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Abstract: Friction is widespread in almost every field in the oil and gas industry, and it is accompanied by huge 

energy losses and potential safety hazards. To deal with a series of questions in this regard, biomimetic surfaces 

have been developed over the past decades to significantly reduce economic losses. Presently, biomimetic 

surface engineering on different scales has been successfully introduced into related fields of the oil and gas 

industry, such as drill bits and the inner surfaces of pipes. In this review, we focused on the most recent and 

promising efforts reported toward the application of a biomimetic surface in oil and gas fields, indicating the 

necessity and importance of establishing this disciplinary study. Regarding the oil and gas industry, we mainly 

analyzed and summarized some important research results into the following three aspects: (i) applications in 

reducing the wear of exploration production equipment and its components, (ii) separation and drag release 

technologies in oil/gas storage and transportation, and (iii) functional coatings used in oil and gas development 

in oceans and polar regions. Finally, based on an in-depth analysis of the development of biomimetic surface 

engineering in the fields of oil and gas, some conclusions and perspectives are also discussed. It is expected that 

biomimetic surface engineering can be used in oil and gas fields more widely and systematically, providing 

important contributions to green development in the near future. 
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1  Introduction 

The direction of biological evolution is a result of 

the natural selection of the environment. Organisms 

have evolved over millions of years, creating their 

own unique structures and functions. In addition, 

the process of humans learning from nature is also 

gradually transforming from unconsciousness to con-

sciousness. Friction widely exists in the oil and gas 

fields, including the internal parts of the oil field 

equipment and the external working environment. 

Furthermore, large amounts of wear, corrosion, and 

energy consumption also pose a significant resistance 

to sustainable development. The field of bionics is a 

combination of both biological sciences and technical 

sciences, whereas biomimetic tribology is an intersection 

of two disciplines, tribology, and bionics [1]. To date, 

the application of bio-tribology, which plays a significant 

role in all aspects of industry, has already achieved 

some progress in drilling, pipe transportation, and other 

fields (see Table 1). Giving full play to the advantages 

of biomimetic tribology, the development of modern 

tribology theory is expected to be promoted. This can 

not only break through the related technical problems, 

it can also have an important impact on innovation 

and the development of the oil and gas industry, 

and it is also beneficial for the green development of 

energy conservation and a reduction of emissions. 
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2 Application in drilling and production 

When most oil/gas exploration equipment is in 

operation, its working contact surface is under extreme 

conditions, including a heavy load and high intensity, 

for extremely long periods of time. However, with 

the deepening research into biomimetic tribology and 

its application, significant progress has been made in 

improving the performance of equipment components 

(mainly wear resistance) in recent years, which has 

provided a new method to prolong the service life of 

the equipment and enhance its reliability with an 

improvement in system safety [35]. Biomimetic surface 

engineering is mainly used in the drilling process 

through surface treatment technology applied to 

strengthen the service performance of the contact 

surface of the equipment under harsh working 

conditions. Moreover, owing to the application of 

biomimetic surface engineering, various results have 

been achieved in oil/gas exploration equipment (i.e., 

bits, drilling tools, and pistons). 

2.1 Bionic bits 

The bit performance is critical to the mechanical 

drilling rate and service life. Presently, polycrystalline 

diamond compact (PDC) bits are widely used owing 

to their excellent cutting performance and service  

life. However, numerous studies have revealed the 

disadvantages of conventional PDC drill bits, such as 

an insufficient bonding force between the diamond 

and cemented carbide, an unobvious anti-sticking 

effect, and rapid wear [36]. Thus, Jilin University in 

China has developed new types of drill bits from    

a bionics perspective. For instance, Ren’s research 

team has committed to improving the comprehensive 

performance of bionic bits, such as the cutting force, 

anti-adhesion, and wear resistance. They have already 

carried out in-depth research into the design of bionic 

drill bits [2, 4], the rock fragmentation mechanism [3], 

the wear behavior and mechanism under different 

scales [37, 38], the coating materials [39], and the 

anti-erosion performance of a bionic unit coating [40]. 

For example, in the design of a bionic claw toe diamond 

inlay design, the front paws of a pangolin have been 

referenced. As a result, the drilling speed and service 

life have been significantly improved. The experiment 

results show that the average drilling speed can be 

increased by 20%, and the operating life can be more 

than doubled when applying the same drilling speed. 

A bionic coupling PDC drill bit uses the distribution 

of cellulose and lignin found in bamboo as a reference, 

coupling the design according to the non-smooth shape 

of the shell surface, and other biological characteristics, 

as shown in Fig. 1. In addition, the field test results 

showed that the drilling speed can be increased by 

1.5-fold when compared with ordinary PDC bits,  

Table 1 Application of biomimetic surface engineering in oil and gas fields. 

Areas Applications Effects References Treatment methods 

Drilling tool  

Bits [2−4] 

Pipe joints [5] 

Expansion cones 

Improve wear resistance/service life 

[6] 

Underground 
technology 

Drilling fluid Reinforce the well wall [7−9] 

Piston/gear Reduce wear/increase lubrication [10−14] Ground 
equipment Brake Improve wear resistance/heat dissipation [15, 16] 

Macro-scale 
machining 

(laser engraving 
additive, etc.) 

