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Abstract: In the numerical study of rough surfaces in contact problem, the flexible body beneath the roughness 

is commonly assumed as a half-space or a half-plane. The surface displacement on the boundary, the 

displacement components and state of stress inside the half-space can be determined through the convolution 

of the traction and the corresponding influence function in a closed-form. The influence function is often 

represented by the Boussinesq-Cerruti solution and the Flamant solution for three-dimensional elasticity and 

plane strain/stress, respectively. In this study, we rigorously show that any numerical model using the above 

mentioned half-space solution is a special form of the boundary element method (BEM). The boundary integral 

equations (BIEs) in the BEM is simplified to the Flamant solution when the domain is strictly a half-plane for 

the plane strain/stress condition. Similarly, the BIE is degraded to the Boussinesq-Cerruti solution if the domain 

is strictly a half-space. Therefore, the numerical models utilizing these closed-form influence functions are the 

special BEM where the domain is a half-space (or a half-plane). This analytical work sheds some light on how 

to accurately simulate the non-half-space contact problem using the BEM. 
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1  Introduction 

Boundary element method (BEM) is a numerical 

method used to approximate the solutions of mechanics 

problems using the boundary integral equation (BIE). 

It was first used in a paper by Brebbia and Dominguez 

[1] in 1977. For a linear elastostatic problem, it leads 

to an integral equation of the tractions and surface 

displacements over the boundary. Therefore, this 

method is also known as the boundary integral equation 

(BIE) method. The development of the computer 

technology makes BEM a powerful numerical methods 

and a general-purpose solver for different problems 

with arbitrary boundary. In the elastostatic problem, 

the BEM can be described as the Betti’s reciprocal 

theorem (or the Somigliana identity) with the Kelvin’s 

solution (or Mindlin’s solution) as the auxiliary solution. 

By discretizing the boundary, performing the numerical 

integration over each boundary element and assembling 

the solution matrix, the unknown (either the surface 

displacement or traction per node) can be solved 

numerically from the system of linear equations. The 

main advantage of BEM for the elastostatic problem 

is that only the boundary needs to be discretized. 

The entire domain does not need to be discretized 

regardless of its size, if the body load is neglected. 

Additionally, the evaluation of the internal values 

inside the domain is exact and does not rely on the 

nodal density of the domain.  

The BEM is first applied to the contact mechanics 

problem by Anderson et al. [2] and later on widely 

used in many other contact mechanics problems [3−6]. 
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Since the conventional BEM1 results in a dense and 

unsymmetric matrix which requires 2( )O N  memory 

and 3( )O N  operations for solving the system of linear 

equations using the Gauss elimination [7] where N is 

the number of nodes. For a reasonable computational 

time, a conventional BEM may be applied to the 

problem with 105 nodes or less. This is the main 

reason why the contact interfaces in those work  

are represented by (piece-wise) simple curves and 

discretized with few points. In those work, most of 

the contact domains are finite and two-dimensional. 

The spatial (three-dimensional) contact needs more 

boundary nodes and thus longer computational time. 

Therefore, the axisymmetric domain is commonly 

studied for the sake of low computational time. This 

disadvantage may be overcome by the fast multipole 

BEM [7]. 

Long before the birth of this numerical method, its 

fundamental, i.e., the boundary integral equation, has 

been intensively used by Muskhelishvili [8], Galin [9], 

Timoshenko and Goodier [10], Gladwell [11], Johnson 

[12], etc., in the contact mechanics to find the analy-

tical solutions. This is due to the nature of the contact 

mechanics where most of the interesting solutions (e.g., 

contact pressure, contact area, surface displacement, 

etc.,) are on the contact interface (i.e., the boundary). 

In nearly all those work, the domain is assumed to 

be a half-space or a half-plane. This is because that 

the solid contact between bodies is often a local 

phenomenon so that the dimension of the contact area 

is negligibly small compared to that of the contacting 

bodies. There are attempts working on the non-half- 

space domains (e.g., quarter space [13−16] and thin 

layer [17]). For an arbitrary boundary, the finite 

element method (FEM) may be used to calculate the 

corresponding influence coefficients [18].  

Ever since the pioneering work of Conry and Seireg 

[19] and Kalker and Van Randen [20], a series of similar 

numerical models [21−49] have been proposed and are 

dominant in the simulation of rough surface contact. 

