. In the case that the influence 

of velocity strengthening is significant, the Eqs. (29) 

and (37) are simultaneously used in the numerical 

simulations. 

4 Numerical analysis 

This section describes the basic response of the rate-, 

state-, and pressure-dependent SF model, obtained by 

performing numerical experiments for the straight 

sliding phenomenon without a rigid-body rotation, 

i.e., 
 f f . By adopting a two-dimensional coordinate 

system, we have 

   
    
   

1 0
,

0 1
t n               (38) 

For all calculations, we adopted the following model 

parameters: 

  
n t

100 MPa/mm ,  11000 mmr  

and the other parameters were appropriately set 

according to the objective of the calculation. 

4.1 Rate dependency 

Figure 4 shows the response of the rate dependency 

of friction, in the analysis of which, we input various 

sliding velocity values 
t

v  under constant normal stress 

( 
n

0.3 MPaf ). The parameters were set as follows 

 110 MPab ,  0.0015c ,  0.4d ,  
0

0.1 MPa , 

  0.14 mm ,   2.5 s , 
min

0.5S , 
max

1.0S  

Smooth transition from the static friction to kinetic 

friction was observed, as shown in Fig. 4. Further, 

the velocity-weakening and velocity-strengthening 

of friction in the lower and higher sliding velocity 

regimes could be described by the coupling of Eqs. (29) 

and (37). 

Figure 5 shows the effect of the preliminary 

microscopic sliding prior to macroscopic sliding on 

the accumulation of sliding; here, the parameters and 

normal stress were the same as those used to obtain 

the results shown in Fig. 4. We realized the cyclic 

pulsating tangential stress via sliding velocity control. 

First, we applied frictional loading by using the constant 

sliding velocity ( 
t

0.1 mm/sv ); next, unloading was 

performed when the prescribed tangential stress was 

attained. Subsequently, reloading was performed when 

the value of the tangential stress reached zero. The 

above series of sliding velocity control was repeated. 

We set three levels of amplitude of the tangential 

stress, specifically, 
t max
/ ( )f S = 0.6, 0.7, and 0.8    

(Eq. (14)). Figure 5 suggests that the accumulation of 

the sliding displacement under the cyclic frictional 

loading below the normal-sliding surface was repre-

sented appropriately by the proposed model, even 

though it could not be predicted by using the conven-

tional friction model ( r ) [20, 21, 32]. Furthermore, 

the calculations indicate that the sliding accumulates 

according to the amplitude of tangential stress. After 

several cyclic loadings, because the normal-sliding 
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Fig. 4 Typical response of rate-dependent friction: (a) variation 
of tangential stress with sliding in the case of velocity-weakening; 
(b) variation of tangential stress with sliding in the case of velocity- 
strengthening; (c) relationship between steady state ratio of traction 
(friction coefficient) and sliding velocity. Here, the constant normal 
stress is set as fn = 0.3 MPa. 

 

Fig. 5 Typical response for the cyclic frictional behavior under 
a small amplitude of the tangential stress. Here, the cyclic pulsating 
tangential stress is applied via sliding velocity control under a 
constant normal stress fn = 0.3 MPa. 

surface shrinks owing to the occurrence of plastic 

sliding, gross sliding eventually occurs. Note that the 

above cyclic behavior includes the influence of the 

rate dependency, as shown in Fig. 4. 

Here, practically, the preliminary microscopic sliding 

up to the gross sliding depends on the normal load. 

That is, the length of microscopic sliding increases with 

normal load [34]. The proposed friction model can also 

consider this effect. 

