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Abstract: Lack of driver’s knowledge about the abrupt changes in pavement’s friction and poor performance of 

the vehicle’s stability, traction, and ABS controllers on the low friction surfaces are the most important factors 

affecting car crashes. Due to its direct relation to vehicle stability, accurate estimation of tire-road friction is of 

interest to all vehicle and tire companies. Many studies have been conducted in this field and researchers have used 

different tools and have proposed different algorithms. This literature survey introduces different approaches, 

which have been widely used to estimate the friction or other related parameters, and covers the recent literature 

that contains these methodologies. The emphasize of this review paper is on the algorithms and studies, which 

are more popular and have been repeated several times. The focus has been divided into two main groups: 

experiment-based and model-based approaches. Each of these main groups has several sub-categories, which 

are explained in the next few sections. Several summary tables are provided in which the overall feature of each 

approach is reviewed that gives the reader the general picture of different algorithms, which are widely used in 

friction estimation studies. 
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1  Introduction 

Approximately 120,000 people were killed on US 

roadways between 2010−2013 [1−3]. Even in the case of 

non-fatal crashes, the economic costs are undeniably 

high [4, 5]. Due to the large number of fatalities and 

the high economic costs, different studies have been 

conducted on the effects of different factors on car 

crashes [6, 7].  

Twenty-four percent of all crashes are weather 

related, which occur on icy, snowy, or wet pavement 

or in the presence of rain, sleet, fog and snow [8]. 

Several studies have been conducted on crashes during 

rainfall and snowfall [9−12]. It was observed in a 

study on crashes before and after rain in Calgary and 

Edmonton that the crash rate is 70% higher on the 

wet pavement [13]. In a similar study, it was shown 

that the crash frequency on wet roads is twice the 

rate of the crashes on dry pavements [14]. This high 

rate of weather related crashes is mainly attributed 

to the drivers overestimating the pavement friction, 

and the effect of bad weather condition on the vehicle 

stability and safety controllers. 

Tire-road friction estimation is one of the most 

important problems for both vehicle and tire industries 

that can decrease the number of weather related crashes 

dramatically. The effect of tire-road friction force on 

vehicle performance and stability and on the perfor-

mance of traction and ABS controllers is undeniable 

[15−19].  

Different studies have developed and used different 

algorithms to estimate the tire-road friction. Based on 

the approaches that they have followed, all of the 

related research can be divided into the following two 

categories: 

1–Experiment-based;  

2–Model-based. 

In experiment-based approaches, it is attempted to 
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find a correlation between the sensor data (acoustic 

sensors, temperature sensor, etc.) and tire-road friction- 

related parameters. The model-based approaches try 

to estimate the friction using simplified mathematical 

models, which can be divided into three sub-categories: 

wheel and vehicle dynamic based approaches, slip 

based approaches, and tire model based approaches.  

In vehicle dynamic base approached, different 

dynamic models (single wheel model, bicycle model, 

planar model, etc.) are used along with an estimation 

algorithm (recursive least square, steady state and 

extended Kalman filter, sliding mode observer, etc.) 

to estimate the tire-road friction force and other 

friction-related parameters such as slip ratio, slip angle, 

etc. Tire model based approaches use the friction 

force and slip data along with one of the tire models 

(Magic formula, Brush model, LuGre model, etc.) to 

estimate the maximum tire road friction coefficient. 

In slip base approaches it is assumed that the value 

of friction in the saturated area of slip  curve can 

be estimated based on the slope of the curve in low 

slip region (linear region). 

This study presents a technical survey of tire-road 

friction estimation research. For each of the above 

approaches, first, the method is explained briefly  

and then the review of the literature on the subject is 

presented. The rest of the paper is organized as follows: 

first, the tire-road friction force and aligning moment 

are introduced; the experiment-based friction estimation 

approaches are discussed in the second section. The 

model based friction estimation algorithms are reviewed 

in the third section followed by the conclusions in the 

last section.  

Tire-road friction coefficient and self-aligning 

moment 

In order to start with different friction estimation 

approaches, it is required to define the tire forces, 

aligning moment, and friction coefficient. Free body 

diagram of a single wheel is shown in Fig. 1, which 

, ,
x y z

F F F  are longitudinal, lateral, and normal tire 

forces, respectively. The normalized tire traction force 

is defined as [20]: 

2 2

x y

z

F F

F



  

where its maximum value is called the friction  

 

Fig. 1 Free body diagram of a single wheel. 

coefficient ( ) . The wheel aligning moment is defined 

as the tendency to align the wheel plane with the 

direction of wheel travel, which is caused by steering 

geometry and side deformation of a tire, which moves 

forward and has nonzero slip angle. 

2 Experiment-based   

Figure 2 demonstrates the main philosophy behind 

experiment-based approaches. As it is shown in 

Fig. 2, most of the experiment-based methods use 

sensor measurements of the friction-related parameters 

(tire noise, tire longitudinal or lateral deformation, 

etc.) and try to correlate these parameters to tire-road 

friction [21, 22]. 

Based on the sensor type and the parameter which is 

used for this estimation, experiment-based approaches 

can be categorized as follows. 

2.1 Optical sensors and cameras  

Optical sensors and cameras are used to detect surface 

properties related to friction. Using optical sensors   

 

Fig. 2 Experiment-based flowchart diagram. 
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to measure infrared light at different wavelengths 

reflected from the roads, the surface type (dry, wet, 

icy, snowy, etc.) can be identified. The principal of 

road-eye sensors is shown in Fig. 3 [23]. The other 

use of optical sensors is to estimate the sidewall 

deformation and correlate it with friction [24−26].  

Cameras are also used to identify the texture of 

different surfaces. Once the texture is evaluated, a 

neural network can be trained to estimate the surface 

friction [27]. The conventional methods of detecting 

road conditions are [28]: 

– Detection by color difference: It uses the ratios of 

color signals (R, G and B) to detect road condition. 

– Detection by pattern matching: This technique uses 

geometrical features along with pixel density to 

estimate the condition of the road. 

– Detection by infrared rays: Infrared can be used to 

detect the presence of water as water has a relatively 

large absorption band in the infrared range. 

– Detection by difference in polarized level: It uses a 

difference between horizontal and vertical polarization 

to detect road condition. 

What follows is the review of the papers that have 

used optical sensors for friction estimation. Holzmann  

 

Fig. 3 The schematic of using optimal sensor to identify different 
surfaces [23]. 

et al. [29] used cameras and microphones for estimating 

the friction coefficient. The image captured by the 

camera was analyzed for the luminance and 

neighborhood of pixels. Microphone was used as a 

reactive measurement to improve the accuracy of the 

estimation; the frequency range of 100−600 Hz was 

analyzed. Kuno and Sugiura [28] used a CCD camera 

to detect the road condition. They detected the distri-

bution of gloss on road surface due to presence of 

water using the high and low levels of luminance 

signals. Jokela et al. [30] used two methods of measure-

ment: polarization change and graininess analysis. 