Those models all adopt the same assumption that the 

flexible bodies of the contact pair are half-spaces or 

half-planes. For a non-periodic problem, the surface 

                                                        
1 The conventional BEM is referred to as those BEM without using fast 
algorithm. 

displacement components can be modeled as a con-

volution of the tractions and the corresponding 

influence functions. For a non-periodic continuum 

half-space, the influence function is either the 

Boussinesq-Cerruti solution (three dimensional elasticity) 

[42] or Flamant (plane strain/stress condition) [21] 

solution. For a periodic continuum problem, the 

influence function is either the Westergarrd solution 

(plane strain/stress condition) or the Tripp solution [50] 

(three dimensional elasticity). If the micro-structure 

of the half-space is considered (e.g., the half-space is 

composed of lattices), the lattice Green’s function can 

be used as the influence function [41]. In the discretized 

domain, the surface displacement vector can be 

calculated by the traction vector multiplied by a 

discretized influence matrix [42]. The normal boundary 

condition on the interface follows the Signori inequality 

(also known as the Kuhn-Tucker condition). Tangential 

boundary conditions varies with problems and the 

common ones are full stick, perfect slip and partial slip. 

These types of numerical models are wildly applied 

to the purely normal contact [33], sliding contact [40], 

partial slip [42], rolling contact [47] and adhesive 

contact [44, 48]. The unknown tractions (e.g., contact 

pressure and shear stress) are solved iteratively through 

enforcing the corresponding boundary conditions. This 

may be done by transforming the contact problem  

to an equivalent optimization problem and solved by 

the classic solvers (e.g., the conjugate gradient (CG) 

method) [37, 46, 47].  

In the early days, this type of numerical model is 

associated with different names, e.g., finite surface 

element model [21], conventional deformation matrix 

method [28], moving grid method [28], FFT-based 

method [33], etc. Starting from the work of Peng  

and Bhushan [40], this type of numerical methods is 

commonly accepted as the boundary element method 

(BEM). The reason lies in the fact that the surface 

displacement is calculated by the integral equation 

over the boundary which has a similar manner as the 

BIE in BEM. Therefore, the numerical models applied 

to the rough surface contact mentioned above may all 

be treated as the special BEM where the domain is   

a half-space. However, a rigorous proof is missing. 

To distinguish these two models, the so called BEM 

applied to the rough surface contact is referred to as 
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the special BEM. The other one is referred to as the 

general BEM. The logic behind this proof is that the 

boundary integral equation using the Flamant solution 

and Boussinesq-Cerruti solution as the influence 

function can be recovered from the general BEM [51] 

when the domain is a half-space and a half-plane, 

respectively. The general BEM has recently been 

applied to the smooth adhesive contact [6] and mixed 

lubrication where the sub-surface stress is evaluated 

[52]. Li [52] showed the difference between the 

sub-surface stress with and without the half-space 

assumption. As far as we know, the general BEM has 

rarely been applied to the rough surface contact [52]. 

This proof can be served as a complimentary material 

for the BEM community that the half-space problem 

can be further simplified using more straight-forward 

integral equation. In the mean time, this study intro-

duces the general BEM to the tribologists to improve 

the accuracy of a non-half-space problem.  

In Section 2, the general BEM of an elastostatic 

problem with a finite body is briefly discussed. In 

Section 3, the general BEM is shown to degrade to 

the special BEM with the Flamant solution as the 

influence function if the domain is a half-plane. 

Similarly, in Section 4, the general BEM is shown to 

degrade to the special BEM where the Boussinesq- 

Cerruti solution is the influence function if the domain 

is a half-space.  

2 Boundary element method for a finite 

domain 

BEM is a powerful numerical technique used in con-

tinuum mechanics, especially for the linear problems. 

For the elastostatic problem, BEM relies on the 

Somigliana identity and the fundamental solutions 

(e.g., the Kelvin and Mindlin solution). If the body 

load is neglected, only the boundary of the domain 

needs to be discretized. The internal values of 

displacement, stress and strain can be accurately 

determined by the corresponding integral equation. 

This is a major difference from the finite element 

method (FEM) which is another popular methodology 

in the rough surface contact problems [53, 54]. The 

entire domain in the FEM should be discretized and 

the accuracies of the internal values rely on the nodal 

density of the sub-surface.  

Three-dimensional elasticity. Consider a finite 

three-dimensional (3D) domain which is enclosed by 

the boundary  . The domain,  , is subjected to the  

traction vector,  [ , , ]
x y

q q pp , and the surface displa-

cement vector,  [ , , ]u v wu , over  . For an elastostatic 

problem, the internal displacement component vector, 

 [ , , ]u v wu , inside the domain   (the boundary   

is excluded) is expressed by the following boundary 

integral equation (BIE) in tensor notation [51, 55]:  













 






( ) ( , ) ( )d ( )

( , ) ( )d ( ), 1, 2 , 3

i ij j

jij

u u p

p iu

x x

x

  

  
     (1) 

which is also known as the Somigliana identity. The 

source point is  [ , , ]x y zx  and the field point   

is     [ , , ] . The kernels, 
ij

u  and 
ij

p , are the 

auxiliary (fundamental) solutions of thedisplacement 

and the traction components at   in an elastic 

infinite domain due to an point load acting at x (it is 

commonly known as the Kelvin solution). The explicit 

forms of the kernels, 
ij

u  and 
ij

p , for three-dimensional 

elasticity can be found in Eqs. (A7) and (A8) in 

Appendix A. The kernels are singular when x  . 

