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Abstract: In this study, experimental wear losses under different loads and sliding distances of AISI 1020 steel 

surfaces coated with (wt.%) 50FeCrC-20FeW-30FeB and 70FeCrC-30FeB powder mixtures by plasma transfer arc 

welding were determined. The dataset comprised 99 different wear amount measurements obtained experimentally 

in the laboratory. The linear regression (LR), support vector machine (SVM), and Gaussian process regression 

(GPR) algorithms are used for predicting wear quantities. A success rate of 0.93 was obtained from the LR 

algorithm and 0.96 from the SVM and GPR algorithms. 
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1  Introduction 

Wear and friction cause significant economic losses in 

mechanically driven machine parts [1]. For this reason, 

there is a strong demand for materials that increase 

the service life of engineering machines and parts by 

reducing wear. The surface coating process is one  

of the effective methods used to improve the wear 

resistance performance of softer and tough-substrate 

material surfaces [2]. Wear-resistant surfaces are 

important applications in prolonging the life of machine 

parts in mechanical contact with each other. Resistance 

to wear can be increased by depositing hard coatings 

such as carbide, nitride, or boride on the surfaces of 

metallic machine parts [3].  

For coating surfaces by melting and depositing, 

different welding methods are used, such as metal 

inert gas welding, metal active gas welding, plasma 

transferred arc welding (PTAW) [4], gas tungsten 

arc welding, submerged arc welding, and flux cored 

arc welding [5]. The PTAW method has a number of 

advantages compared to other conventional welding 

techniques, such as a high deposition rate, lower heat 

input, excellent arc stability [6], intensive energy 

density, high welding speeds, and low thermal 

distortion of the parts [7]. 

Because of their economic properties, iron-based 

alloys are melted and deposited on the surfaces and 

wear-resistant coating layers are formed. The FeCrC 

alloys with high Cr and C contents are typically 

preferred because of the formation of hard carbides 

such as M7C3 and M23C6 in surface coating applications 

[8]. When the strong carbide forming elements, such 

as Nb, V, W, and Ti together with FeCrC alloys    

are melted together, the hardness of the carbides 

formed increases and fine-grained carbides such as 

MC are formed [9]. Another method of increasing 

wear resistance of the surfaces is boriding; however, 

the process is extremely slow when a conventional 

thermochemical process is used. Therefore, to obtain 

hard borides on the surfaces, pure boron and FeB 

powders are melted and deposited on substrate 

surfaces with welding [10].  

Numerous studies are required to determine the wear 
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resistance of abrasion-resistant tribological materials 

to be used under different operating conditions, and 

these experiments could be time-consuming [11]. 

Thus, in order to reduce the number of experiments 

and reduce the cost of experimental studies, there has 

been an increasing need to develop machine learning 

algorithms, which in recent years have been able to 

make use of experimental data to predict wear behaviors 

of materials [12]. 

Machine learning algorithms have been previously 

used for wear loss testing in different studies. In the 

study conducted by Batista et al., wear resistance was 

predicted by using the linear regression (LR) algorithm 

[13]. In another study, the thickness of the abrasion 

resistant hard chrome layer was predicted using  

the support vector regression (SVM) algorithm [14]. 

Tool wear was predicted using the Gaussian mixture 

regression model in Ref. [15]. Artificial neural networks 

(ANN) are among the most commonly used methods 

for predicting wear loss [16]. A further study predicted 

wear loss using the ANN algorithm [17]. Tan et al. used 

SVM and ANN algorithms to predict wear loss and 

friction coefficients [18]. 

In this study, different machine learning methods 

were used to predict wear losses of low carbon steel 

surface alloyed by the PTAW method using Fe-Cr- 

W-B-C and Fe-Cr-B-C elements. The SVM and Gaussian 

process regression (GPR) algorithms were applied, as 

well as the LR algorithm that is frequently used for 

the prediction of quantitative values. In this study, 

the interaction LR, which is a different version of the 

LR algorithm, the kernel function cubic in the SVM 

method, and the rational quadratic in the GPR method 

are used.   

2 Data acquisition 

In our study, the experimental wear characteristics  

of 11 coated specimens, whose microstructure and 

mechanical properties were determined in previous 

studies, were utilized and machine learning algorithms 

were developed to estimate the wear amounts [19, 20]. 

Coating operations were performed, according to the 

parameters presented in Table 1, by the PTAW method 

and AISI 1020 steel was used as the substrate material. 

The hardness of the coating layers was measured by 

applying a 200 g mass from the midpoint of the top 

surface of the coating to the primary material at 

0.25 mm intervals with a microhardness test device. 

The average microhardness values of the samples are 

presented in Table 2. Wear tests were conducted in a 

“block-on-disc” adhesive wear tester at normal loads 

of 19.62 N, 39.24 N, and 58.86 N. The abrasive was 

15-mm-diameter AISI 52100 bearing steel and the 

samples were worn at a total of 900 m sliding distance 

for each load. Weight losses were measured with a 

precision scale with a 10−5 g accuracy after every 300 m. 