The amount of vertical and horizontal polarized light 

reflecting from the surface was used to detect the road 

surface condition. Graininess analysis is done by using 

a low pass filter on the image making it blurry and 

comparing the contrast with the original image.  

2.2 Acoustic sensor 

Acoustic sensors are used to classify the road surface 

type/condition (asphalt, concrete, wet, dry, etc.) based 

on the tire noise. In some of the studies, the acoustic 

sensors were attached to the vehicle’s chassis [31]. 

Figure 4 demonstrates the algorithm, which uses 

support vector machine (SVM) to classify different 

surfaces based on tire noise. 

Some other studies have used a microphone, installed 

at a fixed road location, to record the noise generated 

by the vehicles passing by and use the recorded data 

to estimate the pavement status [32−35]. 

2.3 Tire tread sensors 

Tire tread sensors are used to monitor the interaction 

between tire and the road, and to estimate the 

 

Fig. 4 Friction estimation algorithm using acoustic sensors. Reproduce with permission from Ref. [31]. Copyright Elsevier, 2014. 
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deflection of tread elements inside the contact patch. 

The sensor types are mostly accelerometer and piezo 

electric and magnetic sensors. Erdogan et al. used the 

piezoelectric sensor inside the tire (in the tread area), 

which estimates lateral deflection profile of the carcass 

and uses it to estimate the friction [36]. Magnets 

vulcanized into the tread of a Kevlar-belted tire are 

also used in some studies to measure the deflection of 

the tread in x, y, and z directions as a function of its 

position inside the contact patch [21, 22, 37−39]. Using 

the fact that the tread deformation is caused by the 

total force acting on the tire, the friction is estimated. 

In other studies, tri-axial accelerometers attached to 

the innerliner of the tire, shown in Fig. 5(b), are used 

to estimate the friction [40]. 

Matilainen and Tuononen [41, 42] used the signals 

from the tri-axial accelerometer inside the tire to 

estimate contact patch length. The algorithm detects 

two acceleration peaks in the longitudinal acceleration 

signal and uses it along with wheel angular speed  

to estimate contact patch. Khaleghian et al. [43, 44] 

and Singh et al. [40] utilized a tri-axial accelerometer 

attached to the innerliner of the tire; using a neural 

network algorithm, they estimated the tire normal load. 

Niskanen and Tuononen [45−47] used three tri-axial 

accelerometers inside the tire to find friction indi-

cators on smooth ice and concrete surfaces. The radial 

acceleration signal from the accelerometer is analyzed 

at the leading edge of the contact patch for friction  

 

Fig. 5 Using tread sensors (tri-axial accelerometer) to estimate 
the friction. Reproduce with permission from Ref. [40]. Copyright 
Khaleghian, 2017. 

indicators. They have stated that the vibration in the 

leading edge due to slip on low friction surfaces can 

be used to determine the road surface type.  

In addition to the studies and approaches that were 

introduced in this section, several patents have been 

submitted, and have used different experiment based 

methods to estimate the friction or other related 

parameters; some of these patents are summarized in 

Table 1.   

Although the tire-road friction can be estimated 

using some of the experiment based approaches, in 

most cases their accuracy is reduced when the testing 

condition deviates from the condition under which the 

algorithm was trained. In order to make the estimation 

algorithms more robust and take the dynamic of the 

vehicle into account, model-based approaches are 

introduced. 

3 Model-based 

Model-based approaches contain all the studies that 

use a mathematical/dynamical model to estimate the 

friction. No need of any expensive special sensor 

which is standard on today’s vehicles and accuracy 

and repeatability of the results in most of the cases, 

makes this category more popular as compared with 

experiment-based approaches. The model-based studies 

can be divided into three main groups: wheel and 

vehicle dynamic based, tire model based, and slip-slope 

based approaches.     

3.1 Wheel and vehicle dynamics based 

Studies, which are based on this approach, use the 

dynamical model of the system, in which some of the 

states can be measured (like angular velocity of the 

wheel) and some other states cannot be measured 

(like friction force, longitudinal speed, etc.). Based on 

dynamical model of the system and the measured 

states, the rest of the states can be estimated using 

different estimation algorithms such as recursive least 

square (RLS), Kalman filter, etc. The general flowchart 

of algorithm which is used in most of vehicle dynamic 

based studies is shown in Fig. 6.  

Some of the most common dynamical models in the 

friction estimation studies are wheel tire model, roll  
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Fig. 6 The general flowchart for vehicle dynamic based 
approaches. 

dynamic model, bicycle model, quarter-car model, and 

four-wheel vehicle dynamic model, which are explained 

in more details next. 

3.1.1 Wheel dynamic model 

Free-body diagram of a single wheel is depicted in 

Fig. 7 in which, 
rr

F  is the rolling resistance force, and 

T is the transmitted wheel torque. The equations of 

motion for this problem are as follow: 

Table 1 Summary of the patents which have used experiment based methods. 

Inventor name Estimated parameters Summary of invention 

Klein [48] Friction coefficient He used a steering system which was controlled by a control module. They estimated the 
steering gain and steering load hysteresis along with a reference, they determined the friction. 

Singh [49, 50] Tire normal load,  
side slip-angle 

Two strain sensors are attached to the inner and outer sidewalls of a tire (sidewall strain 
sensors) , using the average power of these signals in different tire pressures to estimate the 
normal load, also they developed an algorithm to estimate the side slip-angle based on 
properties of strain signals (then vehicle dynamic based approach was used to estimate the 
tire longitudinal and lateral force). 

Singh et al. [50] Tire normal load,  
side slip-angle 

They used a set of strain sensors affixed to opposite sidewalls of the tire. Estimating the 
slope difference in opposite sidewalls strain signals, they estimated the side slip angle. 
They also estimated the tire normal load based on the average power of strain signal. 

Singh et al. [51] Tire sidewall force They used a piezo film in one or both sidewalls of the tire. The sensor generates a signal 
within the contact patch area (can be used to estimate the length of the contact patch), where 
power of the signal indicates the sidewall deformation. The power to load map for different 
tire pressure is used to estimate the sidewall force. 

Miyazaki [52] Tire forces,  
friction coefficient 

Several strain sensors are attached to the vicinity of the wheel on the axle, which provide 
the strain signals. The produced signals are used to estimate the tire forces and tire-road 
friction coefficient (from the correlation between strain signals and desired parameters). 

Hattori [53] The strain state  
of the tire 

A series of conductors composed of plurality of conductor pieces (embedded in lines at 
specific interval in circumferential direction of the tire) are used to provide the strain states 
of the tire. A monitoring device releases signal (pulse electromagnetic wave), also receive 
the reflected signals from the foils. The time difference between radiation and reception in 
different conditions is used to evaluate the strain stress of the tire.  

Hillenmayer and 
Kuchler [54] 

Tire static load, 
nature of the  
road surface 

A pressure sensor and a deformation sensor are used in the tire; using frequency-dependent 
analysis on the sensor signal they estimate the static loading and the nature of the road 
surfaces. 

