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Abstract: The present paper is devoted to a theoretical analysis of sliding friction under the influence of 

in-plane oscillations perpendicular to the sliding direction. Contrary to previous studies of this mode of active 

control of friction, we consider the influence of the stiffness of the tribological contact in detail and show that 

the contact stiffness plays a central role for small oscillation amplitudes. In the present paper we consider the 

case of a displacement-controlled system, where the contact stiffness is small compared to the stiffness of the 

measuring system. It is shown that in this case the macroscopic coefficient of friction is a function of two 

dimensionless parameters—a dimensionless sliding velocity and dimensionless oscillation amplitude. In the limit 

of very large oscillation amplitudes, known solutions previously reported in the literature are reproduced. The 

region of small amplitudes is described for the first time in this paper. 
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1  Introduction 

The interrelation of oscillations and friction is an  

old problem with fundamental importance for the 

understanding of friction and for countless practical 

applications. From the physical point of view, friction 

is fundamentally a non-stationary process. Brillouin 

[1] pointed out as early as 1899 that dry friction can 

occur at low velocities only due to elastic instabilities 

on the microscale. Vibrations can strongly influence 

friction [2] and friction often leads to vibrational 

instabilities [3]. Thus, friction should always be 

understood as the interplay of dynamics and friction 

on different spatial and temporal scales. This interplay 

has many particular aspects which have been studied 

intensively in the past decades: (I) Influence of 

vibrations on friction was studied, e.g., in Refs. [4−6]. 

(II) Frictionally induced oscillations have been studied, 

e.g., in Refs. [3, 7−9]. (III) The interaction of self-excited 

vibrations and friction was subject of studies [10−12]. 

(IV) The interplay of vibrations and oscillations is a 

central principle of oscillation-based actuation [13−17]. 

(V) Finally, oscillations may lead to energy dissipation, 

which of course is intimately connected with all other 

above mentioned points in Refs. [18−20]. 

The present paper is devoted exclusively to the 

aspect (I) of the above list— the direct influence of 

oscillations on friction. Studies of this influence started 

in the late 50s and 60s of the 20th century [21−25]. 

Most models used for the analysis of the active control 

of friction were based on the study of dynamics of 

rigid bodies. Only recently it was recognized that  

the deformability of the bodies and especially the 

contact stiffness plays a central role in determining 

the frictional behavior at small oscillation amplitudes 

and small sliding velocities [26, 27, 6]. However, of 

the three possible oscillation directions: (a) out-of- 

plane, (b) in-plane perpendicular to sliding, (c) in-plane 
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in sliding direction—only the influence of out-of-plane 

oscillations has been studied in detail so far [28, 29]. 

Complete studies of friction under in-plane oscillations 

– both in the sliding direction and perpendicular to 

the sliding direction—are yet to be performed.  

The present paper partially closes this gap and 

provides an analysis of friction under transverse 

oscillations— in-plane oscillations perpendicular to 

the sliding direction. The particular interest in this 

mode of active control of friction is partly due to  

the recently demonstrated importance of transverse 

oscillations both for the stability of macroscopic sliding 

and the design of robust tribological measurement 

techniques [30−33]. 

To achieve qualitative understanding of the corres-

ponding phenomena, we follow the strategy already 

used in a recent analysis of out-of-plane oscillations 

[28, 37]: we start with a very simple model, where the 

contact is modeled as a single spring with constant 

normal and tangential stiffness in a displacement- 

controlled setting (i.e., with a very stiff surrounding 

system). System-dynamical “feedback” from the contact 

to the surrounding system is thereby neglected. 

2 Simplified one-spring model 

Let us consider an elastic body that is brought into 

contact with a flat elastic substrate and then subjected 

to a superposition of horizontal movement with a 

constant velocity and sideways oscillations. In the 

contact of elastic bodies, both normal and tangential 

contact problems can be reduced to a contact of an 

elastic body and a rigid substrate with renormalized 

elastic coefficients [34]. In this paper we further reduce 

the elastic body to a single spring with some normal 

stiffness (the magnitude of which does not play any 

role in the present study) and tangential stiffness k. 

We assume that between the spring and the plane, 

there is a friction force described by the simplest form 

of Coulomb’s law of friction [35, 36] with a constant 

coefficient of friction 
0

 . A schematic drawing of the 

model is shown in Fig. 1: the “body” (the upper point 

P of the spring) is forced to move with a constant 

velocity 
0

v  in the x-direction, and also to perform a 

harmonic oscillation in the y-direction according to 

P 0 siny y t .  