Note that BIEs in Eq. (1) are not singular since   

and x  (where the boundary   is excluded).  

Based on the strain-displacement relation and 

Hooke’s law, the internal state of stress 
ij

  inside   

can be expressed in a similar manner by the following 

BIE [51, 55]:  

 
     ( ) ( , ) ( )d ( ) ( , ) ( )d ( )kij ijk k ijk

D p S ux x x       

(2) 

where the kernels, 
ijk

D  and 
ijk

S , are given in Eqs. (A11) 

and (A13).  

For a discretized form of Eq. (2) associated with 

higher order elements (e.g., linear, quadratic, etc.), 

the nearly singular behavior of sub-surface stress 

occurs when x is close to the boundary. This is caused 

by the numerical error introduced by the conventional 

Gauss quadrature [56]. The distance transformation 

method [52, 56] may be used to improve the accuracy 

of sub-surface stresses for these cases. Note that the 

stress in the left hand side of Eq. (2) are not singular 

if the integrals on the right hand side are solved  
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analytically. For a discretized form of Eq. (2), non- 

singular behavior may also be held if the boundary is 

discretized only by constant elements. This is because 

integrals over constant elements have closed-form 

solutions [7].  

When x , Eq. (1) can be deduced to the following 

BIE for the surface displacement:  

 
    ( ) ( ) ( , ) ( )d ( ) ( , ) ( )d ( )j jij ij j ij

C u p pu ux x x x     

(3) 

where 1
2

( )
ij ij

C x  if Γ  is of class 1C  (continuously 

or piece-wisely differentiable up to the first order). 

Otherwise, ( )
ij

C x  can be determined based on the 

fact that the rigid body displacement is excluded 

when the boundary is traction-free. After discretizing 

the boundary  , the above BIE, together with the 

boundary conditions, can be formed into a system of 

linear equations. For more details on numerically 

solving BIE in Eq. (3), readers should refer to the text 

books [7, 51, 55].  

The kernel 
ij

p  has a strong singularity 
2

1
O


 
 
 

 and 

ij
u  has a weak singularity 

1
O


 
 
 

 where     x .  

Thus, the boundary integrals with kernels, 
ij

p  and 
ij

u , 

in Eq. (3) are in the sense of the Cauchy principal value, 

i.e., in Ref. [51], 

  
  


 ( , ) ( )d ( ) ( , ) ( )d ( ),j jij ij

p pu ux x       

where   is an infinitesimally small surface of radius 

 centered about x.  

Consider a discretized boundry consisting of m 

line segments (elements):     { 1, , }
l

l m . In the 

rough surface contact model, the boundary values are 

usually assumed to be uniform within each element. 

In BEM, this type of element is referred to as the 

constant element. Only one node needs to be placed 

within each element (commonly at the centroid). 

Therefore, the group of source nodes and field 

nodes are:   { 1, , }
k

k mx  and   { 1, , }
l

l m . Let 
l
p  

  T[ , , ]
x y

p  and  T[ , , ]
l

u v wu  be the traction and sur-

face displacement vectors associated with each field 

point. Assuming   is of class 1C , the discretized 

form of Eq. (3) is  

         
    
    
        
    
    
    
              

       
   
   
      
   
  
  
         

 


 

 
 




 

 




11 11 1

1

11 1 1

1

1

2

m

k lkl

m mm mm

m

lkl

mm mm

U Uu p

u pU

u pU U

P P u

uP

uP P






    (4) 

where 
kl

U  and 
kl

P  are the influence sub-matrices 

( 3 3 ) associated with element 
l

  and source point 

k
x . For example:  


 



    
3 3

( , )d ( ), , 1,2,3
l

kl ij k
u i jU x       (5) 

After combining the common terms in Eq. (4) and 

matrix inversion, we have  



  
1

, 1, 2 ,
m

k kl l
l

k , mu K p           (6) 

where 
kl

K  is the influence sub-matrices (3 3)  repre-

senting the surface displacement vector at source point 

i
x  due to the unit traction vector acting on 

l
 . When 

the domain is strictly smooth half-space and problem 

is purely normal contact, 
kl

K  should be the same as 

the wildly used Love’s influence function [12].  

Plane strain condition. A finite 3D domain is 

degraded to a 2D domain over the xy  plane where the 

field and source points are   [ , ]  and  [ , ]x yx , 

respectively. Boundary integral equations in Eqs. (1), 

(2) and (3) are still valid. The traction, surface dis-

placement and internal displacement vectors become 

p = [qx, p],  [ , ]u vu  and u = [u, v], respectively. The 

kernels,   , ,
ij ij ijk

u p D  and 
ijk

S  for plane strain con-

dition are available in Eqs. (A1), (A2), (A5) and (A6), 

respectively. 