4.2 Pressure dependency  

Figure 6 shows the numerical results of the pressure 

dependency. In the calculation, we changed the normal 

stress for the sliding displacement, as shown in Fig. 6(a), 

while the sliding velocity remained constant at 

 1.0 mm/s
t

v . In this case, the parameters were the 

same as those used to obtain the results shown in Fig. 4; 

however, to clearly observe the tendency of the pressure 

dependence, the rate dependence was ignored (i.e., 

c = 0,   ,    ). Further, we set three different 

values for the parameter b defined in Eq. (35). As can 

be seen from Fig. 6(b), even when the normal stress 

changed during sliding, the variation of the tangential 

stress could be analyzed, accompanying the change in 

the normal stress. In addition, because the nonlinear 

sliding surface defined using Eqs. (14) and (35) was 

adopted, the increase in the tangential stress reduced 

with the linear increase in the normal stress between 

points B and C. Here, the degree of nonlinearity could 

be controlled using parameter b. 

As indicated by the dashed lines in Fig. 6(a), we 

conducted analyses in which the degree of increase in 

the normal stress between points B and C was changed. 

The relationships between the traction ratio 
t n

/f f   

in the steady state (between points C and D) and 

normal stress are shown in Fig. 6(c). For this analysis, 

plots were evaluated considering the average values 

of contact stresses during sliding displacements of 

0.3–0.4 mm under steady state conditions. As can be 

seen from Fig. 6(c), the traction ratio (friction coefficient) 

decreased with increase in the normal stress, reflecting 

the gradual reduction and saturation of the increase 

in the real contact area; this indicates that it was 

possible to represent the typical pressure dependence 

of the friction coefficient [29].  

Figure 7 shows the response of the pressure  
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Fig. 6 Typical response of pressure-dependent friction without 
rate dependency, in the case in which the sliding velocity 

tv  is 
1.0 mm/s: (a) an input condition of normal stress, wherein the 
steady state value is n 0.5 MPaf  ; (b) variation of tangential stress 
with sliding under the input condition (a), in which the parameter b 
was set to have three values; (c) relationship between the traction 
ratio (friction coefficient) in steady state and the normal stress. 

dependency when considering the rate dependency. 

In the calculation, we changed the normal stress for 

the sliding displacement, as shown in Fig. 6(a), while 

several levels of the sliding velocity were set. In this 

case, the parameters were the same as those used to 

obtain the results shown in Fig. 3. As shown in Fig. 7(a), 

when the rate dependency was considered, sliding- 

weakening was noted to occur between points A and 

B; however, thereafter, the tangential stress increased 

owing to increase in the normal stress between points 

B and C. However, the degree of increase in the 

tangential stress was minor compared to that when 

the rate dependency was ignored, because a com-

petition with the effect of sliding-weakening existed.  

 

Fig. 7 Typical response of pressure-dependent friction with rate 
dependency, for b=10 MPa-1: (a) variation of tangential stress 
with sliding under the input condition of Fig. 6(a), in which the 
sliding velocity tv  is 1.0 mm/s; (b) rate- and pressure dependency 
of friction coefficient under the velocity-weakening regime;  
(c) rate- and pressure dependency of friction coefficient under the 
velocity-strengthening regime. 

Subsequently, further sliding-weakening occurred 

in the steady state (points C–D). Figures 7(b) and 7(c) 

respectively indicate the relationship between the 

traction ratio and normal stress in the steady state 

for cases in which velocity-weakening and velocity- 

strengthening occurred. As can be verified from the 

results shown in the figures, both the rate dependency 

and pressure dependency of the frictional resistance 

could be expressed using only the combination of 

Eqs. (29) and (37). 

4.3 Application to stick-slip motion 

The stick-slip motion is a typical rate- and state- 

dependent behavior in the frictional system. To 
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demonstrate the applicability of the proposed model 

for the analysis of stick-slip motion, we performed  

a numerical analysis using a one-degree-of-freedom 

system [4, 21], as shown in Fig. 8.  

When a driver applies the prescribed constant 

driving velocity V at the spring-end, the slider slides, 

and the corresponding spring elongation is defined by  

the equation   t t
dt dtV vU u . Thus, the equation  

of motion can be described as 

  
a t

( )Ma K U u A f             (39) 

where M is the mass of the slider, K is the spring 

stiffness, Aa is the apparent contact area, and a  and 

u  are respectively the acceleration and displacement 

of the slider, which represent relative values with 

respect to the fixed base. For simplicity, we ignored the 

damping effect. The tangential stress 
t

f  was estimated 

using Eqs. (29) and (37). In this study, we solved Eq. (39) 

based on the Newmark-   method [21, 22]. 

