
Friction 8(2): 343–359 (2020) ISSN 2223-7690 
https://doi.org/10.1007/s40544-019-0263-9  CN 10-1237/TH 

RESEARCH ARTICLE  

 
 

Rapid solution for analysis of nonlinear fluid film force and 
dynamic behavior of a tilting-pad journal bearing-rotor system 
with turbulent and thermal effects 

 

Yingze JIN, Zhaoyang SHI, Xiaojing ZHANG, Xiaoyang YUAN* 

Key Laboratory of the Education Ministry for Modern Design and Rotor-Bearing Systems, Xi’an Jiaotong University, Xi’an 710049, China 

Received: 11 April 2018 / Revised: 03 June 2018 / Accepted: 07 December 2018 

© The author(s) 2019. 
 

Abstract: To analyze the nonlinear dynamics of a tilting-pad journal bearing (TPJB)-rotor system with high 

accuracy and speed, the database method (DM) is modified to rapidly determine the nonlinear fluid film force 

(NFFF) of a TPJB while considering turbulent and thermal effects. A high-accuracy, large-capacity NFFF 

database for a single pad is constructed by numerically solving the turbulent adiabatic hydrodynamic model 

for five equivalent state variables of the journal, which are discretized in the pad coordinates. The remaining 

variables are not discretized in the DM. A combined linear and parabolic interpolation polynomial based on the 

database is established to accurately calculate the NFFF of the tilting pads; thus, the NFFF of a four-pad TPJB is 

obtained in the bearing coordinates. The DM is applied to analyze and compare the nonlinear dynamic 

behavior of a water-lubricated TPJB-Jeffcott rotor system with and without turbulent and thermal effects. The 

present DM solution without these effects and the previous DM solution are shown to be consistent. The 

results demonstrate the importance of the flow regime and the negligibility of temperature increases in the 

nonlinear dynamics of a water-lubricated TPJB. This work contributes to the accurate and efficient analysis of 

the nonlinear dynamics of high-speed TPJBs and low-viscosity-fluid-lubricated TPJBs. 
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1  Introduction 

Owing to good stability and adaptability, tilting-pad 

journal bearings (TPJBs) have been widely used in 

large rotating components, such as those in steam 

turbines, compressors, and nuclear reactor coolant 

pumps. Low-viscosity fluids, such as water, have been 

used as journal bearing lubricants in ship stern shafts, 

hydraulic turbines, and water pumps. In addition, 

water-lubricated TPJBs have been used in the nuclear 

reactor coolant pump of the third-generation AP1000 

reactor. Because of the nonlinear effect of the fluid film 

force of a TPJB, the unstable behaviors of a TPJB-rotor 

system, such as subharmonic rotor resonance and pad 

fluttering, cannot be accurately predicted using a linear 

model based on stiffness and damping coefficients, 

even though the linear theory for TPJBs is basically 

complete. However, an increased workload and 

calculation time are to complete a dynamic analysis 

of a TPJB-rotor system using the nonlinear model 

represented by Reynolds equation solutions. Therefore, 

researchers are currently pursuing a rapid and accurate 

method for calculating the nonlinear fluid film force 

(NFFF) of a TPJB to enable a simple and rapid nonlinear 

dynamic analysis of TPJB-rotor systems. 

Some researchers have used infinitely long and 

short journal bearing models to analyze the dynamic 

performance of a journal bearing-rotor system. Wang 

and Khonsari [1, 2] presented an analytical NFFF 

expression for an axially grooved infinitely long journal 
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Nomenclature 

