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Abstract: The paper presents an explicit matrix algorithm to solve the problem of an elastic wedge with three 

loaded surfaces. The algorithm makes use of a recently published concept of transformation matrix, by which the 

original surface loads are converted to equivalent loads in half-space. The three loaded edges are considered 

simultaneously. The developed algorithm is used to study the effects of two free edges of a steel block and 

tapered rollers with different contact angles. The two load-free edges can substantially increase deformation if 

the two edges are close in distance. The results of the tapered roller simulation show that deformation is 

considerably sensitive to the contact angle of the tapered roller. The largest deformation appears at the big end 

of the roller. Furthermore, empirical formulae for correction factors for the calculation of block or quarter-space 

deformation based on half-space solutions are summarized. 
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1  Introduction 

Roller bearings are extensively employed in machinery 

to efficiently support rotating shafts [1]. Many studies 

have been conducted to improve the design of roller 

bearings. For example, Gohar et al. [2−4], Hartnett [5], 

Kannel [6], and Zantopulos [7] studied elastostatic 

pressure distributions and the corresponding footprint 

shapes in cylindrical or tapered roller bearings under 

dry contact conditions. At the same time, the lubrication 

behaviours of roller bearings have also been analysed. 

The lubrication regime in roller bearings is typically 

elastohydrodynamic lubrication (EHL) and can be 

classified as a problem of finite line contact EHL. 

Contacts in these bearings can be simplified as a 

cylindrical or tapered roller rotating on a plane. 

Cameron’s group [8−10] experimentally studied such 

type of lubrication with optical interferometry. They 

reported typical optical interferograms of finite line 

contact EHL. Recently, Wang et al. [11] investigated 

the mechanism of grease lubricated film-forming of a 

finite line contact also using an optical EHL test rig. 

Other studies mainly focused on the solution of finite 

line contact EHL, which is different from the infinite 

line contact problem because of the existence of two 

ends of a roller. Bahadoran and Gohar [12] appro-

ximated the EHL films at the end closure in rollers by 

modifying an infinite line contact solution. Thereafter, 

the two-dimensional Reynolds equation was directly 

solved using different methods, such as the finite 

difference method [13], Newton-Raphson method 

[14−16] and multi-level method [17−19]. Furthermore, 

the mixed lubrication behaviour [20] and plasto-EHL 

of roller bearings [21] were also evaluated recently.  

In all the aforementioned analyses, the elastic 

deformation of contact bodies was generally calculated 

using either the classical Boussinesq formula [22] for 

point load or the Loveformula [23] for distributed load. 

The two classical formulae are based on the assumption 

that the loaded body is semi-infinite (commonly known  
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Nomenclature 