The wear losses of the specimens at 19.62 N, 39.24 N, 

and 58.86 N loads are shown in Figs. 1–3. 

In order to be able to train the machine learning 

algorithms, powder compositions, average micro-

hardness of the coating layers (HVav), applied load, 

and sliding distance are given as input parameters. 

Experimental wear loss results obtained in the laboratory  

Table 1 PTAW production parameters. 

Sample S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

Current (A) 140 160 120 140 160 120 140 160 120 140 160

Coating speed (m/min) 0.15 0.15 0.1 0.1 0.1 0.15 0.15 0.15 0.1 0.1 0.1 

Coating powder composition (wt.%) 50FeCrC-20FeW-30FeB 70FeCrC-30FeB 

Voltage (V) 19-20 

Plasma gas (Argon) flow rate (L/min) 0.5 

Shielding gas (Argon) flow rate (L/min) 8 

Table 2 Average microhardness values of coating layers. 

Sample S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 

HV(av) 1217 1030 995 795 725 1096 991 858 812 703 621 

HV(av): Average microhardness of coating layer 
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Fig. 1 Wear loss according to sliding distance at 19.62 N. 

 

Fig. 2 Wear loss according to sliding distance at 39.24 N. 

 

Fig. 3 Wear loss according to sliding distance at 58.86 N. 

are taken as output parameters. The aim of the model 

is to predict the wear losses depending on the input 

parameters (powder compositions, average micro-

hardness of the coating layers (HVav), applied load 

and sliding distance). 

3 Machine learning algorithms 

3.1 Linear regression 

Regression analysis involves an answer variable y 

and a single predictor variable x. This is the simplest 

form of regression and is used as the linear function 

of y, x, and is expressed as follows [21]: 

y b wx                   (1) 

It is assumed that the variance of y is constant and 

that b and w are the regression coefficients that 

determine the y-intersection and slope, respectively. 

Therefore, the regression coefficients w and b can be 

considered as weights, as follows [21]: 

0 1
y w w x                  (2) 

These coefficients can be solved by the least squares 

method, which estimates the most suitable straight 

line that minimizes the error between the actual data 

and the estimate of the line. Variable D is the set of 

values for some populations, x is the response variable, 

and y is the set of values associated with the response 

variable x. The training set includes the data points of 

the form (x1, y1), (x2, y2),…, (xD, yD), D. Regression coeffi-

cients can be estimated using Eqs. (3) and (4) [21]. 
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where x  is the average of 
1 2
, ,...,

D
x x x , and y  is the 

average of 
1 2
, ,...,

D
y y y . The 

0
w  and 

1
w  coefficients 

typically provide good approximations to complex 

regression equations. In this study, we used the 

interaction LR. 

3.2 Support vector machine 

The SVM was presented in 1995 as a machine learning 

algorithm by Cortes and Vapnik to achieve a solution 

for regression and classification problems [22]. The 

SVM algorithm has numerous variations according 

to the kernel function used. There is no precise infor-

mation regarding which core function will yield better 

results [23]. 

In the SVM algorithm 
1 2

{ , , , }
n

X x x x   is the input 

variable, 
1 2

{ , , , }
n

T t t t   is the target vector, and 

1 2
{ , , , }

n
Y y y y   is the SVM result vector. Equation (5)  

represents a linear regression model that establishes 

a relationship between input and output values. In 

Eq. (5), 
i

x  is the input sample and 
i

y  is the output 
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sample, w is the weight, and b is the bias value [24].  

T

i i i
y w x b                 (5) 

In this study, a quadratic function is used as the 

kernel function in the SVM algorithm. The quadratic 

function is as follows [24]: 

2

quad
(( ) ( ( ) ))L f x y f x y            (6) 

The solution is given by the following equation, 

which is the resultant of the optimization problems. 

This equation is simplified by using the Karush–Kuhn– 

Tucker conditions, which are given in Eqs. (7) and (8) 

[24].   
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with constraints [24]: 
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The Cubic kernel function is as follows [24]: 

                
31 1

, 1 , , min , min ,
2 6

K x x x x x x x x x x  

(10) 

The regression function is as follows [24]: 
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3.3 Gaussian process regression 

The GPR is a set of infinitely random variants in which 

any finite subset has a common Gaussian distribution. 

The Gaussian multivariate distribution can be explained 

as a natural extension of functions, that is, the mean 

vector is infinitely long and the covariance matrix has 

infinite size [25]. 