Mj, Md  Dimensionless masses of the journal and disk

X, Y   Dimensionless Cartesian coordinates 

Xj, Yj  Dimensionless journal displacements 

Xd, Yd  Dimensionless disk displacements 

Xj″, Yj″  Dimensionless journal accelerations 

Xd″, Yd″ Dimensionless disk accelerations 

FX, FY  Dimensionless NFFF of the TPJB 

FXi, FYi Dimensionless NFFF of the i-th pad 

K      Dimensionless rotor stiffness 

G      Dimensionless gravitational acceleration 

εd        Unbalanced mass eccentricity ratio of the disk

τ      Dimensionless time 

i
M , J   Dimensionless torque and moment of inertia 

    of the i-th pad 

Kδ, Cδ  Dimensionless stiffness and damping of the 

    spring-damper 

δi, δi′, δi″ Dimensionless tilting angle, tilting velocity, 

    and tilting acceleration of the i-th pad 

α    Pad arc angle 

Pc    Pivot coefficient 

H    Dimensionless fluid film thickness 

P    Dimensionless fluid film pressure 

D, L   Pad diameter and length 

 , T , 
0

T  Dimensionless dynamic viscosity, fluid  

        film temperature, and inlet temperature 

ρ, cv, μ, T Fluid density, specific heat, dynamic  

    viscosity, and temperature 

Kϕ, Kλ, τc Turbulent flow coefficients 

ϕ, λ    Dimensionless circumferential and axial  

     coordinates 

A     Preload factor 

β     Pivot position angle 

ε, θ, ε′, εθ′ Eccentricity ratio, attitude angle, dimen- 

    sionless radial velocity, and tangential  

    velocity of the journal 

 ,  ,   ,    Equivalent eccentricity ratio, attitude

    angle, dimensionless radial velocity, and 

    tangential velocity of the journal 

max
( )   Maximum equivalent eccentricity ratio as a 

    function of   

ψ    Clearance ratio 

c    Radial clearance 

R    Pad radius 

Ree, Rec, Rem Effective Reynolds number, critical Rey-

    nolds number, and mean Reynolds number

n, ω   Journal speed and angular speed 

μ0, μm  Dimensionless inlet dynamic viscosity and  

    mean dynamic viscosity 

ϕ1, ϕ2  Position angles at the inlet and outlet  

    boundaries of the fluid film 

ρp, hp, J  Pad density, thickness, and moment of inertia

  
 

bearing considering the inlet pressure and position 

and investigated the influence of inlet pressure and 

position on the nonlinear dynamic performance of 

the bearing-rotor system. Chang-Jian [3] analyzed the 

nonlinear dynamics of a gear pair system supported by 

journal bearings using a long bearing approximation. 

Avramov and Borysiuk [4] studied the nonlinear 

dynamics of an asymmetrical one-disk rotor-bearing 

system based on the short bearing theory, and Shi  

et al. [5] studied the nonlinear dynamic behavior of a 

vertical rotor-bearing system based on the short bearing 

theory. Dakel et al. [6] investigated the linear and 

nonlinear dynamic behavior of an on-board rotor- 

bearing system using the short bearing model. Okabe 

and Cavalca [7] developed a short bearing model   

of a TPJB with turbulent effects and analyzed the 

dynamic behavior of a Jeffcott rotor-TPJB system with 

and without turbulent effects. Some researchers have 

reported an alytical models and calculation methods 

for the NFFF and pressure distribution and for nonlinear 

dynamic analysis of finite-length journal bearing-rotor 

systems. Zhang and Xu [8] proposed an NFFF model 

expressed by two symmetric positive definite matrices 

composed of three functions. Zhao et al. [9] investigated 

the linear and nonlinear unbalance response of a 

symmetrical single-disk flexible rotor-bearing system. 

The NFFF was obtained by solving the Reynolds 

equation and energy equation using the finite element 

method (FEM) at each time step. Xia et al. [10] provided 

two tools, a Ritz model and a one-dimensional FEM 

approach, for calculating the NFFF based on the free 

boundary theory and variational method under the  
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Reynolds boundary condition, which demonstrated 

high efficiency. Bastani and de Queiroz [11] applied 

correction functions to force models of infinitely long 

and short bearings and proposed a closed-form NFFF 

expression. Vignolo et al. [12] treated the Ocvirk 

number as an expandable parameter and proposed 

an approximate analytical solution of the Reynolds 

equation using the regular perturbation method. Sfyris 

and Chasalevris [13] added a set of particular solutions 

for the Reynolds equation to a general solution of the 

homogenous Reynolds equation using the method of 

separation of variables, thus obtaining a closed-form 

expression of lubricant pressure. Zhang et al. [14] 

expressed the pressure distribution of an infinitely 

long journal bearing as a circumferential separable 

function of pressure distribution and obtained an axial 

separable function of pressure distribution through the 

variational principle, thus providing an approximate 

analytical method for calculating the NFFF of a 

turbulent journal bearing. Hei et al. [15] obtained the 

NFFF by the method of separation of variables based 

on the variational principle and investigated the 

nonlinear dynamic behavior of a rod-fastening rotor- 

bearing system. Abu-Mahfouz and Adams [16] expanded 

the NFFF of a pad in a Taylor series, obtained   

the instantaneous linearized stiffness and damping 

coefficients, which were updated at each time step, and 

analyzed the nonlinear vibration of an unbalanced rotor 

supported by a three-pad TPJB under an on-pad 

load and a non-static biasing load. Wang et al. [17] 

established an NFFF model of a single pad through the 

method of separation of variables under the dynamic 

π fluid film boundary condition, resulting in a NFFF 

model of a four-pad TPJB based on the pad assembly 

method. 