 

Fig. 1 Schematic representation of the considered system: An 
elastic body modeled as a spring is forced into a controlled 
movement at the upper point P, while the immediate contact point 
Q follows according to the equilibrium conditions. It is assumed 
that between the contact point and the horizontal plane there is a 
force of friction described by the classical Coulomb law. 

While the time-resolved reaction of the instantaneous 

friction force on the loading history is also of interest, 

in this paper we consider exclusively the forces in the 

steady state, averaged over one period of oscillation. 

In this connection it is important to lay down the 

terminology used in the paper: all processes referring 

to the time scale much smaller than the period of one 

oscillation are considered here as “microscopic” while 

the processes and quantities running or defined on the 

time scale much larger than the period of one oscilla-

tion are called “macroscopic”. Our goal is to determine 

the macroscopic values of normal and tangential 

forces (meaning their average values over one 

oscillation period) and the corresponding macroscopic 

coefficient of friction. The above-mentioned time- 

resolved reaction, on the contrary, refers to the micros-

copic scale; it will be considered in a separate paper. 

Figure 2 shows the system projected onto the 

contact plane (x, y) for the cases when the immediate 

contact point sticks (Fig. 2(a)) and for the sliding state 

(Fig. 2(b)). In the sticking state, the velocity of the 

“foot point” Q is zero.  

As the vector of the spring force is determined 

uniquely by two quantities: the elongation l and the 

inclination angle   to the direction of the macroscopic 

movement, it is convenient to write equations in terms 

of these two quantities.  

The coordinates of the upper end of the spring can 

be written as 





P 0

P 0

,

sin

x v t

y y t
              (1) 
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Fig. 2 Projection of the considered system onto the (x-y)-plane. 
(a) stick phase; (b) sliding phase. 

and the corresponding velocities 

 






P 0

P 0

,

cos

x v

y y t
             (2) 

Sticking phase: if the immediate contact point is 

sticking then the equations for the angle   and the 

length l are 

0 0
cos cos siny t v

l

   



         (3) 

0 0
cos sin cosl y t v              (4) 

where 
0 0

cos cos siny t v     is the component of 

the velocity of the point P in the direction perpendicular 

to the elongation l and 
0 0

cos sin cosy t v     is the 

velocity component of the same point in the direction 

of the elongation (see Fig. 2(a) for illustration). 

These equations remain valid as long as the 

elongation l remains smaller than the critical value 

0
0

z
F

l l
k


                 (5) 

Slipping phase: after the elongation l reaches the 

critical value 
0

l , it does not increase further, but 

remains equal to 
0

l . Note that due to the equilibrium 

conditions in the immediate contact point Q, its 

movement occurs always in the direction of the 

elongation. Thus it has no velocity component per-

pendicular to the direction of l. The angular velocity 

of the direction of the elongation l is given by the 

ratio of the difference of the transversal velocity com-

ponents of points P and Q to the (constant) length 
0

l . 

However, as the transversal component of velocity of 

point Q is zero, Eq. (3) remains valid, except that l has 

to be replaced by 
0

l : 

0 0

0

cos cos siny t v

l

   



           (6) 

This equation remains valid as long as the projection 

of the velocity of point P on the direction of l remains 

positive: 

0 0
cos sin cos 0y t v               (7) 

This condition guarantees that the point Q is 

following P in the direction of the elongation. Otherwise 

it stops until the condition Eq. (5) is fulfilled again. 

Introducing dimensionless variables and operators 

  0 0
0 0

0 0 0

d
,   ,    ,  ,  

d

y vl
t y l v

l l l
 

 
         (8) 

one can rewrite Eqs. (3) and (4) as 

 0 0

1
sin cos cos ,   for stick phasev y

l
          (9) 

0 0
sin cos cos ,   for stick phasel y v           (10) 

and Eqs. (6) and (7) as 

0 0
sin cos cos ,    for slip phasev y            (11) 

0 0
sin cos cos 0.  for slip phasey v          (12) 

The goal of our study is to determine the average 

force component in the sliding direction 

0
cos cos

x z
F k l F l             (13) 

(where ...  denotes averaging over one period of 

oscillation in the steady state) and the corresponding 

macroscopic coefficient of friction defined as  

macro 0
cos

x

z

F
μ l

F
              (14) 
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or the normalized coefficient of friction 

macro
macro

0

cosl


 


             (15) 

Note that all the Eqs. (9)–(12) as well as definition, 

Eq. (15), depend only on two dimensionless parameters 

0
y  and 

0
v . We therefore present all the results of this 

paper as function of these parameters. 