3 Boundary element method for a half- 

plane problem 

In the plane strain condition, consider a half-plane 

with a flat boundary:     1{( , ) , 0}x y x y , see 

Fig. 1. Equstions (1) and (3) are still valid [51] in this 

case where the traction and the surface displacement 

vectors are  [ , ]
x

q pp  and  [ , ] ,
i

u vu  respectively. 
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Fig. 1 Schematic representation of a half-plane. 

However, Eq. (2) is only valid as long as the state of 

stress 
ij

  vanishes at the far end (i.e., y  ). This 

criteria is rarely discussed in the past literatures. The 

reason is given as follows. The Somigliana identity 

in Eq. (2) is derived based on the Betti’s reciprocal 

theorem which requires the domain to be bounded 

by  . This implies that the Somigliana identity is only 

valid for a finite domain. However, Eq. (2) may still  

be valid for if 0
ij
r   as 2 2r x y    [57]. This 

condition requires the vanishing of the state of 

stress at the far end which is exactly the criterion 

shown above. In order to guarantee the stress-free 

condition at the far end, the average shear and 

normal tractions over the entire   should be strictly 

zero. Defining a half-plane with the finite boundary: 

 
f

   {( , ) [ , ]; 0}x y x L L y , then the criterion of 

zero mean traction is:  




1
lim ( )d 0

2 f
iL

p x x
L

             (7) 

For the non-periodic contact where the traction is 

constrained in one or several finite strip, Eq. (7) is 

satisfied. If the average shear and normal tractions are 

not zero (it happens in the periodic contact problem), 

then the contribution of the average terms on the state 

of stress should be studied individually.  

Due to the simple geometry of the boundary  , the 

following simplification is available for the terms in 

the Kelvin solution (see Appendix A for more details):  

      2 2[0, 1], [ , 0], ( ) ,r x yn   

          
,1 ,2

( ) , ,r x r r y r r n y r     (8) 

Substituting the above simplification into Eqs. (A1) 

and (A2), we have the following simplified Kelvin 

solution:  

       


 
 
 

     
 

2 2

11

1
(3 4 ) ln(1 ) ( ) ,

8 (1 )
u r x r

G
 

      


 
 
 

    
 

2 2

22

1
(3 4 ) ln(1 ) ,

8 (1 )
u r y r

G
 

      


    
 

2

12 21

1
( ) ,

8 (1 )
u u y x r

G
 

       


   
 
 


   

 
2 2 4

11

1
(1 2 ) 2 ( ) ,

4 (1 )
p yr y x r  

      


   
 
 


  

 
2 3 4

22

1
(1 2 ) 2 ,

4 (1 )
p yr y r  

        


   
 
 

    
 

2 2 4

12

1
(1 2 )( ) 2 ( ) ,

4 (1 )
p x r y x r  

  


   
 
 


    

 
2 2 4

21

1
(1 2 )( ) 2 ( )

4 (1 )
p x r y x r    (9) 

It is clear that all the kernels above are functions of 

x   and y.  

Substituting the simplified Kelvin solution listed in 

Eq. (9) and 0y   into Eq. (3), then it can be splitted 

into two BIEs2 for the surface displacement com-

ponents u  and v :  

     
  

 
    11 12

1
( ) ( ,0) ( )d ( ,0) ( )d

2 x
u x u x q p x v  

(10) 

     
  

 
    22 21

1
( ) ( ,0) ( )d ( ,0) ( )d

2
v x u x p p x u   

(11) 

The above set of coupled integral equations can be 

decoupled using one-dimensional Fourier transform. 

The explicit form of the one-dimensional Fourier 

transform pair can be found in Eqs. (B1) and (B2) in 

Appendix B. Using the convolution law, Eqs. (10) and 

(11) in the frequency domain are3:  

  
11 12

1
( ) ( ,0) ( ) ( ,0) ( )

2 x
U k U k Q k P k V k       (12) 

  
22 21

1
( ) ( ,0) ( ) ( ,0) ( )

2
V k U k P k P k U k         (13) 


11

( , 0)U k  can be determined from the closed-form   

of 
11 0

( , )
y

U k y . For the convenience of derivation, a 

Fourier transforms table is given in Appendix B, see 

                                                        
2 The boundary integrals in Eq. (3) are in the sense of Cauchy principle 

value. Since ( 0) ( ) ,      iip x x  then ( 0) ( )d 0  
 


     iiip x iu  

1 2.  ( ) x  is one-dimensional Dirac function. 
3 Note that the constant term in 11( 0), U k  i.e., 2 2