Pipeline Drag release [17−19] 
Transportation 

Oil–water separation Improve efficiency [20−22] 

Anti-corrosion [23−26] 
Platform 

Anti-icing [26−28] 

Ship Drag release/anti-fouling [29−32] 

Ocean/polar 
platform 

Oil spills cleaning Collect oil [33, 34] 

Micro-scale  
coatings/films 

(physics 
chemistry, etc.) 

 



Friction 7(4): 289–306 (2019) 291 

∣www.Springer.com/journal/40544 | Friction 
 

http://friction.tsinghuajournals.com

 

Fig. 1 Bionic coupling PDC bit. 

greatly shortening the construction period [36]. 

2.2 Biomimetic drilling fluid 

Wellborn stability is a problem that has long plagued 

drilling both at home and abroad. It is worth noting 

that horizontal wellbore instability is a more serious 

problem than vertical wellbore instability [41]. To deal 

with this issue, Xuan et al. [7] designed a biomimetic 

drilling fluid system by imitating the super adhesion 

ability of marine mussel protein that can spontaneously 

solidify on the surface of the wellbore rock, forming a 

dense and adhesive biomimetic shell, thereby main-

taining the stability of the wellbore wall. Additionally, 

the biomimetic inhibitor has a good ability to inhibit 

the expansion, dispersion, and exfoliation of shale 

hydration, as well as effectively suppress the slurry 

production [42]. In addition, Zheng et al. [8] developed 

a biomimetic velvet pouch drilling fluid that mimics 

the structure of bacteria. It can temporarily stop the 

loss of a reservoir without a solid phase during the 

drilling process. Recently, biomimetic velvet pouch 

drilling fluid has played an important role in coal bed 

methane (CBM) underbalanced drilling, air drilling, 

leak-proof plugging, and rapid drilling. Furthermore, 

the performance of a mud shale biomimetic treatment 

liquid has shown that it can effectively reduce the 

surface energy of the shale surface, transforming the 

surface from hydrophilic to hydrophobic, preventing 

the mud shale from being self-absorbent, enhancing 

the strength of the shale in an aqueous solution, and 

thus maintaining the stability of the mud shale well 

wall. At the same time, the hydrophobic surface 

formed by biomimetic treatment liquid has displayed 

a certain wear resistance, an anti-salt characteristic, 

alkali resistance, and thermal stability. 

2.3 Biomimetic drilling tools 

A drill pipe is the core tool used in the process of 

geological drilling and oil extraction, connecting the 

ground and underground. During the drilling process, 

the tool joints apply a complicated force and the 

working environment is consistently harsh, making it 

easier to damage the drilling tools. Therefore, the wear 

resistance of the tool joints directly affects the service 

life. Furthermore, biomimetic surfaces have been 

optimized using a wear-resistance belt and threaded 

shoulder of the tool joint. Through a simulation analysis, 

it was concluded that the addition of a biomimetic 

surface is better than an untreated surface with the 

effects of a tensile force, bearing bending moment, and 

wear resistance of the tool joints. Gao et al. [5] also 

proposed the fabrication of non-smooth structures  

on the surface of the tool joints artificially to produce 

non-smooth wear characteristics, which can increase 

the service life of the drill pipe and greatly reduce 

the cost of the drilling. Figure 2 shows a biomimetic 

non-smooth surface expansion cone [6]. Moreover, 

during an expansion tube operation, the non-smooth 

surface reduces the frictional resistance between the 

expansion cone and the inner wall of the expansion 

tube, thereby improving the wear resistance of the 

expansion cone. 

2.4 Biomimetic pistons 

According to statistics, the energy consumption of a 

piston cylinder liner of a diesel generator set by the 

drilling rig accounts for approximately 50% of the 

friction loss of the entire diesel engine [43]. Again, 

the contact friction between the piston skirt and the 

cylinder sleeve, the poor heat dissipation, and the  

 

Fig. 2 Worn surface of expansion cone: (a) original and (b) 
biomimetic surfaces. Reproduced with permission from Ref. [6], 
© Trans Tech Publications 2014. 



292 Friction 7(4): 289–306 (2019) 

 | https://mc03.manuscriptcentral.com/friction 

 

high-temperature corrosion can make the piston 

extremely vulnerable to fatigue failure [44]. Wu and 

Xi [45] have conducted numerous studies and tests on 

the biomimetic piston used in an internal combustion 

engine. Based on the characteristics of the body surface 

of shellfish, they processed an optimized surface on the 

piston skirt of a piston-cylinder. In addition, their test 

results showed that a biomimetic piston is superior to 

an ordinary piston in terms of heat dissipation, friction 

reduction, and lubrication performance. Sun et al. [46] 

designed and manufactured concave-shaped bionic 

components on the surface of a mud pump piston. 