3 Static coefficient of friction 

If the system starts from the neutral state with zero 

tangential force and moves slowly in the x-direction, 

while at the same time oscillating in the y-direction 

with amplitude 
0

y  (see Fig. 3), then the macroscopically 

seen (average) spring force will be increasing until 

the critical state shown in Fig. 3 is reached. In this state, 

the component of the spring force in the x-direction is  

equal to 2 2

0 0 0
1

x z
F F y l  and remains unchanged 

during the entire oscillation cycle.  

Thus, the average coefficient of friction in this state, 

which we can interpret as the static coefficient of 

friction is given by 

      2 2 2
macro,static 0 0 01 / 1y l y         (16) 

 

Fig. 3 Critical state of a system with oscillation amplitude y0 
and very slow motion in the x-direction. 

4 Continuous sliding and stick-slip motion 

It is intuitively clear that at sufficiently high sliding 

velocities 
0

v , the contact point will be in the sliding 

state all the time, while at smaller sliding velocities 

the motion will consist of a sequence of stick and slip 

phases. On the parameter plane (
0

v , 
0

y ), the region 

of continuous sliding is separated from the stick-slip 

region by a boundary that can be found numerically 

by solving Eq. (11), which is valid in the region of 

continuous sliding, and checking the fulfillment of 

the condition (12). Figure 4 shows the areas of the 

continuous and intermittent sliding and the boundary 

line between them. 

4.1 Small oscillation amplitudes 
0

1y   

As can be seen from Eq. (11), in this case the angle 

also remains small, so that we can set in Eq. (11) 

sin   and cos 1  : 

0 0
cosv y                   (17) 

The steady-state solution of this equation is given by  

 0

2

0

cos
1

y

v
   






           (18) 

with  

0
tan 1 / v                  (19) 

This equation is valid for small angles, i.e. 

0

2

0

1
1

y

v







               (20) 

The borderline between small and large angles is 

shown in Fig. 4 by a dashed line. Substituting Eq. (18) 

into the condition for continuous sliding, Eq. (12), we 

can rewrite this condition as 

 
2

0
0

2

0

cos cos 0
1

y
v

v
    







        (21) 

 

Fig. 4 Area of continuous sliding and area of stick-slip motion 
(separated by the bold line) over the two system parameters. Also 
shown are the regions of small and large angles according to   
Eq. (20) (dashed line). 
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or 

   
2 2

0 0 0
0 22

00

cos 2 0
2 12 1

y y v
v

vv
    



  



    (22) 

It is fulfilled for any   if  

 2 2 2

0 0 0 0 0
2 1 1y v v v v      

             (23) 

Expanding the right-hand-side of Eq. (23) up to the 

terms of second order in 
0

v , we obtain the condition 

 2

0 0 0
2 1y v v    for the border line. Solving it with 

respect to 
0

v  gives  

2

0,crit 0

1 1 1

4 2 2
v y                (24) 

This limiting case is displayed in Fig. 5. 

4.2 Large oscillation amplitudes 
0

1y   

In this case the motion occurs almost perpendicular to 

the direction of the average velocity and during most 

of the oscillation period the contact is sliding. Only in 

the vicinity of the “turning points” there arises the 

possibility of stick, because both components of the 

driving velocity become small. The first turning point 

corresponds to / 2  . Introducing a new variable 

0
( / 2)v    , we can rewrite Eq. (11) as 

0

2

0

d
sin cos

d

y

v

   

  




          (25) 

The behavior described by this equation depends 

on the single parameter 2

0 0
/y v  . Its numerically  

 

Fig. 5 Approximation of the numerical results for the border line 
(dots) with Eq. (24) (solid line) for small oscillation amplitudes. 

determined critical value is 2

0 0
/ 4.5y v   . Thus for the 

critical velocity we get 

1/ 2 1/ 2

0,crit 0 0

1
0.47

4.5
v y y               (26) 

While this equation describes the asymptotic 

behavior very well, a slightly more complex equation  

can be constructed to approximate the complete 

dependence, both for small and large oscillation 

amplitudes: 

5 2

0
0,crit 1 2

2 0
0 2

0

0.47

0.94

1

y
v

y
y

y














            (27) 

This approximation is shown in Fig. 6 together 

with Eq. (26) and the numerical results. 