A  Transformation matrix for equivalent loading 

  calculation 

I  Unit matrix 

P1 Vector of applied normal load on plane X1-Y1 

 in X1-Y1-Z1 coordinate 

QX1 Vector of applied shear load in X1 direction on 

 plane X1-Y1 in X1-Y1-Z1 coordinate 

QY1 Vector of applied shear load in Y1 direction on 

 plane X1-Y1 in X1-Y1-Z1 coordinate 

P2 Vector of applied normal load on plane X2-Y2

 in X2-Y2-Z2 coordinate 

QX2 Vector of applied shear load in X2 direction on

 plane X2-Y2 in X2-Y2-Z2 coordinate 

QY2 Vector of applied shear load in Y2 direction on 

 plane X2-Y2 in X2-Y2-Z2 coordinate 

P3 Vector of applied normal load on plane X3-Y3

 in X3-Y3-Z3 coordinate 

QX3 Vector of applied shear load in X3 direction on 

 plane X3-Y3 in X3-Y3-Z3 coordinate 

QY3 Vector of applied shear load in Y3 direction on 

 plane X3-Y3 in X3-Y3-Z3 coordinate 

1
PP  Vector of equivalent normal load on plane  

 X1-Y1 in X1-Y1-Z1 coordinate 

1X
QQ  Vector of equivalent shear load in X1 direction 

 on plane X1-Y1 in X1-Y1-Z1 coordinate 

1Y
QQ  Vector of equivalent shear load in Y1 direction 

 on plane X1-Y1 in X1-Y1-Z1 coordinate 

2
PP  Vector of equivalent normal load on plane  

 X2-Y2 in X2-Y2-Z2 coordinate 

2X
QQ  Vector of equivalent shear load in X2 direction 

 on plane X2-Y2 in X2-Y2-Z2 coordinate 

2Y
QQ  Vector of equivalent shear load in Y2 direction 

 on plane X2-Y2 in X2-Y2-Z2 coordinate 

3
PP  Vector of equivalent normal load on plane  

 X3-Y3 in X3-Y3-Z3 coordinate 

3X
QQ  Vector of equivalent shear load in X3 direction 

 on plane X3-Y3 in X3-Y3-Z3 coordinate 

3Y
QQ  Vector of equivalent shear load in Y3 direction 

 on plane X3-Y3 in X3-Y3-Z3 coordinate 

SZ1 Vector of normal stress on plane X1-Y1 in  

 X1-Y1-Z1 coordinate induced by equivalent 

 loads on planes X2-Y2 and X3-Y3 

SX1 Vector of shear stress in X1 direction on plane 

 X1-Y1 in X1-Y1-Z1 coordinate induced by  

 equivalent loads on planes X2-Y2 and X3-Y3 

SY1 Vector of shear stress in Y1 direction on plane 

 X1-Y1 in X1-Y1-Z1 coordinate induced by  

 equivalent loads on planes X2-Y2 and X3-Y3 

SZ2 Vector of normal stress on plane X2-Y2 in  

 X2-Y2-Z2 coordinate induced by equivalent  

 loads on planes X1-Y1 and X3-Y3 

SX2 Vector of shear stress in X2 direction on plane 

 X2-Y2 in X2-Y2-Z2 coordinate induced by  

 equivalent loads on planes X1-Y1 and X3-Y3 

SY2 Vector of shear stress in Y2 direction on plane  

 X2-Y2 in X2-Y2-Z2 coordinate induced by  

 equivalent loads on planes X1-Y1 and X3-Y3 

SZ3 Vector of normal stress on plane X3-Y3 in  

 X3-Y3-Z3 coordinate induced by equivalent  

 loads on planes X1-Y1 and X2-Y2 

SX3 Vector of shear stress in X3 direction on plane 

 X3-Y3 in X3-Y3-Z3 coordinate induced by  

 equivalent loads on planes X1-Y1 and X2-Y2 

SY3 Vector of shear stress in Y3 direction on plane 

 X3-Y3 in X3-Y3-Z3 coordinate induced by  

 equivalent loads on planes X1-Y1 and X2-Y2 

A Radius of the pressure distribution (for the line, 

 semispherical, and half-semispherical pressure 

 distributions) in the case study 

D Length of the top plane of wedge structure 

L Number of rectangular grids on plane X1-Y1 

M Number of rectangular grids on plane X2-Y2 

n Number of rectangular grids on plane X3-Y3 

0
p  The maximum of the load distribution in case 

 study 

1
( )

i
p  Applied normal load at the centre of the ith  

 rectangle on plane X1-Y1 

1
( )

x i
q  Applied shear load in X1 direction at the centre 

 of the ith rectangle on plane X1-Y1 

1
( )

y i
q  Applied shear load in Y1 direction at the centre 

 of the ith rectangle on plane X1-Y1 

2
( )

j
p  Applied normal load at the centre of the jth  

 rectangle on plane X2-Y2 

2
( )

x j
q  Applied shear load in X2 direction at the centre 

 of the jth rectangle on plane X2-Y2 
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2
( )

y j
q   Applied shear load in Y1 direction at the centre 

  of the jth rectangle on plane X2-Y2 

3
( )

k
p   Applied normal load at the centre of the kth 

  rectangle on plane X3-Y3 

3
( )

x k
q   Applied shear load in X3 direction at the centre 

  of the kth rectangle on plane X3-Y3 

3
( )

y k
q     Applied shear load in Y3 direction at the centre 

  of the kth rectangle on plane X3-Y3 

1
(pp )

i
  Equivalent normal load at the centre of the ith

  rectangle on plane X1-Y1 

1
(qq )

x i
  Equivalent shear load in X1 direction at the 

  centre of the ith rectangle on plane X1-Y1 

1
(qq )

y i
 Equivalent shear load in Y1 direction at the centre 

  of the ith rectangle on plane X1-Y1 

 

2
(pp )

j
   Equivalent normal load at the centre of the 

   jth rectangle on plane X2-Y2 

2
(qq )

x j
   Equivalent shear load in X2 direction at the 

   centre of the jth rectangle on plane X2-Y2 

2
(qq )

y j
   Equivalent shear load in Y2 direction at the 

   centre of the jth rectangle on plane X2-Y2 

3
(pp )

k
   Equivalent normal load at the centre of the 

   kth rectangle on plane X3-Y3 

3
(qq )

x k
   Equivalent shear load in X3 direction at the 

   centre of the kth rectangle on plane X3-Y3 

3
(qq )

y k
   Equivalent shear load in Y3 direction at the 

   centre of the kth rectangle on plane X3-Y3 

Α   Contact angle of tapered roller 

1 2
,       Wedge angles 

as the half-space (HS) model in contact mechanics). 

However, there are two edges at the ends of a roller. 

A roller bearing contact is in fact of finite length.   