For the calculation, we set the parameters of the 

dynamic system and the shear strength as follows, 

considering the values presented in previous studies 

[4, 21, 22, 29]: 

 40 N/mmK ,  0.01 mm/sV ,  3 kgM ,  

 2

a
100 mmA ,  

0
0.1 MPa  

To examine the effect of the rate dependency of the 

shear strength  , we set four different values for c 

(MPa/mm−d) in Eq. (37), and the other parameters for 

the friction model were set as the same as those used 

to obtain the results shown in Fig. 4. 

Figure 9 shows the variations of the spring force 

with the elapsed time. It is indicated that even if a 

harmonic vibration is not assumed as an input value, 

the typical stick-slip motion under a constant driving 

velocity can be reproduced. Further, in the case in which 

the velocity-weakening is dominant, corresponding 

 

Fig. 8 One-degree-of-freedom spring–mass system. Reproduced 
with permissions from Refs. [4, 21]. Copyrights Nature, 1994, and 
Elsevier, 2010. 

 

Fig. 9 Variations of spring force with elapsed time for various 
rate-dependencies of shear strength  . 

to lower values of c, clear stick-slip fluctuation can be 

observed. The amplitude and period of the stick-slip 

motion reduce with increase in the value of c. 

However, if the value of c is extremely large, the rate 

dependency shifts to the velocity-strengthening regime, 

and stick-slip no longer occurs. Furthermore, as shown 

in Figs. 6 and 7, the effects of not only the rate- and 

state-dependency, but also the pressure dependency 

on the stick-slip motion can be examined by using 

the proposed model. By considering the pressure 

dependency, the difference in the behavior from that 

observed when using a linear sliding surface such as a 

Coulomb type surface, in a higher pressure regime, 

might be analyzed.  

The above results demonstrate that the proposed 

friction model can describe various frictional behaviors 

via the unified form, and it can be applied to boundary 

value problems. Note that the form of Eq. (29) can be 

directly applied to the finite element method as a con-

straint condition due to the frictional contact [22, 23]. 

5 Comparison of numerical analysis 

results with friction test results 

This section discusses the validation of the rate-, state- 

and pressure-dependent SF model for rubber friction 

by comparing the obtained results with results of 

experiments performed under a prescribed sliding 

velocity and normal load. In particular, we focused on 

the pressure dependency of rubber friction.  

5.1 Outline of friction test 

Figure 10 shows a schematic of the experimental 

apparatus used in this study. The apparatus employs  
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Fig. 10 Schematic of experimental apparatus. The radius of 
the PDMS hemispheres is 10 mm; specimens with two types of 
different surface roughnesses are prepared; i.e., for specimens I 
and II, the Ra values are 2.11 and 4.95 μm, respectively. 

the contact between a rough rubber hemisphere made 

of cross-linked polydimethylsiloxane (PDMS) and a 

smooth plate made of polymethylmethacrylate (PMMA). 

The PDMS hemisphere is fixed to a rigid base via  

a three-directional dynamometer and Z-directional 

motorized stage. Meanwhile, the PMMA plate is fixed 

to the rigid base via a motorized X-directional stage.  

Cross-linked PDMS (Dow Corning’s SYLPOT 184) 

was used to create the rubber specimens. First, a 

mixture comprising a base prepolymer and cross-linker 

agent with a compounding ratio of 10:1 was poured 

into a hemispherical steel mold. Next, the mold was 

heated at a temperature of 120 °C for 30 min to cure 

the PDMS mixture. Subsequently, the mold was 

allowed to cool naturally at room temperature, and 

after a sufficient duration, the PDMS hemisphere was 

removed from the mold. Finally, the convex surface 

of the PDMS hemisphere was polished using sandpaper 

to introduce surface roughness. Two types of PDMS 

hemispheres with different surface roughnesses were 

prepared; i.e., for specimens I and II, the Ra values 

were 2.11 and 4.95 μm, respectively.  