 

Fig. 6 Approximation of the numerical results for the border 
line (dots) with relation Eq. (26) (dashed line) and relation Eq. 
(27) (solid line). 

5 The macroscopic coefficient of friction 

over the entire parameter space 

For each point 
0 0

( , )v y   in the parameter plane, there 

is a macroscopic coefficient of friction 
macro

 . It is 

displayed over the entire parameter space in Fig. 7. 

In the Fig. 8 the same dependence is shown by cuts 

of the plot in Fig. 7 along the 
0

v -axis. 

While the exact quantitative description of the 

coefficient of friction on the entire parameter plane is 

complicated, the general structure of the dependence 

is relatively simple and is determined by a small 

number of “cornerstone” features. The general classi-

fication of various behaviors is very similar to that  
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Fig. 7 The macroscopic coefficient of friction displayed over 
the two system parameters. The region of continuous sliding is 
above the bold line. 

 
Fig. 8 The lines show the macroscopic coefficient of friction 
over the dimensionless velocity. They represent vertical cuts 
through the surface shown in Fig. 7. The graphs are shown for 

0 0,  0.1,  0.2, 0.3, 0.4, ..., 2y  . The amplitude 0 1y  is highlighted 
with the bold solid line. The round dots represent the border line, 
here indicating the critical macroscopic coefficient of friction 
over the critical velocity. The squares mark the static coefficient 
of friction as given by Eq. (16). 

given in Ref. [37] for the case of normal oscillations: 

– Without oscillations, the macroscopic coefficient 

of friction is constant and equal to its microscopic 

value 
0

 , thus 
macro

1  . 

– With increasing oscillation amplitude, the static 

coefficient of friction decreases according to Eq. (16) 

and vanishes at 
0

1y   (bold line in Fig. 8). 

– Further increase of the oscillation amplitude leads 

to further decrease of the macroscopic coefficient   

of friction at finite sliding velocities while the static 

coefficient of friction remains zero. 

– The qualitative behavior of the coefficient of 

friction as a function of velocity is different for the 

cases of small (
0

1y  ) and large (
0

1y  ) oscillation 

amplitudes: 

(1) In the region of small oscillation amplitudes, 

the coefficient of friction is roughly speaking increas-

ing monotonically from its static value to the value 

corresponding to the point of continuous sliding. 

After this point, the coefficient of friction increases 

very slowly and can be approximately assumed to be 

constant. The critical velocity of continuous sliding 

thus retains at least approximately the meaning of the 

“critical velocity of controllability” of friction intro-

duced in Ref. [37]. A more detailed analysis of this 

range of oscillation amplitudes, which is of most interest 

to applications, is provided in the next section.  

(2) In the region of large oscillation amplitudes, the 

differentiation between the cases of continuous sliding 

and intermittent sliding loses its importance, so that 

one can define a law of friction that is valid with good 

accuracy in the whole range of sliding velocities. A 

detailed analysis is given in the next Section. Note 

that this case was the only one considered in the earlier 

studies of the influence of sideways oscillations on 

friction Refs. [4, 5, 2]. 

6 Coefficient of friction at low and high 

oscillation amplitudes 

6.1 Coefficient of friction at low oscillation 

amplitudes 

The simple structure of the frictional law in the region 

of small oscillation amplitudes, 
0

1y  , is illustrated 

in Fig. 9, where the dependencies of the coefficient 

of friction on the velocity are shown in normalized 

variables: the deviation of the macroscopic coefficient  

 

Fig. 9 Displayed are transformed lines from Fig. 8 so that the 
square markers of the static friction coefficient and the round 
markers of the critical friction coefficient lie on top of each other. 
Displayed in this figure are only lines that lie above the bold 
line in Fig. 8: 0 0.1,  0.2, 0.3, ..., 0.9y  , the bold line itself is not 
displayed here. The approximation Eq. (28) of this “master curve” 
is shown with red crosses. 
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of friction from its static value normalized by the 

difference between the value of the border line between 

stick-slip and continuous sliding vs. velocity normalized 

by the critical velocity of continuous sliding.  