In 2002, Chen et al. [18] proposed the database 

method (DM) to calculate the NFFF by introducing a 

speed parameter ranging from -1 to 1 to the mani-

pulative Reynolds equation. The effectiveness of the 

DM was verified by analyzing the nonlinear dynamic 

characteristics of an elliptical bearing-rigid rotor 

system. The DM presents a new approach for rapidly 

and accurately analyzing the nonlinear dynamics of 

journal bearing-rotor systems. Qin et al. [19] constructed 

a NFFF database of hydrodynamic bearings based on 

neural networks and studied the nonlinear motion 

characteristics of an elliptical bearing-rigid rotor  

system. Jin et al. [20] analyzed the nonlinear dynamic 

behavior, critical speed, and threshold speed of a 

supercritical rotor-bearing system using the DM based 

on the Poincare transformation. Ying et al. [21] studied 

the nonlinear dynamic response of a Jeffcott rotor-TPJB 

system with and without pad inertial effects using the 

DM. Lü et al. [22] investigated the nonlinear dynamics 

of a Jeffcott rotor supported by fixed-tilting-pad journal 

bearings using the DM, and Hei et al. [23] analyzed 

the nonlinear dynamic behavior of a rod-fastening 

rotor supported by fixed-tilting-pad journal bearings 

based on the DM. 

Based on the above research, the NFFF models and 

calculation methods can be categorized as follows:   

i) infinitely long and short bearing models; ii) analytical 

models of finite-length journal bearings; iii) numerical 

methods; iv) the DM. Because the DM is based on 

accurate numerical methods and interpolation methods, 

we expect that the DM can rapidly and accurately 

calculate the NFFF for finite-length journal bearings. 

However, the DM is generally applied with isothermal 

and laminar assumptions, which inevitably introduce 

errors in the calculation. These errors will increase for 

high-speed bearings and low-viscosity-fluid-lubricated 

bearings. 

In this paper, turbulent and thermal effects are 

applied in the DM to rapidly and accurately calculate 

the NFFF of a TPJB. The nonlinear dynamic behaviors 

of a water-lubricated TPJB-Jeffcott rotor system with 

and without the turbulent and thermal effects are 

compared and analyzed using the DM. The primary 

novelty of this work is as follows: i) the previous DM 

is modified by considering turbulent and thermal 

effects, but these effects are not introduced as discretized 

variables in the present DM; ii) the database capacity 

is far larger, and the NFFF data in the database are 

more accurate than in the previous database; iii) a 

combined linear and parabolic interpolation polynomial 

based on the database is established to calculate the 

NFFF of a TPJB more accurately. 

2 Mathematical model of the TPJB-rotor 

system 

A four-pad TPJB-Jeffcott rotor system is taken as the 

research object, as shown in Fig. 1. A brake spring- 

damper is set on the outlet edges of the third and fourth  
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Fig. 1 Model of a Jeffcott rotor supported by two four-pad 
TPJBs. 

pad backs of the TPJB to avoid fluttering of the two 

unloaded pads, including the rub impact between 

the pads and the journal. The dimensionless dynamic 

equations of the TPJB-rotor system can be expressed 

as follows: 
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where Mj and Md are the masses of the journal and 

disk, respectively; (Xj, Xd, Yj, Yd) and (Xj″, Xd″, Yj″, Yd″) 

are the displacements and accelerations, respectively, 

of the journal and disk in the X and Y directions;  

FX and FY are the NFFF of the TPJB in the X and Y 

directions, respectively; K is the rotor stiffness; G is the 

gravitational acceleration; εd is the unbalanced mass 

eccentricity ratio of the disk; τ is a time variable; 
i

M  

and J  are the torque and moment of inertia of the 

i-th pad, respectively; Kδ and Cδ are the stiffness and 

damping of the spring-damper, respectively; δi, δi′, and 

δi″ are the tilting angle, tilting velocity, and tilting 

acceleration of the i-th pad, respectively; α is the pad 

arc angle; and Pc is the pivot coefficient. All parameters 

are dimensionless, and the dimensional ratios utilized 

in this paper are shown in the Appendix. 