0( ) 1    yx r   repre-
sents the rigid body displacement. This constant term is neglected in the 
Fourier transform. 
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Table B1.  
12 22

( ,0), ( ,0)P k U k  and 
21

( ,0)P k  are determined 

similarly. Finally, the closed-forms of U  and V  are 

obtained by solving the system of linear equations in 

Eqs. (12) and (13):  

    
 

   

21 1 (1 2 )(1 )
( ) ( ) ( )

2x

i
U k Q k P k

E k E k
   (14) 

    
  

   

2(1 2 )(1 ) 1 1
( ) ( ) ( )

2 x

i
V k Q k P k

E k E k
   (15) 

After the inverse Fourier transform of Eqs. (14) and 

(15), u  and v  in the Cartesian coordinates are:  

   

    










     


 







22(1 )
( ) ln ( )d

(1 2 )(1 )
sgn( ) ( )d

2

x
u x x q

E

x p
E

       (16) 

    

   









 
  


  






2

(1 2 )(1 )
( ) sgn( ) ( )d

2

2(1 )
ln ( )d

x
v x x q

E

x p
E

     (17) 

Equations (16) and (17) are exactly the same as the 

integral forms of the surface displacement using the 

Flamant solution as the influence functions [12], except 

for the missing constant terms regarding the rigid 

body displacement.  

Substituting Eqs. (14) and (15) into Eq. (1) in the 

frequency domain, the displacement components 

( , )U k y  and ( , )V k y  in the frequency domain are:  

       
   

   

2
21 1 1

( , ) ( )y k

x
U k y y e Q k

E k E
 

          
   

21 (1 )(1 2 ) 1
sgn( ) ( )

2
y ky k ie P k

E E k
  (18) 



     

 
  

  

 
2

1
( , ) sgn( )

(1 )(1 2 ) 1
( )

2
y k

x

V k y y k
E

ie Q k
E k

 

       
 

   

2
21 1 1

( )y ky e P k
E k E

    (19) 

Sneddon [58] revisited the half-plane problem using 

the Airy’s function and the Fourier transforms. 

Equations (18) and (19) are the same as those derived 

by Sneddon [58] if the consistent form of Fourier 

transform pair is used. Setting 0y   in Eqs. (18) and 

(19), Eqs. (14) and (15) are recovered. After the inverse 

Fourier transform, the integral forms of the surface 

displacement using the Flamant solution as the 

influence function in the Cartesian coordinates are 

recovered [12, 58].  

Applying the Fourier transform to the Hooke’s law 

for the plane strain condition, we have [58]  

 
  

 
        

( , ) (1 ) 2 ( , ) ( , )
(1 )(1 2 )xx

E
k y i kU k y V k y

(20) 

 
 

 
        

( , ) 2 ( , ) (1 ) ( , )
(1 )(1 2 )yy

E
k y i kU k y V k y

y

(21) 

 
     

( , ) ( , ) 2 ( , )
xy

k y G U k y i kV k y
y

     (22) 

Substituting the forms of ( , )U k y  and ( , )V k y  given by 

Eqs. (18) and (19) into Eqs. (20), (21) and (22), we can 

have the state of stress, 
ij

 , in the frequency domain:  

   

   

       
   

2

2

( , ) 2 sgn( ) 2 ( )

(2 1) ( )

y k

xx x

y k

k y i k yk e Q k

y k e P k
   (23) 

              2 2( , ) 2 ( ) (2 1) ( )y k y k

yy x
k y i yke Q k y k e P k    

(24) 
              2 2( , ) (2 1) ( ) 2 ( )y k y k

xy x
k y y k e Q k i yke P k    

(25) 

Eqs. (23), (24) and (25) are the same as that derived 

by Sneddon [58] if a consistent form of the Fourier 

transform pair is used. Note that ( )
yy xx zz

      

for the plane strain condition. After the inverse Fourier 

transform, the state of stress, 
ij

 , is represented in 

the integral form in the Cartesian coordinate using the 

Flamant solutions as the influence function [12, 58].  

In summary, the integral equations using the Flamant 

solution as the influence functions are a special form 

of the BEMs in Eqs. (1−3) where the domain is strictly 

a half-plane.  

4 Boundary element method for a half- 

space problem 

Consider a half-space with a flat boundary:    
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  2{( , , ) ( , ) ; 0}x y z x y z , see Fig. 2. Equations (1) and 

(3) are still valid. Equation (2) is still valid as long as 

the mean shear and normal tractions on   are zero. 