Under the same test conditions, it was found that the 

biomimetic mud pump piston significantly increases 

the service life by 2.19-fold. Interestingly, different 

biomimetic structures have also shown different 

improvements in their service life and dynamic seal 

capabilities. For example, the wear life of a bionic pit- 

shaped piston is better than that of a striped piston. 

2.5 Biomimetic brake blocks used in drilling draw 

works 

To improve the wear resistance and service life of 

gray cast iron brake discs for drilling draw works, 

Song et al. [47] applied the bionic coupling principle 

to the processing of non-smooth units such as dots, 

stripes, and grids on the surface of gray cast iron using 

a laser processing. Likewise, the friction and wear 

properties of different bionic units were investigated. 

The test results showed that a bionic coupling brake 

disc has a high friction coefficient and good wear 

resistance, and the service life is increased by more 

than 50%. Considering that the braking torque of a 

rig brake is much larger than that of an automobile, 

the braking effect, service life, and economic value 

require more support both theoretically and experi-

mentally. Biomimetic brake blocks applied to drilling 

draw works may be a good prospect. 

In conclusion, the synergistic mechanisms of a 

biomimetic surface during the application of drilling 

and production equipment can be summarized as 

follows. The bionic units on the surface produce a 

self-lubricating effect by storing abrasive debris or a 

lubricating fluid. In addition, the non-smooth surface 

blocks the continuity of the liquid layer on the surface, 

achieving a desorption effect. The expansion of the  

surface area improves the heat dissipation efficiency, 

and the biomimetic surface relies on a localized contact 

to achieve a uniform stress distribution. In short, during 

the process of oil and gas drilling and exploration, 

even when the operation condition of the oil equipment 

is extremely poor, the biomimetic surface at the 

macro-scale can exploit to the advantages of the wear 

resistance and drag reduction, and an unprecedented 

development in this field has been achieved. Although 

research into new materials is still important, the 

standardization and systematization of a biomimetic 

surface design and its application are critical to the 

subsequent development. 

3 Application in oil/gas storage and 

transportation 

Over the past few years, a biomimetic superhy-

drophobic surface has been extensively explored as a 

special state of surface infiltration, and this discovery 

has accelerated the research into the phenomenon of 

super-wetting found in nature. As a result, different 

types of super-soaking phenomena have been con-

tinuously developed and researched [48]. Thus far, 

super-infiltration systems have been formed, and 

the application of super-infiltration surfaces has also 

been gradually developed, as shown in Fig. 3. The 

composition and roughness of the surface are the two 

main factors influencing the surface performance. In 

general, there are two ways to prepare a superhydro-

phobic surface: one is the use of new low-surface-  

 

Fig. 3 Different models of super-infiltration surfaces. 
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energy materials with a rough surface, namely, 

hydrophilic materials, and the other is to modify 

existing low-surface-energy materials. Some common 

methods for fabricating superhydrophobic surfaces 

are briefly summarized in Table 2. Compared with 

the harsh friction contact that occurs during the drilling 

process, the working conditions in oil/gas storage 

and transportation are relatively mild, and thus more 

focus has been given to the functionality of a biomimetic 

surface. Table 2 summarizes the following aspects 

mentioned herein, including oil and water separation 

technology, pipeline resistance reduction, and corrosion 

protection technology. 

3.1 Oil–water separation 

With the exploitation of an oil field, the amount of 

water in some well fluids exceeds 95%. Therefore, 

higher requirements have been imposed on oil–water 

separation technologies. Oil–water separation can be 

divided into the processes of extracting oil from an 

oil and water mixture, and removing oil and other 

impurities from the oily wastewater [49]. Presently, 

oil–water separation systems are commonly used in 

the industry (particularly in offshore platforms). 

Nevertheless, for an improvement in oil–water 

separation technologies, as described below, many 

challenging issues still exist, such as a low separation  

efficiency, heavy oil extraction, down hole separation, 

and deep-water operation. Because membrane separa-

tion technology has the advantages of a low energy 

consumption, simple processing, less pollution, and 

strong versatility, the adoption of functional membranes 

instead of traditional separation membranes will be a 

future development trend. However, a super ultra 

filtration membrane is still at the laboratory research 

and development stage. Tao et al. [50] prepared a 

super-amphiphilic poly(vinylidene fluoride) (PVDF) 

membrane that achieves a switchable transport per-

formance, and the membrane displays a superior 

permeability as well as a high separation efficiency. 

They also fabricated a stable super-hydrophilic surface 

by inlaying TiO2 nanoparticles on a polylactide (PLA) 

ultra filtration membrane [51]. Meanwhile, the idea 

of using functional nanoparticles to construct a high- 

strength polymer membrane has been described. 

Subsequently, a novel and effective coated mesh for 

oil-water separation was fabricated, as shown in Fig. 4 

[52]. Zhang et al. are committed to the development of 

oil–water separation membranes, including amphiphilic 

poly(ether sulfone) membranes [53, 54] and gelatin- 

based aerogel [55]. In addition, a stimulus response 

membrane [56–59], an inorganic nanostructure 

superhydrophobic mesh membrane [60, 61], and a 

molecular brush structure super-hydrophilic membrane  

Table 2 Summary of common fabrication methods of superhydrophobic surfaces. 