For the single pad shown in Fig. 2, the fluid film 

pressure distribution is governed by the Reynolds 

equation. The dimensionless dynamic Reynolds equation 

under incompressible turbulent flow conditions can  

 

Fig. 2 Coordinate system of a single pad. 

be written as follows: 

23 3

3 6
H P D H P H H

K L K        

          
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 (2) 

where H is the fluid film thickness; P is the fluid film 

pressure; D is the pad diameter; L is the pad length; 

  is the dynamic viscosity; Kϕ and Kλ are turbulent 

flow coefficients; and ϕ and λ are circumferential and 

axial coordinates, respectively. 

The dimensionless fluid film thickness equation can 

be expressed as follows: 

     1 cos cos siniH A


      


        (3) 

where A is a preload factor; β is the pivot position 

angle; ε is the journal eccentricity ratio; θ is the journal 

attitude angle; and ψ = c/R is the clearance ratio, where 

c is the radial clearance and R is the pad radius.  

Equation (3) can be transformed as an equivalent 

expression without A and δi: 

 1 cosH                   (4) 

After substituting Eq. (4) into Eq. (2), Eq. (2) can be 

derived as follows: 
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23 3

3 2 sin 6 cos

H P D H P
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      (5) 

where  ,  ,   , and    are the equivalent eccentri-

city ratio, attitude angle, radial velocity, and tangential 
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velocity of the journal, respectively, as derived in the 

Appendix. 

The fluid film temperature distribution is governed 

by the energy equation. The dimensionless adiabatic 

energy equation can be written as follows: 
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     (6) 

where T  is the fluid film temperature and τc is the 

turbulent flow coefficient. 

The Vogel viscosity-temperature relationship is 

adopted as follows: 

 1 2 3
expt t T t                  (7) 

where μ and T are the dynamic viscosity and tempera-

ture of the fluid film, respectively, with dimensionless 

forms of   and T . For a water film, t1, t2, and t3 have 

been calculated as 2.5016 × 10−5, 569.21773, and 134.17565, 

respectively, through a fitting method. 

The appropriate values of Kϕ, Kλ, and τc are given 

by the following [24, 25]: 
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where Ree is the effective Reynolds number, which can 

be expressed for three types of flow regime conditions 

determined by the critical Reynolds number Rec, 

including the laminar flow regime, transitional flow 

regime, and turbulent flow regime. Ree can be expressed 

as follows: 
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(9) 

where ρ is the fluid density; ω is the journal angular 

speed; Rec 41.2 R c ; and Rem = ρωRc/μm is the mean 

Reynolds number. μm is the mean dynamic viscosity, 

expressed as follows: 


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where μ0 is the inlet dynamic viscosity and ϕ1 and ϕ2 
are the position angles at the inlet and outlet bound-

aries of the fluid film, respectively. 

The dimensionless NFFF and torque of the pad can 

be written as follows: 





  

  


 

 

2

1

2

1

1

1

1

1

sin d d

cos d d

i

i

FX P

FY P









  

  
          (11) 

 


  
2

1

1

1
sin d diM P




             (12) 

Then, the dimensionless NFFF of the four-pad 

TPJB is 

4

1
i

i

FX FX


  , 
4

1
i

i

FY FY


             (13) 

3 Boundary conditions and computation 

For the pressure field, the classical Reynolds boundary 

conditions are adopted for Eq. (5): 

 1
, 0P    ,  2

, 0P    ,  
2

, 0P        ,     

 , 1 0P                  (14) 

For the temperature field, the fluid film temperature 

at the inlet boundary is usually set as the inlet tem-

perature 
0

T , and heat is assumed to be completely 

transmitted by the pad under reverse flow conditions. 

Thus, the boundary conditions for Eq. (6) are given as 

follows: 

 1
,T T                   (15) 

if in the reverse flow area, then let 
0

T T . 

The dynamic Reynolds equation, Eq. (5), and energy 

equation, Eq. (6), are solved using the finite difference 

method (FDM) with successive over-relaxation iterations. 

The entire fluid film area is divided into 21 × 17 grid 

nodes in the ϕ and λ directions, respectively. The 

central difference scheme is applied to the dynamic 

Reynolds equation, and the upwind difference scheme  



348 Friction 8(2): 343–359 (2020) 

 | https://mc03.manuscriptcentral.com/friction 

 

is applied to the energy equation. Relative iterative 

convergence for the pressure and temperature is 

achieved within 10−5 and 10−4, respectively. 