Defining a half-space with the finite boundary: 
f

   

     {( , , ) [ , ], [ , ], 0}
x x y y

x y z x L L y L L z , the zero trac-

tion criterion can be stated as:  


,

1
lim ( , )d d 0

4 fx y
iL L

x y

p x y x y
L L

        (26) 

A half-space assumption results in the following 

simplifications of the terms in the Kelvin solutions 

(see Appendix A for more details):  

           2 2 2[0,0, 1], [ , ,0], ( ) ( ) ,x y zn    

                     
1 2 3

( ) , ( ) , , ,x y z n z   

(27) 

It is expected that the Kelvin solutions are functions 

of x  , y   and z. The BIEs in Eqs. (1−3) are the 

summations of the convolutions of the Kelvin solutions 

and boundary values (i.e., iu  and 
i

p ).  

Because of the principle of superposition, the effect 

on the surface displacement components, iu , due to 

the traction components, 
i

p , can be studied individually. 

Let 0
x

q   and 0
y

q p   and the corresponding 

boundary value problem is referred to as the Cerruti 

problem. Substituting the Kelvin solutions shown in 

Eqs. (A7) and (A8) with the simplifications given in 

Eq. (27) and 0y   into Eq. (3), then Eq. (3) can be further 

simplified and the final results are shown below in the 

two-dimensional frequency domain4:  








 


 
  

    

2

3

1 1 2
( , ) ( , )

2 4(1 )

1 1
(3 4 ) ( , )

16 (1 )

x
x y x y

y

x x y

k
U k k iW k k

k

k
Q k k

G k k

 (28) 







 




  3

1 1 2
( , ) ( , )

2 4(1 )

1
( , )

16 (1 )

y

x y x y

x y

x x y

k
V k k iW k k

k

k k
Q k k

G k

     (29) 

                                                        
4 The boundary integrals in Eq. (3) are in the sense of Cauchy principle 

value. Since ( 0) ( )            iip x y x y , then (iip x 
  

 
    

0) ( )d d 0       iy u  where 1 2 3.  i  ( )x y      is the two- 

dimensional Dirac function. 

 

Fig. 2 Schematic representation of a half-space. 








 








1 1 2
( , ) ( , )

2 4(1 )

1 2
( , ) 0

4(1 )

x
x y x y

y

x y

k
W k k iU k k

k

k
iV k k

k

      (30) 

The information on the two-dimensional Fourier 

transform pair used in this study can be found in 

Appendix B. A Fourier transform table is given in 

Table B1 in Appendix B for the help of deriving  

Eqs. (28), (29) and (30). Solving the system of linear 

equations above, we can get the surface displacement 

components due to the shear traction, 
x

q , in the 

frequency domain:  


 

     

2

3

1 1
( , ) ( , )

2
x

x y x x y

k
U k k Q k k

G k k
     (31) 


 

 3
( , ) ( , )

2

x y

x y x x y

k k
V k k Q k k

G k
        (32) 


 

 2

1 2
( , ) ( , )

4
x

x y x x y

ik
W k k Q k k

G k
       (33) 

Using the inverse Fourier transform with the help of 

Table B1 in Appendix B and the convolution law, the 

well-known solutions of iu  of the Cerruti problem 

are recovered[12]:  



 

     
 





 
 
 

     


 

   


2 2

2

3 2
2 2

1 1
( , )

2 ( ) ( )

( )
( , )d d

( ) ( )
x

u x y
G x y

x
q

x y

   (34) 

  
   

 



 
  

 

 


   
 3 2

2 2

( )( )
( , ) ( , )d d

2 ( ) ( )
x

x y
v x y q

G x y
 (35) 

     
 





 


    2 2

1 2
( , ) ( , )d d

4 ( ) ( )
x

x
w x y q

G x y
 (36) 
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The results due to the shear traction, 
y

q , are the 

same as above if u  and v  are interchanged and 
x

q  is 

replaced by 
y

q .  

Let 0p   and 0
x y

q q  , then the corresponding 

boundary value problem is referred to as the Boussinesq 

problem. The Fourier transform of Eq. (3) results in  





 


1 1 2

( , ) ( , ) 0
2 4(1 )

x
x y x y

k
U k k iW k k

k
     (37) 





 


1 1 2

( , ) ( , ) 0
2 4(1 )

y

x y x y

k
V k k iW k k

k
     (38) 




 
 


 



 


  

1 1 2
( , ) ( , )

2 4(1 )

1 2 3 4 1
( , ) ( , )

4(1 ) 16 (1 )

x
x y x y

y

x y x y

k
W k k iU k k

k

k
iV k k P k k

k G k

 (39) 

Solving the above system of linear equations, we have 

the closed form solution of iu  due to the normal tract-

ion, p in the frequency domain:  




 2

1 2
( , ) ( , )

4
x

x y x y

ik
U k k P k k

G k
        (40) 




 2

1 2
( , ) ( , )

4

y

x y x y

ik
V k k P k k

G k
        (41) 





1 1

( , ) ( , )
2x y x y

W k k P k k
G k

         (42) 

Using the inverse Fourier transform with the help of 

Table B1 in Appendix B and the convolution law, the 

well-known solutions of iu  of the Boussinesq problem 

are recovered [12]:  

     
 



   
 

 
 

   
 3 2

2 2

1 2
( , ) ( , )d d

4 ( ) ( )

x
u x y p

G x y
   

(43) 

 
   

 



   
 

 
 

   
 3 2

2 2

1 2
( , ) ( , )d d

4 ( ) ( )

y
v x y p

G x y
   

(44) 


   

 








   
 2 2

1 1
( , ) ( , )d d

2 ( ) ( )
w x y p

G x y
   (45) 

Following the procedures shown in Section 3, the 

displacement components and the state of stresses 

inside the domain can be also obtained in the same 

manner.  