Materials Methods (advantages & disadvantages) 

Organic 
substance 

Etching Widely used but some organics need to further reduce surface energy for the 
hydrophobic groups are destroyed 

 Electrostatic spraying Simple and applicable to many areas, the doping of nanoparticles or fibers effectively 
increases the hydrophobicity 

 Phase separation Easy to production, but difficult to control 

 Templating  Can be produced quickly and at low cost, but the preparation of large surfaces is  
too complicated 

Inorganic 
substance 

Sol-gel Can form transparent superhydrophobic surfaces and easily tuned, but poor 
controllability 

 Self-assembly Convenient and easy to product, but its durability is poor 

 Etching Widely used in surface processing 

 Layer-by-layer Can fabricate kinds of surface morphology, but time-consuming 

 Electrochemical Easy to control, process is safe but energy costs more  

Metal Corrosion Processing is convenient and easy, but may need follow-up process  

 Machining  Hard to form surface morphology once and requires other processing 

 Thin-film Can be applied in many ways 
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Fig. 4 Superoleophobic hydrogel-coated mesh for oil–water 
separation. (a) and (b): SEM images of PAM hydrogel-coated 
mesh, (c) and (d): process used in crude oil and water mixtures 
with hydrogel-coated mesh. Reproduced with permission from 
Ref. [52], © Wiley 2011. 

[62] have also led to the intelligent development of 

membrane technologies. However, to better transition 

from the experimental stage to the industrial application 

stage, the relationship between the separation flux 

efficiency [63], preparation cost [64], and service life 

[65], as well as the related evaluation methods and 

criteria, need to be studied further. 

3.2 Oil/gas pipeline transportation 

Over the past few years, drag reduction technologies 

used in pipelines in the long-distance transportation 

field have become the focus of active concern and 

exploration in related industries. If a biomimetic surface 

technology with a drag reduction can be applied to 

the inner layer of the oil transmission pipeline, the 

frequency of pigging that occurs in a closed pipe may 

be significantly reduced, and the material can also 

effectively reduce the fluid resistance, lowering the 

energy consumption of the pipeline. 

From the perspective of hydromechanics, most  

of the energy available in pipeline transportation is 

consumed owing to the frictional resistance with the 

inner wall, but the prospect of reducing the friction 

coefficient by reducing the roughness of the inner wall 

has been relatively low [66]. In this regard, biomimetic 

surface engineering has been well applied. For instance, 

a pipeline with a diameter of 6 mm and a wall 

thickness of 12 mm coated with a super-hydrophobic 

material achieves a drag reduction of 14% [67]. Choi 

et al. [68] applied a super-hydrophobic nanostructure 

surface to a pipeline and found that the pressure in 

the pipeline was reduced by 20%–30%. In addition, a 

super-hydrophobic surface composed of secondary 

micro/nanostructures achieves a better drag reduction 

effect than a primary structure surface. The drag 

reduction effect of a novel inner coating of a pipeline 

has been validated experimentally using air/gas, and 

the results showed that the drag release efficiency 

can achieve a spectacular 8% increase compared with 

the original coated pipe as a control, as shown in Fig. 5. 

In a follow-up study, it was found that the parallel 

stretched surface improves the drag reduction perfor-

mance to a small extent, and a perpendicular stretched 

surface expands the selection range of the flow rate as 

compared with the original biomimetic surface [69]. 

Although the micro/nanostructures of a biomimetic 

surface can achieve a good drag reduction effect, a 

proper understanding of the drag reduction mechanism 

has yet to be achieved. Several different explanations 

for the mechanism of a drag reduction have been 

proposed: 

A secondary vortex. The interaction between the 

groove tip and the fluid creates a secondary vortex 

 

Fig. 5 Inner coating of pipe and enlarged micro-morphology. Reproduced with permission from Ref. [70], © Elsevier 2015. 
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that rotates in the opposite direction of the radial vortex, 

impedes the formation of transverse corrugations 

perpendicular to the direction of the fluid flow, and 

successively reduces the lateral momentum exchange 

of the fluid from the perspectives of theory and 

experiment.  

A block lateral vortex. A radial vortex is in contact 

with the tip of the groove during an undershoot 

movement, and thus the transverse expansion of the 

vortex can be blocked by the groove structure, limiting 

its radial expansion and reducing the momentum in 

the turbulent boundary layer.  

The scales of the structures. The scales are mostly 

sand form a whole. The semi-enclosed space under a 

scale is good for drag reduction, namely, the fluid 

injected from the semi-closed space can reduce the 

distortion of the fluid pressure in the boundary layer, 

and the semi-closed space can accommodate horizontal 

flowing fluids, thus balancing the pressure difference 

only to the fluid injection. 

In addition, the anti-corrosive engineering of pipes 

has long plagued scholars and engineers because 

corrosion brings about huge economic and energy 

losses each year. Surface treatment using chromium 

compounds has become an effective way to achieve 

an anti-corrosion effect in industrial processes, but 

has had a negative impact on the environment. It is 

therefore worth mentioning that superhydrophobic 

coatings have been widely used on a variety of 

engineering material surfaces to improve the corrosion 

resistance. New materials and fabrication methods 

used for preparing anti-corrosion coatings develop 

from the epoxy resin to the nano-composite coatings. 