Miyoshi et al. 
[55]  

Tire longitudinal  
force 

Two magnetic sensors are used to measure the rotation angle of the wheel and wheel axle. 
Then they used a computing device to calculate the tire warp angle, which is derived by 
the difference between tire rotational angle during load and no-load condition. Then they 
estimated the tire longitudinal force as a function of tire warp angle.  

Sistonen [56]  The friction on a  
surface 

He developed a new device consist of a wheel, an arm which is attached to wheel axle and 
a spring, which is attached between measuring wheel and its axle to estimate the friction. 
The degree of rotation of the measuring wheel at the point, where the wheel starts to slid, is 
used to estimate the friction. 

Bell and Bell 
[57] 

Friction coefficient They used tread force sensor, one end of the sensor is fixed on the tread and the other end is 
on the tire structure, where slipping of small discrete tread element can be detected. Compiling 
the sensor data of the tire deformation-induced tread gripping force, the friction coefficient 
is estimated. 

Abe and Sawa 
[58] 

Dynamic friction 
coefficient 

They developed a new device to measure the dynamic friction coefficient which includes a 
disk with measuring rubber member, a driving disk adapted to rotate co-axially with the disk 
and dynamometer interconnects the disk and the driving disk. A tachometer is also used to 
measure the speed of the rubber. Using X-Y recorder, which records the output signals of 
friction measuring portion and the tachometer, the friction coefficient is estimated.  
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Fig. 7 Free body diagram of a single wheel. 

w rrx x
m v F F                   (2) 

w w w b w rr w
( )

x
J T T F r F r                (3) 

where 
w

m  is the total mass of the wheel, 
w

J  is the 

moment of inertia of the wheel, and 
w b

,T T  are the 

drive and brake torques, respectively. The value of 

wheel rolling resistance force can be calculated as:  

rr r
F f W                      (4) 

where W is the weight on the wheel and 
r

f  is the 

rolling resistance coefficient that can be expressed as 

a function of tire pressure and wheel velocity. Several 

equations have been developed over years to estimate 

the rolling resistance. One suggests following equation 

for rolling on concrete surface [59]:   

2.5

r o s
3.24

100

V
f f f

 
   

 
               (5) 

where V is the speed in mph, 
r

f  and 
o

f  are basic 

coefficient and speed effect coefficient respectively that 

depend on inflation pressure. Equation (3) is widely 

used in the literature in order to estimate the tire 

longitudinal friction force [18, 60, 61]. However,   

the accuracy of estimated longitudinal force highly 

depends on the accuracy of the effective rolling 

radius of the tire (
w

r ). The effective rolling radius is 

presented as [20]: 

static
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 

 

          (6) 

where 
0

r  is the initial radius of the tire and 
t

k  is the 

vertical stiffness of the tire. Wheel dynamic model is 

mostly used with a tire model in order to estimate 

the longitudinal force and longitudinal friction [62, 

63]. Hsiao et al. [63] substituted the measured wheel 

torque and wheel angular velocity into Eq. (3), obtained 

from moment balance equation of each wheel, to 

estimate the tire longitudinal force. Rajamani et al. [64] 

used the measured data of angular wheel speed and 

proposed a sliding mode observer to estimate the tire 

longitudinal force based on single wheel dynamic 

model. Cho et al. [65] used the same approach to 

estimate the longitudinal tire force and showed that 

the estimated force is accurate for the low slip vehicle 

maneuvers. Rabhi et al. [66, 67] used a single wheel 

model with cascaded first and second sliding observers 

to estimate the contact force. They used the measured 

data of longitudinal speed of the vehicle, angular posi-

tion of the wheel and wheel torque along with robust 

differentiator and sliding mode observer to estimate 

the velocity and acceleration of the wheel, longitudinal 

and vertical tire forces and friction coefficient. 

3.1.2 1DOF roll dynamic model 

The most common vehicle models, which are used to 

estimate the roll dynamics of the vehicle, are 3DOF 

model, which represents lateral, yaw and roll motions 

of the vehicle, and 1DOF model, representing the roll 

dynamics.  

The 1DOF roll dynamic model has practical advan-

tages in comparison to 3DOF model, which does not 

need the cornering stiffness (which is not easy to be 

estimated), besides it is not sensitive to the nonlinear 

tire dynamics. For these reasons, 1DOF model is widely 

used in the vehicle state estimation studies. Figure 8 

demonstrates the schematic of 1DOF vehicle roll model 

[68], where 
roll roll

,k c  are roll stiffness and roll damping 

coefficients for the combination of tire-suspension, 

respectively (which are assumed to be constant), and 

roll
h  is the distance from the roll center to the vehicle 

CG. Assuming the roll axis is fixed and there is no 

vertical motion, the equation of motion is formulated as: 

2

s roll chassis roll chassis roll chassis s roll ,m
( )

x y
I m h c k m h a          

(7) 

where 2

s rollx
I m h  is the moment of inertia around the 

roll axis, 
x

I  is the moment of inertia around x axis and 
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Fig. 8 The schematic of 1DOF roll vehicle model. Reproduce 
with permission from Ref. [68]. Copyright Singh, 2012. 

s
m  is the sprung mass of the vehicle. The vehicle roll 

dynamic model is mostly used to estimate the vehicle 

roll angle, which is a key factor to obtain the normal 

load at the wheels. Some of the studies, which have 

used roll dynamic model, are summarized in Table 2. 

3.1.3 Quarter car model 

The quarter car model is a 2DOF model which is 

mostly used to model the vertical dynamic (especially 

suspension) of the car. As it is shown in Fig. 9, quarter 

car model is represented with two lumped masses, 

qs qu
,m m  (sprung mass and un-sprung mass), which 

are 
1

4
 vehicle body mass and wheel mass respectively. 

The suspension system of the vehicle is presented  

as a set of spring damper system (
s s
,k c ) while the 

tire is presented as a single spring (
u

k ) (however  

in some other studies, tire is considered as set of 

spring-damper too). 

The equations of the motion for the quarter-car 

vehicle model shown in Fig. 8 are presented as: 

s s s s u s s u

u u s u s u s u s s

( ) ( ) 0

( ) ( ) 0

m x c x x k x x

m x c x x k k x k x

    
     

  
  

     (8) 

Quarter car model is mainly used in friction estimation 

studies to obtain the tire normal force and road 

profile. Several studies have measured the vertical 

acceleration of the un-sprung mass and the suspension 

deflection and have used them to estimate the normal 

force using the following equation [75−77]: 

s s u s s u u u
( ) ( )

z
F c x x k x x m x             (9) 

Doumiati et al. [78, 79] used the quarter car model to 

estimate tire normal load and the road profile. First, 

they used accelerometer measurements to calculate 

the vehicle body vertical position, and then used it as 

a measured state for Kalman filter to estimate the 

normal wheel load and road profile.  

Next, the planar dynamic models of the vehicle are 

introduced; four-wheel vehicle model and its simplified 

version, bicycle model are discussed in more details 

which are widely used in vehicle state estimation 

studies. 