The test specimens were washed using ethanol 

before rubbing. Subsequently, the PDMS hemisphere 

was pressed to the PMMA plate using the Z-directional 

stage. After allowing sufficient resting to ignore the 

increase in the real contact area with the contact 

time [14, 35], the PMMA plate was driven using the 

X-directional stage at the prescribed speed. During 

the sliding motion, temporal changes in the normal 

load W and tangential load Fx acting on the contact 

surface were recorded using the three-directional 

dynamometer at a sampling rate of 10 kHz. 

5.2 Comparison 

In the comparison of the experimental and analytical 

results, the stiffness of the experimental system, 

including that of the rubber, was ignored. We com-

pared the coupling response of Eqs. (29) and (37) with 

the tangential load Fx, which is regarded as the 

friction force. In addition, the apparent contact area 

was assumed to be constant during sliding, and it was 

derived from Hertz’s contact theory. Using the JKR 

test, Young’s modulus of the PDMS hemisphere was 

estimated to be 1.2 MPa [36, 37], and Poisson’s ratio 

was assumed to be 0.5 [38]. Note that the distribution 

of the normal stress on the contact surface was also 

ignored, and we adopted average values of contact 

pressure according to the normal load W. 

The model parameters were appropriately fitted to 

reproduce all experimental results by one parameter 

set. As an exception, to reflect the influence of the 

surface roughness, the parameter b defined in Eq. (35) 

representing the pressure dependency was set to be 7 

and 11 MPa−1 for specimens I and II, respectively. For 

all calculations, the following model parameters were 

adopted: 

  
n t

100 MPa/mm ,  11,000 mmr , 

 0.0065c ,  0.27d ,  
0

0.06 MPa , 

  0.14 mm ,   2.5 s , 
min

1.0S , 
max

1.0S  

It should be noted that velocity-weakening does 

not occur when using this specific parameter set, as it 

was not observed in the conducted experiment. 

Figure 11 shows the variation of the friction force 

with the elapsed time under four levels of normal load, 

wherein the sliding velocity was 0.1 mm/s. As an 

example, the result for specimen I was shown. The 

figure confirms that the experimental results for various 

levels of normal load were simulated well by the 

proposed model. However, the increasing behavior 

of the friction force at the beginning of sliding was 

not in agreement because the stiffness and freedom  
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Fig. 11 Comparison of friction force vs. sliding displacement 
between the proposed model and experiment. The sliding velocity 
(driving speed of the PMMA plate) is 0.1 mm/s, and roughness of 
the rubber specimen Ra = 2.11 μm. 

of rubber were not considered in the numerical 

simulation. Here, the crucial importance of considering 

the contact stiffness to obtain an agreement between 

theoretical and experimental results was already noted 

by Teidelt [34]. Therefore, by implementing the friction 

model in an equation of motion or a finite element 

analysis model, the influences of the contact stiffness 

and freedom of system, Mindlin slip, and the dis-

tribution of normal stress can be analyzed. 

Next, we verified the applicability of the proposed 

model to evaluate both the rate dependency and 

pressure dependency. Figure 12 shows the pressure 

dependency of the traction ratio in the steady state 

under three levels of sliding velocity. The abscissa of 

the graphs denotes the prescribed normal load W.   

It is seen that the traction ratio obtained using the 

experiment decreases with increase in the normal load 

and exhibits typical pressure dependency. In addition, 

the degree of pressure dependency varies with the 

surface roughness, reflecting the dullness and saturation 

of the increase in the real contact area. Furthermore, 

the traction ratio increases with increase in the sliding 

velocity and demonstrates velocity strengthening. 

As shown in the figures, and by comparing the 

experimental results under the considered conditions 

with the analytical results, the quantitative predictability 

of the proposed model was verified. 