4 Database method and NFFF interpolation 

polynomial 

Through the treatment of Eq. (4), Eq. (2) is transformed 

into Eq. (5). The eccentricity ratio ε, attitude angle θ, 

and pad tilting angle δi are replaced by two new 

variables, the equivalent eccentricity ratio   and the 

equivalent attitude angle  , with value ranges of 

[0, 
max

( )  ] and [0, 2π], respectively. The derivation 

of 
max

( ) 
 

is given in the Appendix. The radial 

velocity ε′, tangential velocity εθ′, and pad tilting 

velocity δi′ are replaced by another two new variables, 

the equivalent radial velocity   and the equivalent 

tangential velocity  , which have wider theoretical 

value ranges. Here, consideration of the value ranges 

of  ,  , and the journal speed n is optional. Thus 

far, the seven state variables (ε, θ, ε′, εθ′, δi, δi′, n) 

representing the motion states of the journal and the 

i-th pad have been integrated into only five equivalent 

state variables (  ,  ,   ,   , n). After properly 

discretizing the five equivalent state variables within 

their respective value ranges, the NFFF database can 

be constructed by storing all sets of ( ,  ,   ,   , 

n) and the corresponding calculated NFFF values in a 

text file. The process for constructing the NFFF database 

is shown in Fig. 3. 

For an arbitrary set of seven state variables (ε, θ, ε′, 

εθ′, δi, δi′, n), the corresponding five equivalent state 

variables (  ,  ,   ,   , n) can be calculated using 

Eqs. (A1), (A2), (A3), and (A4); then, the corresponding 

NFFF (FXi, FYi) can be identified in the database. If the 

five calculated state variables, e.g., (
i
 , 

i
 , 

i
  , 

i
  , 

ni), are not included in the database, the NFFF will be 

evaluated by an interpolation method using the existing 

NFFF at the nodes closest to (
i
 , 

i
 , 

i
  , 

i
  , ni). The 

piecewise linear interpolation method for (
i
  , 

i
  , ni) 

and the piecewise quadratic interpolation method 

for (
i
 , 

i
 ) are used to construct an interpolation 

polynomial of FXi and FYi, given as follows: 

i
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T
1 2 72CFX cfx cfx cfx    , 

T
1 2 72CFY cfy cfy cfy             (18) 

where cfx1–72 and cfy1–72 are the polynomial 

coefficients of FXi and FYi, respectively, which can be 

calculated from the database using the NFFF at the 

nodes closest to (
i
 , 

i
 , 

i
  , 

i
  , ni). The NFFF of the 

other pads can also be conveniently obtained from 

the database using a coordinate transformation of the  

 

Fig. 3 Flow chart of the NFFF database construction. 
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journal attitude angle. Equation (16) is a combined 

linear and parabolic interpolation polynomial with five 

equivalent state variables, and the NFFF can be rapidly 

calculated using an analytical expression based on the 

database instead of using numerical iterative methods. 

The process for accessing the NFFF database is shown 

in Fig. 4. 

When constructing the NFFF database, the optional 

value ranges of   ,   , and n are tentatively taken 

as [–0.3, 0.3], [–0.3, 0.3], and [1000, 9000], respectively. 

After numerous calculation result comparisons, it is 

found that when  ,   ,   , and n are discretized 

into 31, 11, 11, and 11 nodes with equal intervals, 

respectively, and   is discretized into 25 nodes with 

unequal intervals—4 equal intervals in [0, 
max

( ) 3  ], 

8 equal intervals in [
max

( ) 3  ,
max

2 ( ) 3  ], and 12 

equal intervals in [
max

2 ( ) 3  ,
max

( )  ], the DM has a 

suitable calculation precision and speed. Thus, these 

intervals are used to predict the axis orbits, dynamic 

fluid temperature, and pad motion of the TPJB-rotor 

system. 

5 Numerical results and discussion 

A precise time-integration method is adopted to 

solve Eq. (1). In this study, the time step for direct  

 

Fig. 4 Flow chart for accessing the NFFF database. 

numerical integration is specified as  2500 , and the 

computational data under the steady state condition 

are extracted and analyzed. The calculation is per-

formed by MATLAB using an Intel Core i7-5500U at 

2.40 GHz. The structural and operational parameters 

of the TPJB-rotor system are listed in Table 1, and the 

expression of the pad moment of inertia is given in 

the Appendix. Because water has been employed in the 

nuclear reactor coolant pump of the third-generation 

AP1000 reactor, water is chosen as the TPJB lubricant 

to study the effects of turbulence and temperature. 