3.1.4 Four-wheel vehicle model 

Four-wheel vehicle model (also called two-track model) 

just considers the longitudinal, lateral and yaw motions 

of the vehicle, while roll, pitch, and vertical motion 

are ignored. The schematic of this model is shown in 

Fig. 10 [20], where t is the track length, 
f r
,l l are the  

Table 2 Some of the studies which have used roll dynamic model. 

Authors Measured states Estimated states Method 

Hac et al. [69] Lateral acceleration, 
yaw rate 

Roll angle Closed-loop adaptive observer was used to estimate the roll angle and 
roll rate with respect to the road. 

Tsourapas et al. [70] Load transfer ratio Vehicle roll 
dynamic 

Two rolls over indexes are introduced and analyzed; these indexes are: 
actual lateral transfer ratio (LTR) and predictive lateral transfer ratio 
and predictive lateral transfer ratio (PLTR). 

Grip et al. [71] Roll rate Roll angle Combination of vehicle dynamics control system and a roll over 
mitigation system is used to estimate the roll angle. 

Chen et al. [72] 
Ryu et al. [73] 

Lateral acceleration, 
yaw rate 

Roll angle They used a roll vehicle model (either 3DOF model or 1DOF model) 
along with Kalman filter to estimate the roll angle. 

Cho et al. [74] Longitudinal speed, 
yaw and roll rate, 
lateral acceleration 

Roll angle Vehicle state index based switching is used on the roll dynamic and 
kinematic model to estimate the roll angle. 
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Fig. 9 Schematic of quarter car vehicle model. 

 

Fig. 10 The schematic of four wheel vehicle model. 

distance of center of gravity of the vehicle (CG) from 

the front and rear axle respectively, 
g

V  is the velocity of 

CG and ,
x y

V V  are its component in x and y direction 

respectively. Also   is the yaw rate,   is the steering 

angle and it is assumed that both front wheels have 

the same steering angle (
11 12
  ). The equations of 

motion for this model are as follows [20]: 
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where 
z

I  is the moment of inertia of the car around 

z axis, 
v

m  is the vehicle mass and   is the vehicle 

side slip angle. Table 3 summarizes some of the studies 

which have used the four-wheel vehicle dynamic model 

to estimate the friction force, friction coefficient or 

other parameter related to friction estimation problem. 

The simplified version of four-wheel vehicle model is 

bicycle model (also called single-track model) which 

is introduced in the next section. 

3.1.5 Bicycle model 

The schematic of the bicycle model is shown in Fig. 11, 

which was introduced by Segel in 1956 [20]. The  

bicycle mode is widely used to describe the handling 

dynamics of the vehicle, in which vertical and roll 

motions are not taken into account.  

The simplified equations of motion for the bicycle 

model are as follow: 
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Many studies have used this vehicle model along 

with some estimation algorithms to estimate the lateral 

vehicle states, friction force and/or coefficient. Table 4 

summarizes some of the research which have used 

bicycle model in their algorithms.   

The most popular vehicle models, which are widely 

used in friction estimation studies, are introduced in 

this section; Table 5 reviews these vehicle dynamic 

models, their common measured states and the states 

which are usually estimated with these models as a  

Table 3 Some selective studies which have used four-wheel vehicle model. 

Authors Measured states Estimated states Method 

Samadi et al. 
[80]  

Longitudinal acceleration, lateral 
acceleration for the front and 
rear axles, angular velocity of the 
wheels 

Longitudinal tire force 
for all wheels and lateral 
force for front and rear 
axles 

They used extended Kalman filter to estimate the tire 
forces, they used Pacejka as the tire model and nonlinear 
model for hydraulic braking system. 

Baffet et al.  
[81] 

Yaw rate, velocity of CG, longi-
tudinal & lateral acceleration 

Tire forces, vehicle 
velocity, yaw rate 

They used extended Kalman filter (with random walk 
model for the forces) to estimate the tire forces, then 
they estimated the side-slip angle based on dynamic of 
the problem. Cornering stiffness was estimated based on 
the data of tire forces and side slip angle through another 
Kalman filter algorithm. 

Shim and 
Margolis  
[82, 83] 

Longitudinal & lateral accelera-
tion, steering angle, wheel angular 
velocity 

Tire forces They used four-wheel dynamic model and estimate the 
tire forces base on the analytical tire model (relation 
between the measured and estimated states) which they 
proposed. 

Doumiati et al. 
[84–88] 

Longitudinal & lateral accelera-
tion, steering angle, wheel angular 
velocity, yaw and pitch rate, 
suspension displacement 

Tire forces, vehicle side 
slip angle 

They used vehicle roll model to estimate the tire normal 
force and then used a four-wheel vehicle model dynamics 
of the problem; using two observer (extended and 
unscented Kalman filter) they estimated the tire force 
and vehicle side slip angle. 

Ghandour et 
al. [89, 90] 

Longitudinal & lateral accelera-
tion, steering angle, wheel angular 
velocity, yaw and pitch rate, 
suspension displacement 

Tire lateral force and 
side slip angle 

Using the roll vehicle model, they estimated the tire normal 
load, then they used extended and unscented Kalman 
filter to estimate the lateral force and side slip angle. 

Ghandour et 
al. [91] 

Longitudinal & lateral accelera-
tion, steering angle, wheel angular 
velocity, yaw and pitch rate, 
suspension displacement 

Lateral load transfer, 
lateral skid indicator  

They used the vehicle roll model for the normal load 
then they proposed a maximum friction coefficient 
estimation based algorithm to evaluate a lateral risk skid 
indicator. 

Dakhlallah  
et al. [92] 
Sebsadji  
et al. [93] 

Longitudinal & lateral accelera-
tion, steering angle, wheel angular 
velocity, yaw rate 

Tire forces and road 
grade 

They used an extended Kalman filter and Luenberger 
observer based method on the nonlinear vehicle model to 
estimate the forces and road grade. 

Cheng et al. 
[94] 

Longitudinal & lateral accelera-
tion, steering angle, wheel angular 
velocity, yaw rate 

Vehicle side slip angle, 
lateral tire force and tire 
road friction coefficient

They used unscented Kalman filter based estimation 
algorithm to estimate the vehicle’s desired states and tire 
road friction coefficient. 

Ray  
[95, 96] 

Yaw and roll rate, wheel angular 
velocity, longitudinal and lateral 
acceleration 

Slip ratio, slip angle, 
wheel velocity, normal 
force at each wheel, 
longitudinal and lateral 
force 

They used a nine degree of freedom model, which is a 
four-wheel model with vehicle roll dynamic along with 
extended Kalman filter to estimate the desired states. 

Jin and Yin  
[97] 

Longitudinal & lateral accelera-
tion, steering angle, wheel angular 
velocity, yaw & roll rate 

Tire forces for all wheels, 
roll angle, yaw & roll 
rate, velocity of CG 

They proposed two extended and unscented Kalman filter 
based observers which used four-wheel model with the 
roll vehicle model to estimate the tire forces and other 
vehicle states 

Rajamani  
et al. [98] 

Longitudinal & lateral accelera-
tion, steering angle, wheel angular 
velocity, yaw & roll rate 

The tire forces, longitu-
dinal and lateral vehicle 
velocities, yaw and roll 
angle 

They used extended Kalman filter approach with 8DOF 
model (four-wheel model with roll vehicle dynamic model) 
to estimate the tire forces and other vehicle’s states. 
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Fig. 11 The schematic of the bicycle model. 

summary of dynamic wheel/vehicle based approaches. 