The effects of the free edge surfaces were ignored in 

previous studies. Only recently did researchers consider 

the free edge effect in roller bearing analyses. For 

example, Najjari and Guilbault [24] studied the free 

edge effect on EHL of a cylindrical roller using an 

approximate correction factor method developed by 

Guilbault [25]. Recently, the present authors [26] 

considered a finite length roller as a combination of 

two mirror-imaged quarter-spaces at a finite distance 

apart. The finite line EHL was solved [27] using an 

algorithm of Zhang et al. [28] which makes use of 

the solutions of two overlapping and orthogonal half- 

spaces loaded by equivalent loads. Zhang et al. [29] 

evaluated the finite line contact EHL including the 

consideration of the two edge effect using the Hetenyi’s 

overlapping concept [30, 31]. However, the works of 

Zhang et al. [29, 31] failed to satisfy the “zero stress” 

boundary conditions on the two free edges. Their 

calculated results showed that some finite values of 

shear stresses were induced at the free ends by the 

equivalent loads on the other surfaces. 

The preceding studies [24−31] only dealt with 

quarter-space problems, which are characterised by 

loaded and load-free orthogonal edges (Fig. 1(a)).  

In fact, a quarter-space problem is only a special case 

of a general wedge problem (Fig. 1(b)), which has no  

restrictions for the wedge angle and stress boundary 

condition of the side edge (free or loaded). The present 

authors [32] recently proposed an explicit matrix 

solution to a general wedge problem. Accordingly, the 

contact problems of a general wedge can be directly 

solved by transforming the original surface loads 

into equivalent loads in half-spaces with a derived 

transforming matrix. For the rollers of a tapered 

roller bearing, the wedge angles at the two ends have 

different magnitudes and are not equal to 90°. The 

two different wedges at the two ends or two edge 

surfaces should be simultaneously considered to obtain 

accurate solutions for the tapered roller contact problem. 

The current study presents an extension of our earlier 

work [32], a matrix solution for a general wedge 

problem (Fig. 1(b)), to solve a wedge problem with 

two arbitrary edges (Fig. 1(c)). 

 
Fig. 1 Illustration of non-half-space problems. 
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2 Derivation 

The basic concept of solving a general elastic wedge 

problem in our previous study [30] is to convert the 

wedge problem into equivalent half-spaces. Similarly, 

the same principle was also applied here for a general 

wedge containing two side edges. 

The originally applied loads (i.e. normal P and shear 

Q) on the top and two side edges of a wedge structure 

is depicted in Fig. 2(a). The coordinate systems of 

X1-Y1-Z1 (for the top surface), X2-Y2-Z2 and X3-Y3-Z3 

(for the two side surfaces) are illustrated in Fig. 2(a). 

The definition of the equivalent loads in half-space 

(i.e. normal PP and shear QQ) and the corresponding 

induced stresses of the equivalent loads on the plane 

surfaces of the wedge is shown in Fig. 2(b). The  

 

Fig. 2 Solution to the loaded wedge using the superposition of 
solutions of half-space equivalent loads. (a) General wedge with 
normal and shear loads (P and Q), (b) equivalent loads (PP and 
QQ) and corresponding induced stresses. 

numerical analysis started with the discretisation of 

the three surfaces of the wedge. The effective grid 

meshing of the top surface of the wedge is shown in 

Fig. 3(a). The top surface was divided into l rectangular 

grids. The ith rectangle is shown in Fig. 3(b). The 

dimensions of the ith rectangle are 2
i

  and 2
i

  in the 

X1- and Y1-directions, respectively. The coordinate 

of its centre is denoted as 
1 1

( , )
i i

x y  in the X1-Y1-Z1 

coordinate system. Similarly, the other two side surfaces 

of the wedge were discretised into a set of m and n 

rectangles. Therefore, the loads applied on the three 

surfaces were presented by piecewise distributions 

after discretisation. The values of the distributed loads 

on the three surfaces are represented by the values   

at the centres of the rectangles (illustrated as 
1

( )
i

p , 

1
( )

x i
q , 

1
( )

y i
q  for the top surface 

2
;( )

j
p , 

2
( )

x j
q , 

2
( )

y j
q  

and 
3

( )
k

p , 
3

( )
x k

q , 
3

( )
y k

q  for the edge surfaces). 

Therefore, the normal and shear loads on the three 

surfaces of the wedge can be defined as 
1

P , 
1X

Q , 
1Y

Q , 

2
P , 

2X
Q ,

2Y
Q  and 

3
P , 

3X
Q , 

3Y
Q  in vector format, as 

expressed in Eqs. (1–3), respectively. 