5.1 Comparison of present DM and previous  

DM [18] 

In this section, the research object is a single pad of the 

water-lubricated TPJB, whose pivot position angle is 

180°. A basic comparison of the present DM and the 

previous DM is presented in Table 2. It is observed 

that the present DM, which considers turbulent and 

thermal effects, has a very large database capacity 

and a large construction cost. Figure 5 compares the 

dimensionless NFFF calculated by the present DM 

and those obtained by the FDM and the previous DM. 

The solution obtained from the present DM with 

turbulent and thermal effects is in good agreement   

Table 1 Structural and operational parameters of the TPJB-rotor 
system. 

Parameter Value 

Pad radius 104 mm 

Pad length 195.5 mm 

Preload factor 0 

Pivot coefficient 0.5 

Pad arc angle 80° 

Clearance ratio 0.000928 

Pad moment of inertia 0.003 kg·m² 

Spring-damper stiffness 1×105 N/m 

Spring-damper damping 1×103 N·s/m 

Inlet fluid temperature 30 °C 

Fluid density 995.7 kg·m-3 

Fluid specific heat 4174 J/(kg· °C) 

Journal mass 50 kg 

Disk mass 300 kg 

Unbalanced mass eccentricity ratio 0.2 

Rotor stiffness 2.5 × 108 N/m 
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with the FDM solution with the same effects. However, 

the values are larger than those for the previous DM 

solution in some regions because the previous DM 

is based on isothermal and laminar assumptions. 

Moreover, the present DM solution without turbulent 

or thermal effects is in good agreement with the pre-

vious DM solution, demonstrating that the constructed 

database is suitable. Figure 6 presents ten cycles of  

Table 2 Basic comparison of the present DM and the previous DM. 

 Present DM  
(Turbulent and thermal) 

Present DM 
(Laminar and isothermal) Previous DM 

FDM grid 20 (φ) × 16 (λ) 20 (φ) × 16 (λ) 20 (φ) × 16 (λ) 

Variables to be discretized 
(node number) 

 ,  ,   ,   , n  
(25, 31, 11, 11, 11) 

 ,  ,   ,    
(25, 31, 11, 11) 

 ,  , q 
(25, 40, 20) 

Node interval Unequal for   Unequal for   Equal 

Interpolation method Quadratic and linear combination Quadratic and linear combination Linear 

Database capacity 79.9 M 6.24 M 2.43 M 

Database construction time 9.6 h 5.6 min 5 min 

 

Fig. 5 Present DM, FDM, and previous DM solutions for the dimensionless NFFF as a function of  . 
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transient journal center orbits calculated by the present 

DM and those determined by the previous DM at 

3,000 rpm. The present DM solution without turbulent 

or thermal effects is in good agreement with the 

previous DM solution, while the present DM solution 

with these effects is closer to the bearing center and 

has a smaller orbit amplitude than the previous DM 

solution. The calculation costs for ten cycles of transient 

journal center orbits for the present DM and previous 

DM are shown in Table 3. It is observed that the 

calculation cost for the present DM with turbulent and 

thermal effects is approximately nine times larger 

than that with the previous DM; however, this cost is 

acceptable for performing nonlinear dynamic analysis. 

5.2 Synchronous rotor motion with and without 

turbulent and thermal effects 

Figure 7 shows the journal center orbits with and 

without turbulent and thermal effects. From Fig. 7, it 

can be seen that the orbit centers are approximately 

located at the Y axis of the TPJB and move closer to 

the TPJB center as the speed increases. Moreover, the 

journal orbit amplitude increases as the speed increases. 

The journal orbit amplitudes with turbulent and 

thermal effects are smaller than those without these 

effects, except at 1,000 rpm. At 6,000 rpm, the journal 

orbit amplitude with turbulent and thermal effects  

is nearly three times smaller than the orbits without 

these effects. The orbits at 2,000 rpm–6,000 rpm with 

turbulent and thermal effects are much closer to the 

TPJB center than those without these effects. 

Figure 8 shows the disk center orbits with and 

without turbulent and thermal effects. From Fig. 8,  

it can be seen that the trends for the disk center  

orbits are similar to those for the journal center orbits. 

However, the disk orbit amplitudes are larger than 

 

Fig. 6 Present DM and previous DM solutions for ten cycles of transient journal center orbits at 3,000 rpm. 

Table 3 Calculation time for ten cycles of transient journal center orbits at 3,000 rpm with the present DM and previous DM. 