The vector 
n

x  indicates a specific position in the 

input field, and 
1

{ }n N

N n
x x   corresponds to the set of 

training input vectors 
1

{ }n N

N n
y y   target vectors. The  

GPR ( )f x  can be precisely defined by the mean and 

covariance (or kernel) functions. These functions are 

specified individually and comprise a set of parameters, 

the so-called hyperparameter, as well as a specification 

of a functional form. Before the training data is 

evaluated, the average function is used to define the 

expected value of the function at any point in the input 

field. The average function is as follows [25, 26]: 

( , ) ( ( ))k x x E f x               (12) 

The idea of similarity between data points is essential 

for audited learning. This is a basic similarity hypothesis 

that could have an essentially similar target value, with 

the nearest entries x, so that training points close to 

another point can be informative about that estimate of 

that point. In the GPR parity, the covariance function 

defines closeness or similarity. The covariance function 

for the two functional values evaluated at x and x set 

points is as follows [25, 26]: 

( , ) ( ( ) ( ))( ( ) ( ))k x x E f x m x f x m x            (13) 

The knowledge of this covariance function makes it 

possible to obtain a function value when the knowledge 

of the other is taken into consideration. Therefore, in the 

covariance function k(x, x′), x and x′ can be interpreted 

as the measure of the distance between input points. 

The Gaussian process can be written as follows [25, 26]: 

( ) ~ [ ( ), ( , )]f x GP m x k x x           (14) 

The basic GPR comprises a simple zero mean and 

quadratic exponent synonym functions. The zero mean 

function for all x values is as follows [26]: 

( ) 0m x                   (15) 

In this study, we used the rational quadratic 

covariance function for the kernel function. The rational 

quadratic kernel function equation is as follows [27]: 
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4 Results and discussion 

In this study, we proposed to determine the wear loss 

of AISI 1020 surfaces alloyed by the PTAW method, 
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and LR, SVM, and GPR were used as the machine 

learning methods to design the model. Four different 

values were taken as input parameters. While the 

interaction function is used in the LR algorithm, the 

cubic function is used in the kernel function in the 

SVM algorithm, and the rational quadratic function 

is used in the GPR algorithm. Cross-validation was 

used during testing of the constructed model. This 

method is taken as k-value 5 and all data is provided 

as test and training data for the k-fold cross-validation 

[25]. Three different evaluation criteria were applied. 

The applied criteria are RMSE (Eq. (17)), R-squared 

(Eq. (18)), and MAE (Eq. (19)) [25].  
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It was observed that the rational quadratic GPR 

method yielded more efficient results in the RMSE, 

R-squared, and MAE results. The quadratic rational 

GPR method yielded the best result in the two 

evaluation criteria. An R-squared value of 0.96 was 

achieved in the cubic SVM and rational quadratic 

methods, while a success rate of 0.93 was obtained in 

the interaction LR method. The determined values are 

presented in Table 3. All the MATLAB scripts of the 

related algorithms in the study were self-coded, and the 

MATLAB platform was licensed by the Firat University. 

The observed and predicted values of the proposed 

model are shown in Fig. 4. As can be seen, the values 

predicted by the model proposed in the study are in 

good agreement with the experimental. The LR, SVM, 

and GPR results are compared in Fig. 5. 

Using the proposed model in the manufacturing 

industry for the production of surface-coated wear- 

resistant parts will result in numerous advantages. 

Among these advantages are critical aspects such as 

reducing required manpower, reducing production 

costs, and preventing time lost conducting experiments. 

The proposed model is expected to be used specifically 

in the production process of parts that are subjected 

to high wear and used in the rolling industry, 

agricultural machinery, and mining industry, such as 

milling and crushing. 

Table 3 Performance of methods for predicting wear losses. 

 
Linear regression 

(interaction 
linear) 

SVM  
(cubic SVM) 

Rational 
quadratic 

GPR 

RMSE 0.86 0.70 0.69 

R-Squared 0.93 0.96 0.96 

MAE 0.69 0.55 0.52 

 

Fig. 4 Experimental and predicted wear losses: (a) LR results, (b) Cubic SVM results, and (c) rational quadratic GPR results. 
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5 Conclusions 

The wear amounts of the surface coatings FeCrC, 

FeW, and FeB ferro-alloys, were predicted by using  

machine learning algorithms. It was observed that 

the wear amount could be predicted by the proposed 

model by using the machine learning algorithms. With 

the proposed model, time loss, production costs, and 

man-hours could be saved. 

The LR, SVM, and GPR algorithms were used in 

the machine learning to predict the amount of wear. 

The success rate of the LR algorithm was the lowest, 

while the success rates of the SVM and GPR algorithms 

were similar; R-squared was calculated as 0.93 in the 

LR algorithm, and 0.96 in the SVM and GPR algorithms. 

Although the R-squared values were the same, the GPR 

algorithm yielded better results with little difference 

in the RMSE and MAE values. It was observed that  

a more efficient model could be created by using the 

GPR algorithm, which yielded the best results among 

the proposed machine learning algorithms when the 

amount of wear was predicted. 
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