The tire model based algorithms are introduced next. 

3.2 Tire model based 

Tire models generally express the relationship between 

tire forces and moments with slip ratio/slip angle, 

which have been used in various studies to estimate 

the friction forces and friction coefficient. It is assumed 

that the tire forces and moment, also slip ratio and/or 

slip angle are available (or can be estimated) then by 

comparing the force/moment—slip data with different 

tire models, the model parameters and friction  

Table 4 Some studies which have used bicycle model. 

Authors Measured states Estimated states Method 

Baffet et al. [99, 100] 
Zhang et al. [101] 

Yaw rate, longitudinal & 
lateral acceleration, steering 
angle 

Tire forces, vehicle side slip 
angel 

They used sliding mode observer to estimate tire 
road forces, then using and extended Kalman filter 
they estimated the cornering stiffness and side-slip 
angle. 

Baffet et al. [81] Yaw rate, longitudinal & 
lateral acceleration, vehicle 
velocity 

Tire forces, side slip angle, 
cornering stiffness 

First, they used extended Kalman filter to estimate 
the tire longitudinal and lateral forces, then another 
extended Kalman filter algorithm was used to 
estimate the side slip angle and cornering stiffness.

Baffet et al. [102] Longitudinal & lateral 
acceleration, steering angle, 
wheel angular velocity, yaw 
rate 

Lateral tire force, vehicle 
side slip angle and yaw rate 
and vehicle speed 

They used three different extended Kalman filter 
based algorithm along with Burckhardt and linear 
tire force model to estimate the tire force, yaw 
rate, vehicle speed and side slip angle. 

Ahn [103] Longitudinal & lateral 
acceleration, steering angle, 
wheel angular velocity, yaw 
rate 

Lateral force, aligning 
moment, side slip angle, 
friction coefficient 

They used bicycle model with state estimator to 
estimate the lateral force and aligning moment; 
then using a sliding mode observer with brush tire 
model, they estimated the side slip angle and friction 
coefficient. 

Zhang et al. [104]  Yaw rate Side slip angle and yaw rate They used a nonlinear observer to estimate the side 
slip angle, its stability conditions were obtained 
from analysis of energy to peak performance of 
the estimation error system. 

Zhu and Zheng [105] 
Pan et al. [106] 

Longitudinal & lateral 
acceleration, steering angle, 
wheel angular velocity 

Wheel side slip angle and 
yaw rate 

They used unscented Kalman filter to estimate the 
side slip angle and the yaw rate. 

Chu et al. [107, 108] Yaw rate, longitudinal & 
lateral acceleration, steering 
angle, wheel angular velocity 

Vehicle longitudinal and 
lateral velocity 

They used an adaptive unscented Kalman filter to 
estimate the vehicle longitudinal and lateral velocity.

Hsu et al. [109] Yaw rate, longitudinal & 
lateral acceleration, steering 
angle 

Tire slip angle They used a model base estimation approach; 
utilizing pneumatic trail information they identified 
the vehicle’s lateral limits. 

Ray et al. [110] Yaw rate, longitudinal & 
lateral acceleration, the wheel 
angular velocity 

Vehicle’s longitudinal and 
lateral speed, vertical dis-
placement of front, rear 
and CG, pitch angle, the 
longitudinal and lateral force 
for front and rear wheels 

They used a nine degree of freedom model, which 
is a bicycle model with a quarter-car model to 
simulate each of the front and rear tire and 
suspension. Using extended Kalman filter, they 
estimated the tire forces and other states. 

Gao et al. [111] Lateral acceleration, yaw rate Side slip angle They used a high gain observer along with a 
nonlinear tire model to estimate the vehicle side 
slip angle. They compared the results of high gain 
observer with the estimation results of extended 
Kalman filter and Leunberger observer. 
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coefficient are estimated.  

Different mathematical tire models have been 

developed based on model of the tire and the time 

behavior that can be captured (steady-state or transient) 

(Fig. 12) [68]; some of them which are more common 

for the friction estimation purpose are introduced in 

this article. 

3.2.1 Pacejka tire model 

Pacejka tire model (which is also called magic formula)  

 
Fig. 12 Different tire models. Reproduce with permission from 
Ref. [68]. Copyright Singh, 2012. 

is a semi-empirical tire model that was introduced 

for the first time by Pacejka in 1992 [112]. The model 

uses special functions to represent the longitudinal and 

lateral forces and the aligning moment. The formula-

tion of this tire model for longitudinal and lateral force 

and aligning moment are as follows: 
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(20) 

where s is the slip ratio,   is the side slip angle and 

, ,x y zF F M are the longitudinal force, lateral force and 

aligning moment respectively. The meaning of other 

parameters ( h v, , , ,B C D S S ) are shown in Fig. 13. 

In the newer version of the magic formula, the 

camber angle, cornering stiffness, and load variation 

also transient properties of the tire are also taken 

into account [113]. Magic formula has been widely 

used in literature for vehicle states and tire friction  

Table 5 Summary of wheel/vehicle dynamic models which are used for friction estimation. 

Model name Common  
measured states 

Common 
estimated states Features 

Wheel dynamic  
model 

Longitudinal acceleration, 
wheel angular velocity, drive 
& braking torque, rolling 
resistance force 

Longitudinal tire force, 
longitudinal speed,  

1. Used to study the longitudinal dynamics of the vehicle.
2. The accuracy of the estimation using this model highly 

depends on the accuracy of the tire effective radius 
which is used for estimation. 

1-DOF roll model CG’s lateral acceleration  Roll angle, roll rate 1. Used to estimate roll dynamics of the vehicle. 
2. Roll stiffness and damping coefficient are assumed to 

be constant. 
3. The roll axis assumed to be fixed. 
4. Does not need the information of cornering stiffness. 
5. It’s not sensitive to nonlinear tire dynamics. 

Quarter car model Vertical acceleration of sprung 
mass and un-sprung mass 

Tire vertical force, 
vertical position and 
velocity of sprung mass 
and un-sprung mass 

1. Mostly used to model vertical dynamics of the vehicle 
and suspension modeling. 

2. Pitch and roll motion are not taken into account. 
3. The wheels are assumed to roll without slip and contact 

loss. 