However, more energy needs to be devoted to the 

anti-corrosion effect and self-healing function of a 

surface with micro/nano-structure damage. 

Numerical simulation methods have been used to 

study the turbulent flow characteristics in superhy-

drophobic circular tubes. At different Reynolds 

numbers, different resistance characteristics are 

exhibited in a superhydrophobic circular tube [71]. 

The elbow is an integral part of the piping system, in 

which the erosion wear rate is 50-times higher than 

that of a straight pipe because of the thinning of  

the perforation. In this regard, Sun [72] designed 

biomimetic elbows based on shell ribs, and through 

numerical simulations, found that the low-velocity  

swirl area between the ribs acts as a buffer, lowering 

the impact velocity of the particles. At the same time, 

the change in the flow field caused by the ribs 

reduces the tendency of the particles to move toward 

the outside of the elbow, thereby reducing the chance 

of a collision of the particles with the wall surface. A 

bionic non-smooth interface has many broad application 

prospects in terms of pipeline drag reduction, although 

under different conditions such as the internal transport 

of multiphase media, the combination of a corrosion 

coating and biomimetic drag reduction interface  

are also extremely important regarding the lifetime 

prediction. 

A biomimetic surface can improve the efficiency of 

the oil–water separation and the transportation drag- 

reduction technology to a certain extent. However,  

a method to allow a biomimetic surface to operate 

stably for a long period of time and be prepared at a 

large-scale and low cost, and to allow the corre-

sponding bionic surface to be reasonably selected 

according to the corresponding working conditions, 

is needed to ensure satisfactory results in practical 

engineering applications. 

4 Application in ocean and polar develop-

ment 

The marine industries have become an important 

pillar in global economic development. An offshore 

platform is an important aspect in the development 

of oil and gas resources, and marine transportation 

has become an emerging force for the transfer resources. 

At this stage, all offshore oil and gas fields that have 

been put into use or are ready for development 

around the world are still dominated by shallow seas, 

and as the level of oil exploration increases, industry 

is gradually moving toward the deep sea. However, 

the influence of seawater resistance and marine 

corrosion causes large-scale damage and scrapping of 

various facilities and industrial equipment, resulting 

in significant energy consumption and economic losses. 

It is therefore becoming increasingly important to 

reduce the seawater resistance and control the corrosion 

damage of the equipment.  

Similar to the oil/gas storage and transportation 

applications mentioned in the previous section, most 

friction surfaces have solid–liquid contact. Therefore, 
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biomimetic surface technology has been successfully 

applied to reduce the resistance and corrosion in 

ocean waters. The preparation method [73, 74] and 

evaluation [75, 76] of a super-hydrophobic surface 

with an anti-corrosion performance have become 

popular research areas [77]. 

4.1 Drag reduction of riser 

The riser system is the only channel that connects 

the blow-out preventer (BOP) and offshore drilling 

platform, and its length has continued to increase with 

the development of deep-sea exploitation. Corres-

pondingly, the area acting on the surface of the riser 

also increases when the ocean current flows through 

the riser. In addition, vortex-induced vibrations caused 

by the flow resistance and lift force under such a large 

length have an increasing impact on the safety and 

reliability of the riser. Thus, the resulting tension has 

also placed higher demand on the performance of the 

tensioner and the strength of the riser joint. Through 

numerical simulations and an experimental analysis, 

it has been concluded that the biomimetic surface 

displays a better resistance to a drag reduction than a 

smooth surface. In trough and pit type surface models, 

the drag and lift coefficients have decreased by 16% 

and 6%, respectively [78]. In addition, the resistance 

also shows a decreasing tendency prior to the increase 

in the depth of the bionic unit. Moreover, the application 

of a biomimetic surface structure applied in the 

drag-reduction technology of the riser has also provided 

another idea for the stable placement of large-scale 

subsea equipment such as subsea pipelines. 

4.2 Ocean transportation 

In recent years, marine oil ship, liquefied natural gas 

(LNG) transport ships, and many other types of oil 

ships have been undertaking the major task of China’s 

offshore oil transportation. However, the enormous 

frictional resistance of the hull that occurs under 

contact with seawater is a problem [79]. A “green ship” 

with features such as renewable energy, biomimetic 

drag reduction, and wear-resistant coating has been 

seen as a potential solution to the problems facing the 

shipping industry [80]. Therefore, numerous studies 

have been conducted on biomimetic drag reduction and 

have achieved promising results. There are currently 

three types of biomimetic drag reduction technologies 

available: mimetic shark surface grooves, external jets, 

and a biomimetic superhydrophobic surface.  