Present DM (Turbulent and thermal) Present DM (Laminar and isothermal) Previous DM 

76 s 21 s 8 s 

 

Fig. 7 Journal center orbits (a) with and (b) without turbulent and thermal effects. 
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the journal due to the rotor flexibility. The disk orbit 

amplitudes with turbulent and thermal effects are 

slightly smaller than those without these effects. 

The temperature field of the fluid film on the first 

pad at 1,000 rpm and 6,000 rpm without an unbalanced 

mass is shown in Fig. 9. It can be seen that the fluid 

film temperature is almost constant in the λ direction 

and increases almost linearly with increasing ϕ. The 

temperature increases by 2.5 °C at 6,000 rpm and by 

only 0.2 °C at 1,000 rpm. The temperature rise of the 

fluid film for the water-lubricated TPJB-rotor system 

at 1,000 rpm–6,000 rpm is too small (0.2 °C–2.5 °C) to 

have a substantial effect; thus, only the flow regime 

plays an important role in the dynamic analysis. For 

1,000 rpm, Ree = 0 and Kϕ = Kλ = τc = 1, which correspond 

to laminar flow conditions; thus, the same axis orbit 

is obtained regardless of whether turbulent and thermal 

effects are considered. For 2,000 rpm–6,000 rpm, Kϕ > 1, 

Kλ > 1, and τc > 1, indicating that the TPJB-rotor system 

is in a transitional flow or even the turbulent flow 

 

Fig. 9 Temperature field of the fluid film on the first pad at 
1,000 rpm and 6,000 rpm without an unbalanced mass. 

regime, which embodies in a higher dynamic viscosity. 

The increase in fluid viscosity will lead to an increased 

NFFF; thus, the calculated orbits are closer to the 

bearing center. 

5.3 Nonlinear journal behavior with and without 

turbulent and thermal effects 

Figures 10 and 11 show the journal center orbits and 

Poincaré maps for six representative speeds with and 

without turbulent and thermal effects, respectively. 

At these speeds, the orbits have distinct nonlinear 

characteristics, and a substantial difference is observed 

between the nonlinear characteristics with and without 

turbulent and thermal effects. At 6,500 rpm and 

6,800 rpm, the journal motion is synchronous when 

turbulent and thermal effects are considered (see 

Figs. 10.1 and 10.2), while the journal exhibits period-4 

motion and period-3 motion, respectively, when 

turbulent and thermal effects are neglected (see  

Figs. 11.1 and 11.2). At 7,600 rpm, the journal exhibits 

period-2 motion regardless of whether turbulent and 

thermal effects are considered (see Figs. 10.3 and 11.3), 

but there exist significant differences, such as in  

the amplitude and form, between the two orbits. At 

8,200 rpm, a period-3 motion arises for the journal in 

the system when turbulent and thermal effects are 

considered (see Fig. 10.4); however, the motion of the 

journal is approximately 4-periodic when turbulent and 

thermal effects are neglected, which can be obtained 

from the four points of the Poincaré map (see Fig. 11.4). 

At 8,300 rpm, the journal displays period-7 motion 

when turbulent and thermal effects are included (see 

Fig. 10.5), while a period-2 motion arises for the journal 

when turbulent and thermal effects are ignored (see  

 

Fig. 8 Disk center orbits (a) with and (b) without turbulent and thermal effects. 
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Fig. 11.5). At 8,900 rpm, a period-8 solution is obtained 

for the journal when turbulent and thermal effects 

are considered (see Fig. 10.6). However, in Fig. 11.6, 

the motion trajectory is highly disordered and the 

Poincaré mapping points are clustered in groups; thus, 

the journal exhibits chaotic motion when turbulent 

and thermal effects are neglected. 

5.4 Vibration response of four pads with and 

without turbulent and thermal effects 

Figures 12 and 13 show the time domain waveforms 

and the spectrograms for the four pads at 6,500 rpm  

with and without turbulent and thermal effects, 

respectively. The frequency ratio in the spectrogram 

refers to the ratio of pad vibration frequency to rotor 

rotational frequency. As shown in Fig. 12, when 

turbulent and thermal effects are considered, the 

motions of the four pads are all synchronous, and the 

vibration frequencies of the four pads primarily 

match the rotor rotational frequency. Figure 13 shows 

that when turbulent and thermal effects are neglected, 

a subsynchronous vibration of the four pads arises in 

the system, which can be observed from three fluttering 

frequency components (frequency ratios of 1/4, 1/2, 

and 3/4) lower than the rotor rotational frequency in 

 

Fig. 10 (a) Journal center orbits; (b) Poincaré maps at 6,500 rpm, 6,800 rpm, 7,600 rpm, 8,200 rpm, 8,300 rpm, and 8,900 rpm with 
turbulent and thermal effects. 
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the spectrograms. 