 

 

 

 
 
 

  
 
 
  

1 1

1 2

1

1

l

p

p

p


P ; 

 

 

 

 
 
 

  
 
 
  

1

1 21

1

1

x

x

x l

q

q

q


XQ ; 

 

 

 

 
 
 
   
 
 
  

1
1

1

1

1
2

y

y

y
l

q

q

q


YQ    (1) 

 

 

 

 
 
 

  
 
 
  

2 1

2 2

2

2

m

p

p

p


P ; 

 

 

 

 
 
 

  
 
 
  

2

2 22

1

2

x

x

x m

q

q

q


XQ ; 

 

 

 

 
 
 
   
 
 
  

2
1

2

2

2
2

y

y

y
m

q

q

q


YQ     (2) 

 

 

 

 
 
 

  
 
 
  

3 1

3 2

3

3

n

p

p

p


P ; 

 

 

 

 
 
 

  
 
 
  

3

3 23

1

3

x

x

x n

q

q

q


XQ ; 

 

 

 

 
 
 
   
 
 
  

3
1

3

3

3
2

y

y

y
n

q

q

q


YQ      (3) 

Similarly, the nine corresponding equivalent loads 

of the half-space model, namely, 
1

PP , 
1

QQ
X

, 
1

QQ
Y

, 

2
PP , 

2
QQ

X
, 

2
QQ

Y
, 

3
PP , 

3
QQ

X
 and 

3
QQ

Y
, acting on 

the three surfaces are also expressed with piecewise 

distributions (Eqs. (4–6)). The stresses on plane X1-Y1  
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Fig. 3 Schematic illustration of grid meshing. 

in the imaginary half-spaces induced by the equivalent 

loads on planes X2-Y2 and X3-Y3 are denoted by 

their values at the centres of the rectangles, namely, 

zz1
( )

i
 , 

zx1
( )

i
  and 

zy1
( .)

i
  These induced stresses of 

plane X1-Y1 form three vectors, namely, 
1Z

S , 
1X

S  and 

1Y
S , and they are expressed in Eq. (7). Following 

the same principle, the induced stresses on the two 

edge surfaces X2-Y2 and X3-Y3 can be expressed with 

Eqs. (8) and (9). 

 

 

 

1 1

1 2

1

1

pp

pp

pp
l

 
 
 

  
 
 
 

PP


; 

 

 

 

1

1

1

1

1

2

qq

qq

qq

x

x

x l

 
 
 

  
 
 
 

QQ


X

; 

 

 

 

1

2

1

1

1

1

qq

qq

qq

y

y

y l

 
 
 
 
 
 
  

QQ


Y

  

(4) 

 

 

 

2 1

2 2

2

2

pp

pp

pp
m

 
 
 

  
 
 
 

PP


;

 

 

 

1

2

2

2

2

2

qq

qq

qq

x

x

x m

 
 
 

  
 
 
 

QQ


X

; 

 

 

 

1

2

2

2

2

2

qq

qq

qq

y

y

y m

 
 
 
 
 
 
  

QQ


Y

(5) 

 

 

 

3 1

3 2

3

3

pp

pp

pp
n

 
 
 

  
 
 
 

PP


; 

 

 

 

1

3

3

3

3

2

qq

qq

qq

x

x

x n

 
 
 

  
 
 
 

QQ


X

; 

 

 

 

1

2

3

3

3

3

qq

qq

qq

y

y

y n

 
 
 
 
 
 
  

QQ


Y

(6) 

 

 

 

 
 
   
 
  

zz1 1

zz1 2

zz

1

1 l








ZS ; 

 

 

 

 
 
   
 
  

zx1 1

zx1 2

zx

1

1 l








XS ; 

 

 

 

 
 
 
 
 
 
 
 

zy1
1

zy1
2

zy1

1

l








YS   (7) 

 

 

 

 
 
 

  
 
 
  

zz2 1

zz2 2
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2

m








ZS ; 

 

 

 

 
 
 

  
 
 
  

zx2 1

zx2 2

zx2

2

m








XS ; 

 
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 
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 
 
   
 
 
  

zy2
1

y

2 zy2
2

z 2
m








YS  (8) 

 

 

 

 
 
 

  
 
 
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zz3

3

n








ZS ; 

 

 

 

 
 
 

  
 
 
  

zx3 1

zx3 2

zx3

3

n








XS ; 

 

 

 

 
 
 
   
 
 
  

zy3
1

y

3 zy3
2

z 3
n








YS    (9) 

The stresses at the centre of rectangle i, 
1 1

( , )
i i

x y , on 

plane X1-Y1 in the imaginary half-spaces induced by 

the equivalent distributed loads of the jth rectangle on 

plane X2-Y2 and kth rectangle on plane X3-Y3 can be 

expressed as follows: 

 

 

 

zz1 1 1 z1iz2 j 2 z1ix2 j 2

z1iy2 j 2 z1iz3k 3

z1ix3k 3 z1iy3k 3

( )

(

, (pp ) (qq )

qq (pp )