Global studies on the surface groove technology of 

a mimetic shark started earlier and have already been 

applied to an aircraft surface [81]. However, such 

research began to be carried out later in China. Wang 

[82] studied the drag reduction characteristics of four 

types of trench plates and found that the maximum 

local drag reduction of the trench plates can reach 

13%–26%. A preliminary discussion on the relationship 

between low-velocity strips and drag reduction 

properties was also provided, and it was found that 

the trench plates demonstrate a good drag reduction 

when their dimensionless height and spacing are 

15–18 [83]. In another study, Cheng et al. [84] designed 

a secondary imitation shark trench surface and com-

pared the flow field analysis data of the surface 

between the original V-groove and the secondary trench 

using the RNG k-ε turbulence model. Moreover, the 

effects of the scale orientation on the performance of 

shark-skin-like surfaces have also been studied [85]. 

It is worth noting that the prepared surface can more 

effectively inhibit the turbulent flow in the boundary 

layer, reduce the viscosity of the fluid flow, and 

achieve a better drag reduction effect. In addition, an 

underwater drag reduction using gas has also made 

it possible to reduce the viscous drag through interfacial 

slippage of the gas entrained in the micro-structure 

surface [86]. 

In terms of a biomimetic superhydrophobic drag 

reduction, a good laminar flow drag reduction effect 

requires both simultaneous hydrophobicity and an 

appropriate roughness [87]. It was found that a 

superhydrophobic surface has a significant influence 

on the flow field in the near wall region, and it   

was proposed that the size of the micro-topography 

has a key effect on the drag reduction effect of a 

superhydrophobic surface, that is, a superhydro-

phobic surface drag reduction increases with an 

increase in the groove width and decreases with an 

increase in the flow velocity [88]. Many biomimetic 

surface drag reduction methods have been developed 

or are currently under development. For the oil and 

gas fields, particularly in the area of shipping, a brief 

comparison of three applicable drag reduction methods 

is illustrated in Table 3. Considering the harsh high- 
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pressure and low-temperature environment of a seabed, 

Wang et al. [89] proposed applying a biomimetic 

surface in an underwater production system, par-

ticularly for the surfaces of subsea pipelines and 

manipulators, which not only provides technical support 

for the complete flow of a subsea pipeline, it also 

increases the service life of the equipment. 

Compared with the original surface, a biomimetic 

surface displays a better drag reduction. In addition, 

some surfaces have been successfully applied to related 

fields. Although biomimetic surfaces have significant 

potential application, there remain many urgent pro-

blems to be solved, including the large-scale preparation 

of superhydrophobic surfaces and an improvement 

of the drag reduction mechanism. To improve the 

performance evaluation, more energy should be invested 

into theoretical research. Presently, the adoption of 

biomimetic drag reduction technology is relatively 

simple. Perhaps a combination of a variety of drag 

reduction technologies may achieve a synergistic drag 

reduction effect. 

4.3 Marine anti-fouling coatings 

Despite the rapid development in marine drag 

reduction technology, there remain significant obstacles 

to its practical engineering application. For example, 

a large number of marine fouling organisms will stick 

to the surface of the hull during a voyage, such as 

barnacles, mussels, and micro-environmental fouling 

organisms. Hull fouling not only directly increases 

the frictional resistance with water and the fuel con-

sumption, it also aggravates a corrosion of the hull, 

resulting in significant economic losses [90]. 

Thus far, researchers have put forward many ideas 

regarding anti-fouling technologies, including physical 

anti-fouling, chemical anti-fouling, and biological 

anti-fouling approaches. Biomimetic surface coatings 

use bionics principles to achieve an anti-fouling effect 

by simulating the epidermis structure of marine 

organisms, including sharks, shells, dolphins, and sea 

lions. It was found that shark epidermis has a weak 

antifouling ability against adult mussels, but a certain 

inhibitory effect on the attachment of microscopic 

biological diatoms. Brennan’s research group [91] at 

the University of Florida, USA, used an epoxy-etched 

body as a mold to prepare a PDMS elastomer material 

with a micro/nanostructure, and the results showed 

that a drag reduction of 85% is reached, of which 

anti-fouling plays an important role. Images of   

the biomimetic morphology are shown in Fig. 6. Anti- 

fouling test results showed that the surface morphology 

of the material reduces the surface energy, resulting 

in a reduction of the biological attachment. Chen et al. 

[92] compared the anti-fouling effect of imitation   

Table 3 Comparison of different biomimetic drag reduction surfaces. 

Type Bionic prototype Drag reduction mechanism Morphology 

Micro groove Shark 

(a) Protruding height 
(b) Secondary vortex 
(c) Blocking lateral vortex 
(d) Scales of structures 

 

Superhydrophobic Lotus leaf 
(a) Wall slipping model 
(b) Plastron effect model 
(c) Superhydrophobic effect 

 

Flexible buffering Dolphin Maintain the state of laminar flow boundary layer 
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Fig. 6 Different biomimetic units applied on ship. Reproduced 
with permission from Ref. [91], © Taylor & Francis 2007. 