One can see that at small oscillation amplitudes these 

dependences collapse with acceptable accuracy to a 

single “master curve”, which can be approximated with 

 
 

    
                 

   
  

2 4

macro macro,static 0 0

macro,crit macro,static 0 ,crit 0,crit

3 1
1 1 1

4 4

v v

v v
     

(28) 

which coincides with the velocity dependence in the 

case of out-of-plane oscillations considered in Ref. [28] 

(shown with red crosses in Fig. 9). After passing the 

critical value of velocity the coefficient of friction 

changes only very slowly.  

Thus, for small oscillation amplitudes the “law of 

friction” is completely determined by the value of the 

static coefficient of friction, Eq. (16), the value of  

the coefficient of friction in the critical state and the 

more or less universal transition between both points, 

Eq. (28).  

From the above-mentioned three determining 

parameters of the law of friction at low oscillation 

amplitudes, static coefficient of friction, critical velocity 

of continuous sliding and coefficient of friction at the 

critical velocity, two are already known and given by 

Eq. (16) and Eq. (27), respectively. We now consider 

the macroscopic coefficient of friction 
macro,crit

  directly 

on the border line. For very low values of 
0

y , the 

coefficient of friction in the area of continuous sliding 

(including the border line) can be calculated by 

substituting Eq. (18) into Eq. (15): 

  macro
cos cos             (29) 

with  

0

2

0
1

y

v
 






               (30) 

Expanding Eq. (29) up to the second power of   

gives 

   
22

2 0
macro 2

0

1
1 cos 1

2 4 1

y

v

      






    (31) 

For large velocities, the coefficient of friction 

tends to the limiting value 
macro

1  , as it should.  

At the borderline defined by 2

0 0
/ 2v y   in the first 

approximation we get 

2

0
macro,crit

1
4

y
  


              (32) 

6.2 Coefficient of friction at high oscillation 

amplitudes 

In the case 
0

1y  , for most of the oscillation cycle 

the contact point Q is in the sliding state with the 

possible exception of “turning points” which, however, 

do not substantially influence the average coefficient 

of friction. In this case, in Eq. (11), the derivative on 

the left-hand-side can be neglected compared with 

the terms on the right-hand side and this equation 

can be written as 

     
0 00 sin cos cosv y          (33) 

Hence,  

0

0

tan cos
y

v
 




             (34) 

For the macroscopic coefficient of friction, we obtain, 

using Eq. (15): 

macro
2

2

0

2
0 0

20

0

1
cos

1 tan

1 d 2

2
1 cos

y
K i

v
y

v



 



 



 


 
    

  
  
 










    (35) 

where  

/ 2

2 2
0

d
( )

1 sin
K

 
 




            (36) 

is the complete elliptic integral of the first kind.   

The dependence Eq. (35) is shown in Fig. 10. This  

dependence reproduces the results of earlier studies 

of this mode of active control of friction in Refs. [4, 5, 2]. 

Equation (35) shows that the coefficient of friction at 

large oscillation amplitudes is a function of a single  
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Fig. 10 Dependence of the coefficient of friction on the 0 0/ v y  
-ratio shown for oscillation amplitudes 0 0,  0.8, 1.6, 2.4, ...y  
all the way up to very high values of 0 80y . The results converge 
to relation Eq. (35), which is shown with red crosses. Also 
displayed is the border line (thin solid line with black dots). 

parameter combination 0

0

y

v


0 0

0 0

y y

v v







. Figure 10 

shows that the dependences of the normalized 

coefficient of friction on the parameter 
0 0

/y v   really 

do tend towards the “master curve” given by Eq. (35) 

(red crosses in Fig. 10). 

7 Summary 

We presented a general theoretical analysis of the 

influence of transverse oscillations on the macros-

copically observed coefficient of friction. Unlike 

previous works, we explicitly took into account the 

contact stiffness. The natural length scale of the system 

is the elongation 
0

l  at which sliding starts, which 

depends on the normal force, the contact stiffness 

and the coefficient of friction according to Eq. (5). 

The natural scale of velocity is given by the sliding 

velocity 
0

v . Oscillation introduces an additional 

variable having the dimension of length—the oscillation 

amplitude, 
0

y , and an additional quantity having the 

dimension of velocity, 
0

l  . We have found that the 

dependence of the coefficient of friction on velocity  

is completely determined by two dimensionless 

parameters: the dimensionless amplitude of oscilla-

tion 
0 0 0

/y y l  given by the ratio of the above two 

characteristic lengths; and dimensionless velocity, 

0 0 0
/v v l  . 