(qq ) ( q

)

q )

i i j x j

y j k

x k y k

x y m m

m m

m m



   (10) 

 

 

 

zx1 1 1 x1iz2 j 2 x1ix2 j 2

x1iy2 j 2 x1iz3k 3

x1ix3k 3 x1iy3k 3

, (pp ) (qq )

(

(

qq ) (pp )

(qq ) (qq

)

)

i i j x j

y j k

x k y k

x y m m

m m

m m



   (11) 

 

 

 

zy1 1 1 y1iz2 j 2 y1ix2 j 2

y1iy2 j 2 y1iz3k 3

y1ix3k 3 y1iy3k 3

, (pp ) (qq )

(

(

qq ) (pp )

(qq ) (qq

)

)

i i j x j

y j k

x k y k

x y m m

m m

m m



   (12) 

where the 18 coefficients in Eqs. (10–12) can be 

determined using Love’s solution [23, 33]. Taking the  

first coefficient 
z1iz2 j

m  as an example, z1i represents  

the induced normal stress of the ith rectangle on 

surface I (top surface) and z2j indicates the normal 

load applied on the jth rectangle on surface II (one of 

the side surfaces). These coefficients are only related 

to grid meshing, Poisson’s ratio of the material and 

the wedge shape. The two-dimensional array of the 

coefficients forms the following 18 reflecting matrices:  

1 2Z Z
M , 

1 2Z X
M , 

1 2Z Y
M , 

1 3Z Z
M , 

1 3Z X
M , 

1 3Z Y
M , 

1 2X Z
M , 

1 2X X
M , 

1 2X Y
M , 

1 3X Z
M , 

1 3X X
M , 

1 3X Y
M , 

1 2Y Z
M , 

1 2Y X
M , 

1 2Y Y
M , 

1 3Y Z
M , 

1 3Y X
M , and 

1 3Y Y
M . 
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z11z21 z11z22 z11z2m

z12z21 z12z22 z12z2m
1 2

z1lz21 z1lz22 z1lz2m

m m m

m m m

m m m

 
  
 
 
  

Z Z



   


M      (13) 

z11x21 11 22 z11x2m

z12x21 z12x22 z12x2m
1 2

z1lx21 z1lx22 z1lx2m

z x
m m m

m m m

m m m

 
  
 
 
  

Z X



   


M      (14) 

y11y31 y11y32 y11y3n

y12y31 y12y32 y12y3n

1 3

y1ly31 y1ly32 y1ly3n

m m m

m m m

m m m

 
 

   
 
  

Y Y



   


M      (30) 

Therefore, the induced stresses 
1Z

S , 
1X

S  and 
1Y

S  

on plane X1-Y1 caused by the equivalent loads on 

planes X2-Y2 and X3-Y3 can be expressed as follows: 

  
  

1 1 2 2 1 2 2 1 2 2

1 3 3 1 3 3 1 3 3

Z Z Z X X Z Y Y

Z Z Z X X Z Y

PP QQ QQ

PP QQ QQ
Z

Y

S M M M

M M M
  (31) 

 
  

1 1 2 2 1 2 2 1 2 2

1 3 3 1 3 3 1 3 3

= X Z X X X Y

X Z X X X Y

PP QQ QQ

PP QQ QQ
X X Y

X Y

S M M M

M M M
  (32) 

  
  

1 1 2 2 1 2 2 1 2 2

1 3 3 1 3 3 1 3 3

Y Z Y X Y Y

Y Z Y X Y Y

PP QQ QQ

PP QQ QQ
Y X Y

X Y

S M M M

M M M
  (33) 

Similarly, the induced stresses on planes X2-Y2 and 

X3-Y3 can be expressed as follows: 

  
  

2 2 1 1 2 1 1 2 1 1

2 3 3 2 3 3 2 3 3

Z Z Z X Z Y

Z Z Z X Z Y

PP QQ QQ

PP QQ QQ
Z X Y

X Y

S M M M

M M M
   (34) 

  
  

2 2 1 1 2 1 1 2 1 1

2 3 3 2 3 3 2 3 3

X Z X X X Y

X Z X X X Y

PP QQ QQ

PP QQ QQ
X X Y

X Y

S M M M

M M M
   (35) 

  
  

2 2 1 1 2 1 1 2 1 1

2 3 3 2 3 3 2 3 3

Y Z Y X Y Y

Y Z Y X Y Y

PP QQ QQ

PP QQ QQ
Y X Y

X Y

S M M M

M M M
   (36) 

  
  

3 3 1 1 3 1 1 3 1 1

3 2 2 3 2 2 3 2 2

Z Z Z X Z Y

Z Z Z X Z Y

PP QQ QQ

PP QQ QQ
Z X Y

X Y

S M M M

M M M
   (37) 

  
  