shark skin, taro leaf, and rose petal textures. Their 

experiments showed that all three imitation surfaces 

achieve a good hydrophobicity. The anti-fouling effect 

of the imitation shark skin with a laminated streamlined 

structure is clearly better than that of the other two 

groups; regular convex and pit texture models were 

therefore prepared. Interestingly, there is a positive 

correlation between the density of the pits and the 

anti-fouling capability. Bai et al. [90] selected seashells 

as bionic objects and took navicula in benthic 

diatoms as the research subject, establishing a model 

for the relationship between the surface characteristics 

of the shells and the concentration of navicula. From 

a physics perspective, they discussed the mechanism 

of the attachment of navicula spp. In addition, they 

established the relationship between the anti-marine 

biological adhesion and the surface microcosmic 

morphology of the shell surface and proposed the 

basic concept of the biological system for inhibiting 

marine fouling and biological adhesion. This provided 

a more comprehensive and powerful research method 

for studying the structure–activity relationship between 

biomimicry and fouling organisms, and the results 

obtained were closer to reality. 

As shown in Fig. 7, the anti-fouling principle of 

surface flocking is mainly based on a physical barrier 

in which the villus layer becomes a substrate, which 

blocks the attachment of marine fouling organisms 

with different sizes. In addition, fluffs under the force 

of water accelerate their movement, which decrease 

the attachment stability of the organisms. Zhang et al. 

[93] adopted electrostatic flocking technology and 

used an acrylic resin as an adhesive. They applied a 

flocking using nylon (polyamide) and viscose fuzz on 

a glass sheet individually to simulate the preparation 

of the villus structure of sea lion epidermis and 

modified it to improve its hydrophobic properties. 

The effects of the flocking on the coating of three 

typical marine fouling organisms, namely, diatoms, 

mussels, and barnacles, were investigated. The results 

showed that a flocking surface has a significant 

inhibitory effect on the large fouling organisms, mussels 

and barnacles, and significantly reduces the number 

of attachments. However, there is no inhibitory effect  

 

Fig. 7 Different volumes of micro-marine life: (A) ulva spores, (B) the diatom amphora, (C) the diatom nitzschia, and (D) the barnacle 
cyprid, at approximately 100–200 plush structures/mm2; and anti-fouling mechanism: (E) microscopic morphology of fluffs, (F) schematic
of anti-fouling mechanism. 
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on the static attachment of the small-sized fouling 

bio-diatoms, although they are easily desorbed under 

water scouring. Thus, the removal rate was higher 

than on a surface without flocking. Nevertheless, the 

“attachment point” theory, which is dominated by 

the size of the surface micro-structure, can be affected 

by a complex marine environment and biological 

community, and cannot achieve complete anti-fouling. 

Therefore, research on biological fouling and anti- 

fouling mechanisms will contribute to the development 

of new technologies in this area. 

Slippery liquid-infused porous surfaces (SLIPS) 

technology also facilitates the development of marine 

anti-fouling. The porous micro-structure of the 

underlying layer provides numerous small “cells” 

that help maintain a layer of lubricant that blocks 

contact between other liquids and the underlying 

solid while increasing the available surface area [94]. 

Wang et al. [95, 96] designed and fabricated SLIPS on 

an aluminum substrate and found that the surface 

was highly resistant to sulfate reducing bacteria (SRB) 

adhesion and the resulting microbial corrosion in 

static seawater. Epstein et al. [97] showed that SLIPS 

exhibits liquid repellency, smoothness, self-healing, 

and stability under high pressure, as well as a good 

optical transparency. Moreover, the silicone oil-infused 

sol-gel nanocomposite surfaces also exhibit outstanding 

long-term slippery stability and ultralow bacterial 

attachment even under extreme conditions [98]. Yong 

et al. [99] were the first to use a femtosecond laser to 

successfully fabricate a SLIPS surface, which was 

shown to be an excellent liquid-repellent and have a 

self-repair capability. 

As countries come to increasingly value the 

protection of their ecological marine environments, 

the development of new types of green anti-fouling 

technologies is becoming a clear objective. In this 

regard, biomimetic anti-fouling technologies are a 

potential development direction. A comprehensive 

analysis of the structure and behavior of different 

biomimetic friction interfaces using multiple analysis 

methods at the micro/nanoscale is able to provide 

new ideas for the better protection of an ecological 

marine environment. 

4.4 Anti-icing coatings 

The Arctic region has recently become an active  

area for international oil companies owing to its vast 

oil reserves and gas exploration and development 

potential. However, nearly half of the basins in the 

Arctic region have yet to be explored with regard to 

oil and gas, and the region has shown the lowest level 

of global exploration and development. It is worth 

noting that severe weather such as extreme cold and 

hurricanes, as well as the effects of frozen tundra, are 

all factors hindering the development of polar oil and 

gas resources. 