In summary, the integral equations using the 

Boussinesq (Cerruti) solution as the influence functions 

are a special form of the BEMs in Eqs. (1−3) where the 

domain is strictly a half-space.  

5 Discussions 

In this paper, we do not tend to judge how accurate is 

the special BEM using the Boussinesq-Cerruti/Flamant 

solutions. The ultimate goal of this theoretical study 

is to show the relationship between the boundary 

element method in the community of computational 

mechanics and the one used in rough surface contact 

(or more broadly, Tribology). In the previous tribology 

literatures, this “common sense” has been taken    

so granted that it was never proved rigorously. The 

researchers from the community of boundary element 

method seldom applied BEM to the half-space/ 

quarter or other infinite domains. This history causes 

a misunderstanding of BEM in many tribology 

literatures that it can only be applied to the half- 

space/quarter-space since the corresponding Green’s 

function is available. This paper shows that BEM can 

be applied not only to the half-space problem, but 

also to other domains with arbitrary boundary.  

In Sections 3 and 4, it is rigorously proved that 

the so-called BEMs using the Boussinesq-Cerruti (or 

Flamant) solutions as the influence functions are a 

special form of the BEM where the domain is strictly 

a half-space (or half-plane). For the 2D plane strain/ 

stress condition, the Flamant solution is commonly 

obtained using either the complex variable method  

[8, 59], the stress function in the polar coordinate [10] 

or the Airy’s function [58]. For the 3D elasticity, the 

methods include the Boussinesq potentials [12] or the 

Papkovich-Neuber potentials [60]. This study offers 

an alternative approach to find the Flamant and 

Boussinesq-Cerruti solution using the boundary 

element method.  

Therefore, the application of those special BEMs 

should be restricted to the contact scheme where 

half-spaces/half-planes are in contact, e.g., the half-space 

indented by a rigid indenter. However, except for this 

special contact scenario, there are many schemes where 

the flexible contact bodies are not exactly half-spaces 

(e.g., a half-space with a nominally flat rough boundary 

indented by a rigid flat).  
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For those cases, the integral equations using the 

Boussinesq-Cerruti (or Flamant) solutions should be 

replaced by the BIEs shown in Eqs. (1−3) in order to 

account for the non-half-space domain. The contact 

problem is still equivalent to an optimization problem 

where the classic solver (e.g., Conjugate Gradient 

method) can still be applied to solve the traction, 
i

p , 

and the surface displacement, iu . Then, using Eqs. (1) 

and (2), the displacement and the state of stress inside 

the domain can be accurately determined. One reason 

why the Boussinesq-Cerruti (or Flamant) solutions 

are wildly used on the rough surface contact problems 

is that the fast algorithm (e.g., the Fast Fourier 

transform (FFT) [33] and Multi-Level-Multi-Integration 

(MLMI) [26]) can be applied to accelerate the numerical 

integration. This benefit no longer exists for Eqs. (1−3). 

Since the integrals in Eqs. (1−3) are not strictly con-

volutions, the Fourier transform can no longer be 

applied, along with the FFT. MLMI [61] significantly 

reduces the computational time by performing the 

numerical integration only on the coarse level (with 

few nodes on it). The final results are approximated 

through the interpolation between the coarser and 

finer level. However, it is assumed that the influence 

coeficient matrix is invariant on all levels. This is  

not strictly true for a non-half-space (plane) domain, 

especially when the rough surface exists on the 

boundary. Therefore, MLMI may not be valid for a 

non-half-space (plane) problem. This difficulty may 

be solved by the fast multi-pole method [7]. 

Recently, BEM is thoroughly discussed in two 

important papers [62, 63]. The former one is by Müser 

et al. [62] and it is a summary of the results of a rough 

surface contact problem challenge initiated in 2016. 

Among all models, four numerical models are built 

under the framework of BEM. The Boussinesq solutions 

are adopted in all four models. Their differences 

mainly lie in (1) how adhesion is introduced and (2) 

how to achieve a stable iterative process towards   

a convergent solution. All the models have good 

agreement with the experimental results and other 

methods. This conclusion is valid within the scope 

that the roughness is relatively smooth.  