6 Conclusions 

In this study, to establish a friction model that could 

easily be implemented into various numerical simulation  

 

Fig. 12 Comparison of pressure-dependencies of traction ratio 
for two types of surface roughnesses. The traction ratios are 
evaluated by averaging the values in the steady sliding state. The 
prescribed sliding velocity (driving speed of the PMMA plate) is 
set to be 0.1, 1.0, and 10.0 mm/s. (a) and (b) show the results for 
specimens I and II, respectively. The closed and open circles show 
the results of the experiment and friction model, respectively. 

methods, such as the finite element method, as a 

constraint condition, we formulated a rate-, state- and 

pressure-dependent SF model based on the elastoplastic 

theory.  

First, we phenomenologically derived the evolution 

law of friction coefficient (real contact area) based 

on the consistency condition. Then, we formulated 

the friction model by introducing a nonlinear sliding 

surface. Subsequently, we demonstrated the typical 

response characteristics of the proposed model for 

various frictional sliding behaviors, including stick-slip 

motion. Furthermore, the validity of the proposed model 

was demonstrating by comparing the analytical results 

with results for a rubbing test between a rough rubber 

hemisphere and a smooth acrylic plate.  

A limitation of the study is that we focused only on 

the frictional sliding caused by adhesion of the real 

contact area. It is widely known that the hysteresis 

friction owing to the viscoelastic property of rubber 

is also another critical aspect affecting the friction 

force. The effectiveness of the proposed model for the 

case in which both the adhesion friction and hysteresis 
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friction are generated must thus be examined in the 

future. In such a case, the hysteresis friction could be 

separately simulated using different frameworks, such 

as the finite element method and the method of 

dimensionality reduction [33]. 

Appendix 

This appendix provides a detailed derivation of the 

evolution rule of the friction coefficient. 

Assuming   
t t

f t f  and   
n n

f n f , the consistency 

condition in Eq. (6) can be rewritten as follows 

t
  

  
  

 
   

   
pr r r

t n p
n

S S S
f f v

f u
     (40) 

In case in which friction obeys Coulomb’s frictional 

condition, the relation of   
r n

S f  holds true. Hence,  

t
  

 
  


   

 
pr r

t n p

S S
f af v

u
       (41) 

where a is a proportionality factor. Moreover, by 

differentiating Eq. (1) and considering the relationship 

defined in Eq. (4), the following equation holds 

 



  
   

 t n t n

n n n

f f f af

f f f
           (42) 

By substituting Eq. (42) into Eq. (41), we can obtain 

the following relation: 

t

 
 

 


  
 

pr r
p

n n

S S

f f
v

u
        (43) 

It is thought that the real contact area decreases with 

the progression of plastic sliding. Thus, we assume that 

the following relation exists between 
r

S  and  pu  


       
   

 p

r min
exp 1S S

u
        (44) 

Subsequently, Eq. (7) was derived. Here,   is a para-

meter prescribing a characteristic length, i.e., 

    p r

min

1
1

S

S e
u           (45) 

Furthermore, based on the creep theory, we assume 

that the following relation exists between 
r

S  and t ,  

t


  

    
  

r max
1 expS S           (46) 

Subsequently, Eq. (8) was derived. Here,   is a para-

meter prescribing a delay time, i.e., 

t    r

max

1
1

S

S e
            (47) 

By substituting Eqs. (7) and (8) into Eq. (43), we can 

obtain the following equation: 

 
 

      p

r min max r

n n

1 1
( ) ( )S S S S

f f
v    (48) 

By considering the relations defined in Eqs. (1) and 

(4) for Eq. (48), we can finally obtain the evolution 

law of the friction coefficient as Eq. (3). 

Note that just as evolution laws and concrete 

functions of elastoplastic constitutive equations change 

depending on a target material, we believe that those 

in a friction model may also change according to the 

material characteristics and combination of the contact 

bodies. For instance, we assumed that the creep has 

exponential characteristics (Eq. (46)), whereas in reality 

it often has logarithmic characteristics. Hence, one can 

newly propose and/or refine concrete functions, and 

can formulate a rate- and state-dependent friction 

model based on the same framework proposed in 

this study. 
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