In the process of polar operations, the normal 

operation of large equipment such as electric power 

and transportation are often affected by ice, causing 

inconvenience or even accidents. The traditional method 

of anti-icing is mostly based on a melting method, 

which consumes large amounts of energy and is 

ineffective [100]. During the past few years, the main 

mechanisms of biomimetic anti-icing have been anti- 

freezing (preventing water droplets from adhering 

to the surface and allowing direct removal before 

freezing) [101−105], the inhibition of ice nucleation 

(delaying the crystallization of water droplets,   

and thus extending the freezing time) [106, 107], and 

removal (reducing the adhesion force between the 

ice and surface, allowing the ice to easily to fall off) 

[108−112]. However, owing to a volume expansion 

that occurs during the icing, damaging, or riveting of 

micro/nanostructures, the surface coating loses its 

hydrophobicity, and the problem of an ultra-smooth 

porous coating is that it tends to fall off, which needs 

to be further solved [113]. However, for a fluorinated 

surface, only high fluorine contained compound 

(HFTES) contents (above 30wt.%) exhibit anti-icing 

properties under freezing temperature [114]. Further-

more, the addition of photothermal materials [115], 

antifreeze proteins [116, 117], and commonly used 

anti-icing fluids [118] to the coating can also effectively 

delay the crystallization of water by lowering the 

freezing point or raising the surface temperature. 

Cheng et al. [119] prepared a magnetic superhy-
drophobic coating filled with air and a micro/ 

nanocomposite structure considering the hysteresis 

effect of Fe3O4 nanoparticles on the heat generation 

and photo-thermal effect. With the development of 

energy exploitation toward the polar regions, improving 

the performance of equipment under harsh conditions, 

such as low temperatures, will be a significant topic 
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in the future. Nevertheless, to fabricate viable and 

durable anti-icing surfaces using superhydrophobic 

methods, further fundamental experimental and 

theoretical approaches are still necessary to investigate 

the effects of the wettability, surface roughness, surface 

morphology, and environmental conditions on the 

anti-icing performance [120]. 

A biomimetic surface with a good drag reduction 

or anti-fouling effect is a topic of research. However, 

differing from oil/gas storage and transportation, the 

application of a biomimetic marine surface needs  

to focus on the marine environment and biological 

resource protection. Therefore, a new environmentally 

material or coating [121] will be the focus of research 

in the near future. 

5 Conclusions and perspectives 

From the perspective of oil and gas industry 

development, the application of biomimetic surfaces 

can penetrate almost all aspects of the industrial 

chain, as shown in Fig. 8. In the current stage, the 

biomimetic friction interface has achieved certain 

research results in the field of oil and gas. Moreover, 

some of the results have even been tested and applied 

in the field. Nevertheless, the combination of a bio-

mimetic friction interface and the petroleum industry 

still remains in the preliminary stage. Herein, we 

reviewed the efforts made toward biomimetic surfaces 

and superhydrophobic coatings integrated into the 

equipment and technology used in the oil and gas 

industry, which have had a significant influence on 

the preparation and characterization of biomimetic 

surfaces and their application. As can be seen from the 

development made in recent decades, the advantages 

of using biomimetic surface engineering to achieve 

an energy saving effect are becoming increasingly 

obvious, and new materials and methods are con-

tinuously being developed. However, there have been 

relatively few studies on an evaluation of the durability 

of biomimetic surface properties under actual conditions, 

particularly in the harsh, high-strength, heavy-load 

environments of the oil and gas industry. Until now, 

there have been no clear standards for an evaluation 

of the durability, whether in theory or through a 

simulation of the actual conditions (mechanical forces, 

abrasion, and corrosion, etc.), and such an evaluation   

 

Fig. 8 Applications of biomimetic surface engineering in oil and 
gas industry. 

remains a significant challenge for practical appli-

cations. Considering a complex environment, such 

biomimetic surfaces should have an optimized 

morphology and internal structure for the realization 

of multiple functions and persistence from the 

perspective of materials and processing. The solution 

to the problem may pave the way toward practical 

applications. 

In the future, the biomimetic surfaces used in the 

oil field will mostly deal with the surfaces of the 

mechanical components. Biomimetic non-smooth 

functional surfaces should be applied to numerous 

equipment, pipelines, and platforms under harsh 

environments to improve the performance of the drag 

reduction, anti-wear, anti-corrosion, and anti-fouling, 

aiming to prolong the life of the equipment, improve 

the working efficiency, and reduce the safety risks. 

Again, to achieve significant improvements, new 

multi-functional surfaces (hydrophobic, hydrophilic, 

oleophobic, lipophilic, or super-amphiphobic) are 

required. In addition, a wide range of applications  

in the fields of industry, mining, petrochemical, 

metallurgy, machinery, and environmental protection 

exists.  

Learning from nature is a consistent principle for 

the development of a biomimetic friction interface 

[122]. There are numerous mysterious surfaces that 

can drive us towards the development of novel surface 

technologies, which is one of the stages of biomimetic 

surface engineering research. We strongly believe that 

the application of biomimetic surface engineering in 

the oil and gas field has broad research prospects and 
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values, which can greatly reduce the energy loss and 

protect the ecological environment [123, 124]. Practice 

has already proved that bionics can provide a more 

reliable, flexible, efficient, and economical technological 

system for the development and innovation of oil and 

gas fields [125]. To summarize, biomimetic surface 

engineering can cover most of the production needs 

of the oil and gas fields and provide innovative 

solutions and technical means for breakthroughs in 

key technical issues, thereby further promoting the 

technological progress of the petroleum industry and 

green development. 
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