The latter one [63] is a review paper on the simulation 

technique in tribology and part of Section 2.2 is 

dedicated to a brief review of the development    

of BEM. From the authors’ perspective, the BEM 

mentioned in this review paper is all about the special 

BEM using the Boussinesq/Cerruti solutions (or other 

equivalent solutions in the plane strain/stress). The 

limitations (e.g., large deformation, large sliding, plastic 

deformation, half-space assumption, etc.) of BEM 

have been discussed. One of limitations is stated as 

follows: “Such solutions exist for a limited number of 

cases and mainly under the assumption that the solid 

can be locally considered as a flat half-space. These 

limitations imply a more restrictive field of application 

for the BEM compared to the FEM, which is a versatile 

numerical method.” In this study, we show theoretically 

that, at least in the linear elastic problem, BEM is 

also a versatile numerical method for non half-space 

problem.  

6 Conclusions 

In this study, the so-called “BEM” applied to the 

rough surface contact is rigorously proved to be the 

special case of the general BEM where the domain  

is a half-space (or half-plane for plane strain/stress 

condition). For the plane strain condition, the BIEs in 

the general BEM results in the well-known Flamant 

solution. For the three-dimensional elasticity, the same 

BIE for the relation between the surface displacement 

and the traction becomes the well-known Bousssinesq 

(Cerruti) solution if the normal (shear) traction is 

applied on the boundary alone. The general BEM offers 

an alternative way to simulate those contact scenarios 

with a better accuracy where the domain is a non- 

half-space. 

Appendix A The Kelvin solution 

The Kelvins solution is the most common fundamental 

solution used in the elastostatic problem. Consider a 

linear elastic infinite domain where a unit point 

load f is applied at the point x. The thi  component of 

displacement and traction vector at the point   due 

to the action of the thj  component of the unit point 

load vector are denoted by 
ij

u  and 
ij

p , respectively.  

Plane strain. The displacement and the traction can 

be represented in a tensorial form ( 1 2i j   ) [51, 55] 

 


 
 
 
 
  

 
      

, ,

1 1
(3 4 ) ln

8 (1 )ij ij i j
u r r

G r
    (A1) 
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 


  
  
  
  
   

  
    

   , , , ,

1
(1 2 ) 2

4 (1 )ij ij j i i j i j

r r
p r n r n r r

r n n
  

(A2) 

where r is the distance between   and x:  

2 2( ) ( )r x y      x        (A3) 

  
,

( )
i i i

r x r  is the derivative of r with respect to 
i
 . 

 [ , ]
x y

n nn  is the unit normal vector of   pointing 

outwardly. r n    is the normal derivative of r:  




  

 
2

,
1

i i
i

r
r r n

n
n            (A4) 

ij
  is the Kronecker delta where   1

ij
 if i j , other-

wise 0
ij

  .  

Other useful forms of the Kelvin solution include 

ijk
D  and 

ijk
S  [51, 55]:  

, , , , , ,

1
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Three-dimensional elasticity. The displacement and 

the traction can be represented in a tensorial form 

( , 1,2,3i j ) [51, 55]  

, ,

1
(3 4 )
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where   is the distance between   and x :  

            2 2 2( ) ( ) ( )x y zx     (A9) 

and    
,

( )
i i i

x r  is the derivative of   with respect 

to 
i
 .  [ , , ]

x y z
n n nn  is the unit normal vector of 

  pointing outwardly.  n is the normal derivative 

of  : 

3

,
1

i i
i

n
n

  



  

 n         (A10) 

Other useful forms of the Kelvin solution include 
ijk

D  

and 
ijk

S  [51, 55]:  
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Appendix B The Fourier transform table 

The one-dimensional Fourier transform pair used in 

this study is:  

2( ) ( ) d [ ]( )i kF k f e f k  
 


         (B1) 

2 1( ) ( ) d [ ]( )i kf F k e k F x
 


         (B2) 

A general way of evaluating the Fourier transform 

and its inverse is using the residual theorem [64]. 

One-dimensional Fourier transforms frequently used 

in Section 3 are shown in Table B1.  

The two-dimensional Fourier transform pair used 

in this study is  

     
   

 



 

2 ( )
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x yi k k
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F k k f e

f k k
    (B3) 
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 

2 ( )

1

( , ) ( , ) d d

[ ]( , )

x yi k k

x y x y
f F k k e k k

F
    (B4) 

The modulus of ( , )
x y

k k  is 2 2

x y
k k k  . Some Fourier 

transform is evaluated based on the fact that the 

Fourier transform of the axisymmetric function is 

the same as the Hankel transform of zero order [58]. 

Others are evaluated based the some known solution 

and the derivative law. Some two-dimensional Fourier 

transforms frequently used in Section 4 are prepared 

in Table B1.  
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