3 3 1 1 3 1 1 3 1 1

3 2 2 3 2 2 3 2 2

X Z X X X Y

X Z X X X Y

PP QQ QQ

PP QQ QQ
X X Y

X Y

S M M M

M M M
   (38) 

  
  

3 3 1 1 3 1 1 3 1 1

3 2 2 3 2 2 3 2 2

Y Z Y X Y Y

Y Z Y X Y Y

PP QQ QQ

PP QQ QQ
Y X Y

X Y

S M M M

M M M
     (39) 

Overlapping the half-space solutions and satisfying 

the original stress boundary conditions yield the 

following equations: 

1 1 1
   PP

Z
P S                (40) 

1 1 1
   QQ

X X X
Q S              (41) 

1 1 1
   QQ

Y Y Y
Q S              (42) 

2 2 2
   PP

Z
P S               (43) 

2 2 2
   QQ

X X X
Q S             (44) 

2 2 2
   QQ

Y Y Y
Q S             (45) 

3 3 3
   PP

Z
P S               (46) 

3 3 3
   QQ

X X X
Q S             (47) 

3 3 3
   QQ

Y Y Y
Q S             (48) 

Hence, Eqs. (31–39) can be substit uted into Eqs. 

(40–48) and rearranged to yield the following equation: 

1 1

1 1

1 1

2 2

2 2

2 2

3 3

3 3

3 3

   
   
   
   
   
   
    
   
   
   
   
   
   
   
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A Q
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            (49) 

where 

1 2 1 2

1 2 1 2
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Equation (49) indicates that the equivalent loads in 

the half-space can be directly obtained by multiplying 

the originally applied loads with transformation matrix 

A. Once the equivalent loads on the wedge surfaces 

are acquired, the internal stress field or deformation 

of the wedge can be obtained with the superposition of 

the three sets of half-space solutions of the equivalent 

loads, as schematically illustrated in Fig. 2.  

3 Verification 

To verify the proposed algorithm, this study analysed 

three special cases, in which the angles of the wedge 

structure were set to o90 , i.e., o

1 2
90   . Poisson’s 

ratio is set to 0.3. The first case was extracted from 

the Ref. [34], in which a half-semispherical pressure 

distribution was applied on the top surface of a 

quarter-space with the maximum 
0

p  at the left edge. 

The load is expressed as follows: 

 

 

2 2 2

2 2

0

2 2

, ,

, 0,

a x y
p x y p x y a

a

p x y x y a

 
  

  

    (50) 

where a is the radius of the load distribution. In  

the current case, the length d of the top edge of the 

wedge was set to 10a and the effect of the right free 

end (x = 10a) should be relatively small. Therefore, 

the calculation should be equal to the result of Hanson 

and Keer [34]. The calculated normal stress contour 

on the plane of y = 0 with the current method is 

shown in Fig. 4. To make a clear comparison, the results 

from Ref. [34] were also presented in the current study. 

The results of the current method coincide well with 

 

Fig. 4 Comparison of stress distributions in the y = 0 plane obtained from the proposed method and extracted from the Ref. [34]. 
Reproduced with permission from Ref. [34]. Copyright Oxford University Press, 1990. (quarter-space: length of top edge d = 10a, p0

at (0, 0, 0)). 
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those of Hanson and Keer [34], thereby verifying the 

proposed method. 

In the second case, the length of the top edge of 

the wedge was also fixed to 10a and a semi-spherical 

pressure distribution, whose radius is a, was applied 

on the top surface with the maximum pressure 
0

p  

located at the centre of the top surface, that is, (5a, 0, 0). 

In this study, the load distribution was relatively 

distant from the two side edges and the calculation 

results should be considerably similar to those of the 

half-space case. The calculation results from the current 

method and the direct half-space method are shown in 

Fig. 5. The two sets of solutions are largely the same, 

thereby proving that the pre-assumption is correct. 

However, it should be noticed that there are little 

differences from the two methods, such as the zero 

normal stress of 
xx

 , and these deviations are attributed 

to the effect of the two side edges. 

The effect of the two side edges increases significantly 

with the reduction of the top length of the wedge. 

To further verify the proposed method and show the 

two-edge effect, the length of the wedge in case 2 is 

reduced from 10a to 2a. The centre of semi-spherical 

pressure distribution is thus at (a, 0, 0). Figure 6 show 

the calculated normal stress distributions in y = 0 plane 

with the current method and Finite Element method 

(FEM). It is clear that the results obtained with these 

two methods are almost the same, particularly in the 

region near the top surface. The proposed algorithm 

is thus verified by the good correlations shown between 

results of the current method and (1) published data 

(Fig. 4, for quarter-space), (2) analytical solution of 

half-space (Fig. 5), and (3) FEM results (Fig. 6). 