Figure 11 summarizes schematically the main find-

ings of the present paper. Contrary to the previous 

figures, we use the non-normalized coefficient of  

 

Fig. 11 Schematic representation of the law of friction (dependence 
of the friction coefficient on the macroscopic sliding velocity). 

friction and the non-normalized sliding velocity 0v , 

as this better highlights the main tendencies and is 

easier to compare with experiment.  

As in the case of out-of-plane oscillations discussed 

in Ref. [33], there is qualitatively different behavior in 

the case of oscillation amplitudes smaller than some 

critical value (which in the present case is given by 

0 0
y l ) and in the case of large oscillation amplitudes.  

In the case of large amplitudes, the behavior is 

relatively simple and coincides with the well-known 

solution obtained in Ref. [4] and later in Ref. [5] which, 

however, never could be fitted to experimental 

results Ref. [15]. In this case the static friction force 

is identically zero and the coefficient of friction is 

increasing monotonically according to the more or 

less universal law given by Eq. (35) tending to the 

microscopic value in the limit of very high velocities. 

In dimensional variables it reads: 

0
macro 0

0

2 y
K i

v


 


 

   
 

            (37) 

In the case of small oscillation amplitudes, there  

is a final static friction coefficient. In this region,   

the law of friction is roughly determined by three 

parameters: the static coefficient of friction, Eq. (16) 

or in non-normalized form: 

2 2

macro,static 0 0 0
1 /y l             (38) 

the critical velocity of continuous sliding, Eq. (24) 

which in dimensional variables reads 
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2 2

0,crit 0 0 0

1
2

2
v l y l      

          (39) 

and the coefficient of friction at this velocity, Eq. (32): 

2

0
macro,crit 0 2

0

1
1

4

y

l
 

 
   

 
           (40) 

At larger velocities, the coefficient of friction has a 

very slowly changing plateau. 

Let us briefly discuss the physical mechanism of  

the reduction of friction by transverse oscillations. In 

the case of out-of-plane oscillations, this reduction is 

exclusively due to the stick-slip motion: during the 

stick-phase the force of friction is smaller than the 

sliding frictional force; therefore, the average frictional 

force is smaller than the force at stationary sliding 

[28]. In the case of transverse oscillations, there are two 

main causes of friction reduction: (a) the occurrence 

of phases of stick and (b) the deflection of the   

local force of friction in the contact point from the 

direction of the macroscopic sliding. The first of 

these mechanisms is common for all kinds of active 

control of friction by oscillations. The second one is 

characteristic only for the case of transverse oscillations 

considered in the present paper. While the absolute 

value of the sliding force remains constant, the 

macroscopic coefficient of friction is determined by 

the projection of the force on the direction of the 

macroscopic sliding which in the case of transverse 

oscillations does not coincide with the direction of 

macroscopic sliding. Thus, it is always reduced 

compared to the absolute value of the sliding friction 

by the average value of cos , where   is the angle 

between the sliding direction and the direction of the 

instant force of friction. This mechanism manifests 

itself in Eq. (15). Due to this second mechanism, the 

reduction of friction occurs even in the cases of 

continuous sliding. 

8 Outlook 

In the future, several problems have to be considered 

that have not been studied yet. From the three basic 

oscillation directions till now only two have been 

studied in detail, with account of the contact stiffness— 

the out-of-plane oscillations [28], and the in-plane 

sideways oscillations (present paper). The complete 

study of the active control of friction by the in-plane 

oscillations in the sliding direction is still open.  

Further generalization of the present work could 

lead to consideration of contacts under simultaneous 

oscillations in many directions. An example of such a 

study carried out in Ref. [14] shows that multi-mode 

“active control of friction” leads to some qualitatively 

new effects such as actuation due to symmetry 

breaking.  

Finally, let us mention that the present study can 

be extended by consideration of the contact dynamics 

on the time scale that was classified as “microscopic” 

in the present study. This would lead to non-local 

(temporal) dependences of the frictional force on the 

loading, or in other words the kinetics of the coefficient 

of friction. The basics for such a consideration are 

already given by Eqs. (9)−(12) but have not been an 

explicit subject of study in the present paper. 
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