Four-wheel vehicle 
model  

Longitudinal and lateral 
acceleration, yaw acceleration, 
steer angle 

Tire’s longitudinal and 
lateral force, wheel hub 
velocity of each wheel

1. Used to study the longitudinal and transversal vehicle 
dynamics. 

2. Roll and pitch motion are ignored. 
3. Doesn’t have a suspension. 

Bicycle model Lateral acceleration, yaw 
acceleration, steer angle 

Front and rear lateral 
tire force 

1. Used to describe lateral dynamics of the vehicle. 
2. Rear steering angle assumed to be zero. 
3. Vertical and roll motion are ignored. 
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Fig. 13 Magic Formula’s parameters. 

estimation [112, 114, 115]. van Oosten et al. [116] clarified 

the determination of Magic Formula parameters from 

the experimental data, and discussed all the difficulties 

involved. Kim et al. [117] used the traditional concept 

of friction to formulate the friction; they assumed 

that the coefficients of Magic Formula are known. 

Using an instrumented vehicle they estimated the 

forces on each wheel with the help of Magic Formula. 

Then they estimated the longitudinal and lateral friction 

coefficients. Yi et al. [118] used an observer-based 

algorithm, in which the Magic Formula with known 

parameters was used for the longitudinal force, to 

estimate the tire road friction coefficient. First, they 

used a sliding mode observer (angular velocity of the 

wheel was measured) to estimate the vehicle states, 

then using a recursive least square algorithm, they 

estimated the tire road friction coefficient. Jayachandran 

et al. [119] developed a fuzzy logic based algorithm 

to estimate the value of longitudinal and lateral forces, 

also aligning moment based on slip ratio and slip angle. 

They used Magic Formula with known coefficients  

to calculate the tire forces and moment based on 

different slip values; then they defined a fuzzy 

membership function between the inputs (slip ratio, 

slip angle) and outputs (tire forces, aligning moment) 

of fuzzy-logic algorithm based on the calculated values.    

3.2.2 Dugoff tire model 

Dugoff tire model is a physical model, which was 

introduced by Dugoff et al. in 1969 [120]. In this model, 

a uniform vertical pressure distribution is assumed 

on the tire contact patch. In its simplest form, Dugoff 

model expresses the relation between longitudinal 

and lateral force and the slip as a function of two 

parameters; the tire stiffness ( ,
x y

C C ), which explains 

the slope of force-slip curve in low slip region and 

the tire-road friction coefficient (  ) that describes  

its curvature and peak value. The Dugoff model is 

formulated as follows: 
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where ,
x y

C C  are the slopes of the longitudinal force— 

slip ratio and lateral force—slip angel in the low slip 

values (linear part of the curve respectively). In the 

following context, some of the studies that have used 

the Dugoff tire model in order to estimate the friction 

or related parameters are introduced. Ghandour et al. 

[89] developed an algorithm, using Dugoff to simulate 

the lateral force, to estimate the lateral friction coeffi-

cient. First, they developed an estimation algorithm 

to obtain the lateral force and slip angle. Then, they 

estimated the friction coefficient utilizing nonlinear 

method of optimization to minimize the error between 

estimated lateral force and lateral force provided by 

Dugoff model. In another study, a new algebraic 

filtering technique was used by Villagra et al. [121] to 

estimate the longitudinal and lateral force and slip ratio, 

then they used a weighted Dugoff model to estimate 

the friction coefficient, for instance for the longitudinal 

direction simplifying the Dugoff equation gives: 
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where in this equation 
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equation is expressed as: 
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Comparing the behavior of Dugoff model with Pacejka’s 

model, the maximum friction coefficient is obtained 

as follows: 
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where 
1

  is a weighting factor. Nilanjan et al. [122] 

proposed a sliding mode observer along with modified 

Dugoff model to estimate the longitudinal velocity 

and friction coefficient; the only measured state was 

wheel angular velocity. Doumiati et al. [86] proposed 

a real time algorithm to estimate the tire-road lateral 

forces and side slip angle using two estimation 

algorithms of extended and unscented Kalman filter, 

in which the lateral force was modeled using Dugoff 

model. Four-wheel vehicle model was used as the 

dynamical model of the system, and the measured 

states were longitudinal and lateral acceleration, yaw 

and roll rate, left and right suspension deflection and 

the angular velocity of each wheel.  

3.2.3 Brush tire model 

In this model, it is assumed that the surface area which 

is in contact with the road can be modeled as infini-

tesimal bristles. As it is shown in Fig. 14, the contact 

patch area is partitioned into two regions [123]: 

adhesion and sliding. In the first region, the bristles 

transfer the force by mechanical adhesion and in  

the second region the slide of the bristles on the road 

results in friction force; the vertical pressure distribu-

tion is assumed to be parabolic.  

The brush tire model can be divided into 3 cases: 

pure side-slip, pure longitudinal slip, and combined 

slip problem. 

3.2.3.1 Pure side-slip 

Figure 15 demonstrates the schematic of the contact 

patch in small and large side slip conditions. For the 

pure side slip problem, the formulation of brush tire 

model for low slip angle values is as follows [124]: 

 

Fig. 14 The schematic of adhesion and sliding regions in the 
contact patch [123]. 

 

Fig. 15 Schematic of the contact patch: (a) load distribution and 
(b) deflection. 
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where a is the contact patch length and 
F

C   is the cor-

nering stiffness. For large side slip values the equations 

are expressed as [125]: 
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where pyc  is the lateral stiffness of the tread element 

per unit length of the contact area,   is the side-slip 

angle and sl  is shown in Fig. 15(b).  

3.2.3.2 Pure longitudinal slip 

With the assumption of pure longitudinal slip, parabolic 

vertical load distribution, and constant friction level, 

the longitudinal force is expressed as follows [126]: 
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where 


o 3 z

x

F
s

C
 and s is the slip ratio. 
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3.2.3.3 Combined slip 

For the case that both longitudinal and lateral slip 

are available, to simplify the problem it is assumed 

that the normal force distribution is parabolic, and the 

longitudinal and lateral stiffness of the tread elements, 

and the longitudinal and lateral friction coefficients 

are equal [124]. 
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The theoretical slips are defined as follow: 
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The magnitude of total force is expressed as follows: 
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where 


sl

1
 and a is half of the contact patch 

length as it is shown in Fig. 14. Several studies have 

used different forms of brush model in their friction 

estimation algorithms, some of these studies are 

summarized in Table 6. 

3.2.4 LuGre tire model 

LuGre tire model is a physics based dynamic tire model, 

which was first introduced by de Wit et al. in 1995. The 

surfaces are assumed to be in contact through elastic 

bristles. This is shown in Fig. 16 [130]. 

 

Fig. 16 LuGre model-contact surfaces. 

The average deflection of the bristles in the lumped 

LuGre model (which is presented by z) is expressed 

as [130] 
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where v  is the relative velocity between the two 

surfaces, 
s

v  is Stribeck velocity, 
c

F  is the Coulomb 

friction level, 
s

F  is the level of stiction force, 
0

  is 

rubber stiffness, 
1

  is rubber damping coefficient, and 

2
  is the viscous relative damping. In the distributed 

LuGre Model, an area of contact is assumed between 

the tire and the road, which formulates the friction 

force as follows [131]: 
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where 
n

F  is the normal load, L  is the contact patch 

length and 
r

( )v r v   is the relative velocity. Several 

studies have used LuGre model to estimate the friction 

force or friction coefficient. de-Wit et al. [62] used   

a single wheel dynamic model with lumped LuGre 

friction model and introduced a new parameter which 

represented the road change. Using the measured 

data of angular velocity of the wheel, they designed an 

online observer for the vehicle longitudinal velocity 

and the road condition parameters [62, 60]. Alvarez 

et al. [132] also used the same approach to design a 

tire friction model for emergency braking control. 