Figures 14 and 15 show time domain waveforms 

and spectrograms for the four pads at 8,900 rpm with 

and without turbulent and thermal effects, respectively. 

Figure 14 shows that when turbulent and thermal 

effects are considered, seven obvious fluttering fre-

quency components arise (frequency ratios of 1/8, 1/4, 

3/8, 1/2, 5/8, 3/4, and 7/8) in the spectrograms, indicating 

that the subsynchronous vibration of the four pads is 

stronger and more complex than that at 6,500 rpm. 

As shown in Fig. 15, when turbulent and thermal 

effects are ignored, there exist numerous irregular,  

continuous, and broadband frequency components 

in the spectrograms in addition to the main rotor’s 

rotational frequency; thus, chaotic vibrations may 

occur for the four pads in the system. 

6 Conclusions 

The current work builds upon the DM to calculate 

the NFFF of a TPJB while considering turbulent and 

thermal effects. An NFFF database with high accuracy 

and large capacity is compiled, and a combined linear 

and parabolic interpolation polynomial of the NFFF 

 

Fig. 11 (a) Journal center orbits; (b) Poincaré maps at 6,500 rpm, 6,800 rpm, 7,600 rpm, 8,200 rpm, 8,300 rpm, and 8,900 rpm without 
turbulent or thermal effects. 
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for a single pad is constructed. The DM is applied to 

perform nonlinear dynamic calculations of a water- 

lubricated TPJB-rotor system. The results show that 

the present DM solution is in good agreement with 

the FDM solution when turbulent and thermal effects 

are considered and agrees with the previous DM 

solution when considering laminar and isothermal 

effects. Significant differences arise in the results 

with respect to nonlinear dynamic behavior, such  

as synchronous motion, period-doubling or sub-

synchronous motion, and chaotic motion, for a 

water-lubricated TPJB-rotor system with and without 

turbulent and thermal effects. For synchronous motion, 

the journal center orbit is closer to the TPJB center, 

and the orbit amplitude is generally smaller when 

considering turbulent and thermal effects compared 

with the results obtained without turbulent or thermal 

effects. These differences are primarily caused by the 

flow regime, rather than the temperature increase of 

the water film. 

 

Fig. 12 (a) Time domain waveforms; (b) spectrograms of the four pads at 6,500 rpm with turbulent and thermal effects. 

 

Fig. 13 (a)Time domain waveforms; (b) spectrograms of the four pads at 6,500 rpm without turbulent or thermal effects. 
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Appendix 

The ratio of a normal variable to a dimensionless 

variable is called a dimensional ratio. In this paper, 

the dimensional ratios are c for X, Y, H, εd, and ε; ωc 

for ε′ and εθ′; ω2c for X″, Y″, and G; μ0L/(ωψ3) for Mj 

and Md; 2μ0ωL/ψ3 for K and Kδ; μ0ωRL/ψ2 for FX and 

FY; 1/ω for τ; μ0ωR2L/ψ2 for 
i

M ; μ0R2L/(ωψ2) for J ; 

2μ0L/ψ3 for Cδ; ω for δi′; ω2 for δi″; 2μ0ω/ψ2 for P; μ0 

for  ; L/2 for λ; and μ0ω/(ρcvψ2) for T , where cv is the 

fluid specific heat. 

 ,  ,   , and    can be derived as follows: 

 

Fig. 14 (a) Time domain waveforms; (b) spectrograms of the four pads at 8,900 rpm with turbulent and thermal effects. 

 

Fig. 15 (a) Time domain waveforms; (b) spectrograms of the four pads at 8,900 rpm without turbulent or thermal effects. 
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This paper takes the first pad as an example to 

derive the formula of 
max

( )  . In the four-pad TPJB, 

the maximum journal eccentricity ratio εmax and the two 

maximum tilting angles of the pad (δmax1, δmax2) are 
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Then, the dimensionless fluid film thickness at the 

pivot of the pad is 

  p max1 2 2H A            (A8) 

The equivalent journal eccentricity ratios ( max1, 

max2) and the corresponding equivalent journal attitude 

angles (
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Thus, 
max

( )   can be derived as follows: 
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The moment of inertia of the pad can be derived as 
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where ρp and hp are the pad density and thickness, 

respectively. 
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