When comparing Fig. 6 (short wedge length, d) 

 

Fig. 5 Comparison of stress distributions in the y = 0 plane obtained from the proposed method and half-space model (two edge 
farther apart: length of top edge d = 10a, p0 at (5a, 0, 0)). 
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with Fig. 5 (long wedge length), the effect of the two 

side edges is apparently illustrated. Taking the normal  

stress in z direction as an example (
zz

 ), the overall 

magnitude of the compressive stresses of the short 

wedge (Fig. 6) is larger than that of the long wedge 

(Fig. 5). Furthermore, the short wedge case (d = 2a) is 

solved by taking only one free edge into account 

and assuming that the other free edge casts no effect. 

The contour of 
zz

 , as plotted in Fig. 7, is non- 

axisymmetric, which is obvious not correct since the 

case is axisymmetric about x/a = 1. The distributed 

load on the top surface is semi-spherical and the 

maximum pressure 
0

p  is located at x/a = 1. 

 

Fig. 7 Contour of zz 0/ p  in y = 0 plane obtained by taking only 
the free edge in the left into account (conditions are same as those 
in Fig. 6). 

 

 

Fig. 6 Comparison of stress distributions in the y = 0 plane obtained from the proposed method and FEM (two edges in close distance:
length of top edge d = 2a, p0 at (a, 0, 0)). 
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4 Case study 

The deformation of a cylindrical roller under surface 

load was studied firstly. For the cylindrical roller, the 

two edges are perpendicular to its top surface, that is, 
o

1 2
90   . Our previous study [26, 27] proposed a 

method for such problem. The structure is divided 

into two axisymmetrical parts, i.e. two wedges. Only 

one part is considered in the deformation calculation. 

The final result is the superposition of deformations 

from two axisymmetrical parts. This method is 

convenient for cases with symmetrical loading and is 

accurate if the length d of the structure is sufficiently 

long. For short-length structure cases, the side edges 

would affect one another and the previous method 

[26, 27] lacks sufficient accuracy. Therefore, the current 

method in which the effect of the two edges is 

simultaneously considered is suitable for such cases. 

In this case study, the top surface normal deformation 

was calculated under a distributed load. 

The distributed load is Hertzian line pressure 

applied on the top plane of a steel block in full length 

d. The width of the distributed load is a. The pressure 

distribution is represented by Eq. (51). The dimensions 

of the steel block are Ay = 20a and Az = 10a. d changes 

from a to 10a (Fig. 8). Table 1 lists the parameters of 

the Hertz line contact. 

 
 

2 2

0
, ,

, 0,

a y
p x y p y a

a

p x y y a


 

 

         (51) 

The normal deformation along the x-axis on the top 

surface with different lengths of structure d is shown  

 

Fig. 8 Example of an elastic block under a Hertzian line load. 

Table 1 Parameters of the Hertzian line contact. 

Max.Hertzian pressure Pmax 0.5 GPa 
Elastic modulus E 201 GPa 
Poisson’s ratio σ 0.3 
Contact radius a 1.0 mm 

 

in Fig. 9. To underscore the two edges effect, the results 

with the half-space model were also calculated in the 

current study. The difference between the half-space 

results and those considering the two edges is evident 

for all the studied cases. The deformations of the cases 

that consider the two edges are substantially larger 

than the corresponding results of the half-space. The 

deformations of the cases with two free edges are 

due to the lack of adequate support at the edges as 

does the half-space. Besides, the maximum deformation 

appears at the edges with current method but is 

completely the opposite for the half-space model, the 

maximum deformation of which is located at the middle 

of the top surface. Given the decreasing length of the 

structure, the difference between the two models 

increases. For example, the calculated difference is 

2.55a × 10−3 at the middle of the x-axis for the d = 10a 

case, thereby leading to a 24.3% error if the half-space 

model was adopted. Such error reaches 68.8% when  

d = a.  

To simulate a tapered roller contact, the deformation 

of a wedge steel structure with different wedge angles 

was studied in this research. The parameters of such 

tapered structure are shown in Fig. 10. In this study, 

the length of the tapered structure d was fixed to  

10a. The value of the contact angle  changes from 

0° to 15°. The deformations on the top surface of the 

elastic block under the load described with Eq. (51) 

are presented in Fig. 11. Generally, the shape of the 

deformations that consider two side edges is con-

siderably different from that of the half-space model 

and the magnitude of deformation is relatively high 

when the two edges are considered. In the half-space 

model, the deformation of the top surface is symmetrical 

and unrelated to the contact angle of the tapered 

structure under the current pressure distribution. 

However, the shape of the actual deformation (con-

sidering two edges) is asymmetrical and changes 

with the contact angle of the tapered structure. The 

largest deformation appears at the edge of big end  
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Fig. 10 Profile of a general tapered structure. 