They also used a single wheel dynamic model along 

with lumped LuGre formulation for the force. Utilizing 

the measured data of wheel angular speed, the internal 

state of the LuGre model (z), the longitudinal and 

relative velocity (
r

v ) are estimated. Chen et al. used a 

bicycle model and propose the following observer  

in order to estimate the internal states of LuGre tire  
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model [126]. 

r 0 r
ˆ ˆ ˆ( ) ( )

i
z v f v z K              (33) 

With 
0 0 1 r 1 2 r
ˆ ˆˆ ( ) ( )z f v z v          and   is a 

constant, ensure that ˆlim
t

z z   for each tire, 

1
1K   and  

n

xi
i

i

F

F
 which is calculated form 

dynamical equation of the motion for each wheel. 

Knowing the parameters of the LuGre tire model, the 

friction coefficient is estimated using a recursive least 

square algorithm. In another study, Alvarez et al. [132] 

Table 6 Sample studies in which brush model have been used. 

Author’s name Method which was used 

Svendenius [120] Developed a brush based tire model to derive the tire forces and moment at combined slip, from scaling the forces 
given by empirical pure slip ( , ,  x y ), at certain pure slips:  

( 0 0( , , ), ( , , )       x x y y x y ) 

a 0 0 a s 0 0 s

a 0 0 a s 0 0 s cam 0cam

a 0 0 a m 0 0 cam 0cam

( , , ) ( ) ( )

( , , ) ( ) ( ) ( )

( , , ) ( ) ( ) ( )

x x y x x x x x x

y x y y y y y y y y

z x y y y y z z z z

F G F G F

F G F G F G F

M G F G M G F

    

     

     

 

  

  

 

where 0 0,x yF F  are from the empirical pure slip model, 0camF  is the empirical pure cambering model, the normal 
load assumed to be parabolic distributed and the scale factors ijG  are derived from the analytical expressions of 
brush model. 

Andersson et al. 
[127] 

They used an extended brush model in combined with slip mode to estimate the lateral friction. They used 
self-aligning torque as the estimation basis, instead of lateral force (because it shows more nonlinear behavior at 
low slip angle) to broaden the operation area of lateral estimator.   

Nishihara et al. 
[128] 

They used brush model to describe the essential relation between the tire forces and aligning moment and the grip 
margin, which is defined as the residual tire forces normalized by the radius of friction circle: 

2 2

1



  x y

z

F F

F
 

It is assumed that the lateral force, aligning moment and the contact patch length are available, the friction 
coefficient is determined as: 
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Matilainen and 
Tuoronen [41] 

They estimate the friction potential during the lateral driving maneuver without any knowledge of tire stiffness 
based on brush tire model. Having the tire forces (estimated using bicycle model) the friction potential is calculated 
as follows: 

potential 3

/
( / , )

( 1)
y z

y z

F F
F F 


 


 where   is defined as 

3

2 1


 

 
 

z

y

M

aF
 

Yamazaki et al. 
[129] 

They used brush tire model (with the assumption of parabolic distributed normal load) to estimate the longitudinal 
friction coefficient for two cases of partially sliding and pure sliding. For the case of partially sliding   can be 
determined from: 

2 2 2 2 3 39 ( ) 3 /3 0x z x x x z x xF F C s F C s C s      

And for pure sliding mode: 

  x
x

z

F

F
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developed an adaptive friction estimation algorithm 

based on LuGre tire model. They used a quarter car 

model in which the forces were modeled using LuGre 

formulation and estimated the vehicle velocity and 

internal parameters of LuGre model using sliding 

mode observer. The measured states were the wheel 

angular velocity and the longitudinal acceleration.  

Matusko et al. [133] have used lumped LuGre model 

to explain the dynamics of friction force. They used a 

single wheel dynamic model along with LuGre tire 

model to estimate the friction force. A Neural Network 

(NN) algorithm is also used to compensate the 

uncertainties in the tire friction model. They used 

Lyapanov Direct Method to adapt the parameters of 

the NN algorithm. In some studies, LuGre tire model 

has been used as the basis to develop new dynamic 

models. Cleays et al. [61] have developed a LuGre 

based tire model, which describes the longitudinal 

and lateral forces and the aligning moment with a set 

of first order differential equations suitable for use in 

traction and ABS braking controllers.  

In this section, four tire models which have been 

used more than other tire models were discussed; the 

overall specifications of these models are summarized 

in Table 7.  

The slip-slop based algorithm which is another 

member of the model based approaches are discussed 

in following section.  

3.3 The slip-slope method 

This method is based on the hypothesis that the low 

slip—low   part of the slip curve (during normal 

driving condition) can be used to estimate the 

maximum tire-road friction. This has been claimed in 

several studies [22, 63, 66, 134−136]. Slip is defined as 

the relative velocity between the tire and the road [77]. 












w w w

w

w w w

w w

during braking

during accelerating

r v
s

v
r v

s
r

    (34) 

where 
w

r  is the effective rolling radius of the wheel, 

w w, v  are the angular and circumferential velocity of 

the wheel respectively. It is assumed that the values  

of slip ratio and normalized traction force 
N

x
F

F

 
  
 

 are 

available (through ABS sensor or other methods). Using 

different regression models on the linear region 

of slippage  curve, the maximum value of friction 

coefficient is estimated. In other studies a linear 

model has been used to fit the data. Gustafsson [77] 

suggested the following regression model to be used 

for slippage  curve: 




 
 



 

 0
0

d
| ,

d

ks k

s k
x

           (35) 

Table 7 Specifications of discussed tire models. 

Year Name properties Feature 

1958 Brush model Physical based 

1. It’s a general model which is physically derived from variants of brush model. 
2. Describe the forces in: pure accelerating/braking, pure cornering and combined mode.
3. The friction assumed to be constant. 
4. Partition the contact patch to two parts: adhesion and sliding regions. 
5. The effect of carcass deformation is neglected. 
6. The elements are assumed to be linearly elastic. 

1969 Dugoff model Physical based 

1. It’s a velocity independent tire model. 
2. Use two constants: longitudinal and lateral stiffness ( ,x yC C ) to describe the tire behavior.
3. Describe the forces in: pure accelerating/braking, pure cornering and combined mode.
4. Consider a coupled relationship between longitudinal and lateral tire force. 

1987 Magic formula Semi-Empirical 

1. Can accurately fit to measured data. 
2. Describe the steady state tire behavior. 
3. Has lots of revised version. 
4. It’s physically meaningful. 
5. Easy to use. 

1995 LuGre model Physical based 

1. It’s a velocity dependent tire model. 
2. Can capture the Stribeck* effect. 
3. Can describe the hysteresis loop, pre-sliding displacement, … 
4. Has two versions of lumped mass and distributed mass. 
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Then a Kalman filter supported by change detection 

algorithm is used to accurately estimate the so-called 

slip slope. Germann et al. [137] used a second order 

polynomial to express the –slip relation as follows:  

2

0 1 2
a a s a s                  (36) 

where the coefficients of this polynomial are calculated 

from –slip curve, they showed that this model works 

well for the slip range of less than 0.3 (30%). Müller et 

al. [138] used the –slip data collected from a braking 

maneuver and proposed the following regression 

model: 

2

1 2
1

s

c s c s
 

 
             (37) 

where   is the slope of –slip curve and 
1 2
,c c  are 

calculated using a least square algorithm. Several other 

studies have used similar algorithms to obtain the 

maximum friction coefficient from the slip-slope curve 

[135, 139]. Lee et al. [140] used a wheel dynamic model 

to estimate the longitudinal force and wheel slip; then 

using recursive least square, they calculated the slope 

of –slip curve.  

3.4 Other friction models 

Although the main focus of this study is to introduce 

the most popular approaches, which are widely used 

in tire-road friction estimation, there are many valuable 

studies that have tried to develop a new friction model. 

Some of these approaches are discussed in this section. 

The first model which is discussed is Persson’s 

friction model. Persson [141, 142] proposed a physics- 

based multiscale friction model based on the nature 

of the substrate surface roughness and viscoelastic 

behavior of the rubber at different length scale from 

micro to macro scale. He assumed that the friction 

force is directly related to internal friction of the rubber 

which occurs due to oscillating forces on the rubber 

surface at different magnifications. He obtained the 

hysteresis friction as a function of sliding velocity vs 
and wave vector q at different length scales as: 

1

0

2
3

H 20
0

( , )1
( ) d ( ) ( ) d cos

2 (1 )

q q

s q

E T
v qq C q P q Im

 
  

 


     

(38) 

where   and 
0

  are Poisson ratio and the nominal 

pressure of the tire, respectively. The Young modulus 

E is a function of loading frequency 
s

( cos )qv   

applied by multiscale asperities of the road surface 

and flash temperature Tq at different length scale. C(q) 

is the roughness power spectrum of the surface and 

P(q) is the ratio of the tire–substrate apparent contact 

area to the nominal contact area, both as a function 

of spatial frequency. The lower limit of the integral 

is a reference wave vector at the lowest magnification 

q0 and the upper limit is the large wave vector cut-off 

q1 which is related to material properties of tire when 

there is no contamination on the substrate surface, 

otherwise it is related to the size of contamination 

particles. 

Later, Lorenz et al. [143] added a semi-empirical 

adhesion model of friction coefficient to Persson’s 

hysteresis model to find the total friction at low 

velocities. 



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v c

P q v
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where ܿ, 
0

v , and  f0  are empirical constants.  

Klüppel and his colleagues [144, 145] proposed a 

friction theory similar to Persson’s. Their approach 

also relates the rubber friction on rough surfaces to 

the dissipated energy of the rubber during sliding 

stochastic excitations on a broad frequency scale. 

Instead of wave vector (spatial frequency), they worked 

in temporal frequency domain  
s

qv   and separated 

the effect of macro and micro texture using following 

model: 


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     (40) 

where   is the excited layer thickness which is 

proportional to the mean penetration depth of rubber. 

1
( )S   and 

2
( )S   are the power spectrum densities  

in frequency space for the macrotexture and the 

microtexture, respectively. In contrast to Persson’s 

model, which is fully 3D, Klüppel model takes into 

account the 3D profile of surface roughness in some 

average way and gives different numerical results. 
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Later, Motamedi et al. [146] combined the two-scaling 

regimes approach (macro and micro) of Klüppel [144] 

with theoretical model of Persson [141] to compare 

the physics-based theory with indoor experimental 

results. He found fair agreements between theory and 

experiments. He also discussed the possible factors 

involved in experiments, which is not considered in 

the theatrical model such effect of rubber wear and 

wear particles on rubber friction.   

Since all these physic-based theories developed based 

on mechanisms of a sliding rubber block, they cannot 

solely provide a complete description of tire friction. 

Ignatiev and Wies [147] demonstrated a hierarchy of 

approaches on vehicle, tire, and rubber-road contact 

scales should be used to obtain a good estimation of 

tire-road friction. They also reviewed modeling, 

simulation and experimental approaches for inves-

tigations of tire-road interactions in their article. 

Henry et al. [148, 149] developed a friction model 

(also known as Pennsylvania State friction model) 

that uses an exponential form to express the relation 

between the friction and slip in steady state condition. 

A modified version of Pennsylvania State friction 

model is Permanent International Association of Road 

Congresses or the World Road Association (PIARC) 

friction model [149], which is as follows: 

 


2 1

p

(sv) (sv)

2 1SN SN e
S

            (41) 

where 1 2SN , SN  are the skid numbers measured at 

the slip speed of 1(sv)  and 2(sv)  respectively and pS  

is the speed constant related to the macrotexture of 

the pavement that is determined using following 

equation [148]: 

 p 14.2 89.7MPDS             (42) 

where MPD stands for the mean profile depth of the 

pavement. The most important advantage of both of 

these friction models (Penn State model and PIARC 

model) is that they included the pavement macrotexture 

properties along with the slip speed in the friction 

model.  

4 Conclusions 

Sudden change in the pavement friction, caused by 

change in weather condition (rain, snow, etc.) plays 

one of the most important roles in car crashes. 

Unawareness of the driver about the pavement friction 

change and malfunction of vehicle’s stability controllers 

lead to fatal car accidents; therefore, friction estimation 

is of interest to vehicle and tire industries. Several 

research studies have been conducted to estimate the 

friction force, friction coefficient and other parameters 

related to tire-road friction problem.  

These studies can be divided into two main 

categories: experiment-based and model based. In 

the experiment-based approaches, it is attempted   

to correlate the measured data to friction related 

parameters. While in model based approaches, a 

mathematical model of the problem is developed first, 

then based on the developed model and measured 

states, the friction force or other friction related 

parameters are estimated. The properties of each of 

these methods are summarized in Table 8. Two factors 

of accuracy and repeatability are used in this table. 

Different methods are ranked as low, medium and 

high, which demonstrates how accurate a method  

is to estimate the desired parameters or how a study 

is repeatable. 

The most important shortcoming of experiment- 

based approaches is observed to be the repeatability. 

When the testing conditions have some deviations from 

which these algorithms were trained, their accuracy 

decreased dramatically. Also, for the slip slope based 

approach, although it is claimed in several studies 

that there is a direct relation between the slip slope 

and the maximum friction coefficient, it is observed 

that changing the testing conditions (tire pressure, tire 

temperature, etc.) will change the slope of –slip curve 

in the linear region which affects the accuracy and 

repeatability of this method. 

This literature survey introduces the development 

of the most popular algorithms which are widely used 

to estimate tire-road friction and other friction-related 

parameters. 
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