 

Fig. 11 Results of deformation along the x-axis on the top surface. 

with the smallest wedge angle and its value increases 

with the contact angle of the tapered structure. For 

example, the deformation of the tapered structure 

with a 15° contact angle reaches 24.30a × 10−3. If the 

half-space model is applied, then an 80.38% error will 

be obtained. By contrast, the magnitude of deformation 

at the other edge (the small end of the roller) decreases 

with the increase of the contact angle. For example, 

the magnitudes of deformation are 11.11a × 10−3 and 

8.14a × 10−3 for the tapered structure with contact 

angles of 3° and 15°, respectively.  

5 Correction factors 

The effect of a free side surface can be considerable 

when the applied load is close to the edge, but it 

diminishes when the load is far away. Typical results 

of an infinite block of finite width, 2d, under a Hertzian 

point load at its mid-span, as depicted in Fig. 12, are 

calculated and compared with the corresponding 

half-space results. Similar calculations are also per-

formed by replacing the block with a quarter space. 

The distance of the load centre from the free edge is d. 

Figures 13 and 14 give the ratio of deformation at the 

load centre and the edge of a block and a quarter 

space to that of a half space. The deformation of a 

block and quarter space is bigger than that of half 

 

Fig. 9 Results of deformation along x-axis on the top surface for different length d. 
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space due to the effect of free side surface. There 

exists no free side surface in the half space and its 

structure is thus stronger than the other two. Such 

differences become increasingly obvious as the load 

centre approaches the side edge. The four sets of data 

reveal exponential decay and asymptotic to 1. They 

are best fitted with empirical formula as, 

1 1* exp 2 * exp
1 2

o o
x x x x

y A A
t t

     
       

   
  (52) 

except the data of edge deformation of a quarter 

space in the range of d from 1a to 6a in Fig. 14, which 

are simply fitted by a second order of polynomial. 

The two curves in Fig. 14 merge at d = 5a, indicating 

that the effect of other free end surface of the block is 

negligible for d = 5a. The calculations for Figs. 13 and 

14 stop at d = 15a, where the deformations are less than 

5% of their counterparts at the load-centre. Therefore, 

the effect of a free edge surface is negligible for d 

greater than 15a. 

 

Fig. 12 Deformation of finite block under Hertzian point load 
at block centre. 

 

Fig. 13 Ratio of surface deformation at load centre to those of 
half space. 

 

Fig. 14 Ratio of surface deformation at the edge to those of half 
space. 

The coefficients of the curves are listed in Table 2. 

Correction factors for a quarter space and a block can 

be obtained from these empirical formulae. Note that 

these correction factors are independent of the elastic 

modulus of the material and the load, but dependent 

of Poisson’s ratio. Poisson’s ratio of 0.3 was herewith 

used in all the calculations. Therefore, the deformation 

at the edge and the load centre of a block or quarter 

space can be readily obtained, simply based on half- 

space calculations and the corresponding correction 

factors. 

Table 2 Coefficients of empirical formulae for correction factors. 

 0x  1A  1t  2A  2t  

Block 1.00615 0.39879 2.65777 0.62813 0.55126 Load centre 
/be e  Quarter-space 0.98933 0.20214 0.62766 0.20614 2.87168 

Block 0.98101 2.13160 7.32802 0.53780 1.13984 

Edge / b  Quarter-space For range of d from 1a to 6a, best-fitted by 2  y ax bx c  where a: –0.0041, b: –0.0989, c: 2.8271.
Beyond y=6a, same empirical formula of the block. 
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6 Conclusions 

This study developed a matrix algorithm to solve the 

internal stress field and deformation of an elastic wedge 

with two edges under surface loads. The principle 

of the proposed method is to transform the wedge 

problem into half-spaces by using transformation 

matrices. The transformation matrices are related 

only to the wedge shapes, materials and mesh scheme 

and not to the applied load. Two studies on stress 

distribution were conducted to verify the proposed 

matrix method.  

The effects of two free edges on the deformation of 

two wedge structures were studied with the proposed 

matrix method. The top surface deformation under 

Hertzian line pressure was evaluated. The maximum 

load reached 0.5 GPa and the material of the wedge 

structure was steel. The results showed that the two 

load-free edges can substantially increase deformation, 

particularly when the length of the normal wedge 

structure is short. Hence, a substantial error emerges 

if the inappropriate half-space model is adopted for 

such cases. The results of the tapered roller simulation 

show that deformation is considerably sensitive to 

the contact angle of the tapered roller. Moreover, the 

largest deformation appears at the edge with a small 

wedge angle under Hertzian line pressure. 

Correction factors for the deformation at the edge 

and the centre of Hertzian point load for different 

distances of the load from the free edge are expressed 

with empirical formulae. The deformation solutions 

of a finite block and a quarter space can be readily 

obtained based on the half-space solutions and the 

corresponding correction factors. 
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