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Abstract: In this study, we investigate the friction between a one-dimensional elastomer and a one-dimensional 

rigid randomly rough surface. Special emphasis is laid on the temperature dependence of the elastomer and its 

effect on the frictional behavior of the contact. The elastomer is modeled as a Kelvin body in a one-dimensional 

substitute model in the spirit of the method of dimensionality reduction. The randomly rough surface is a 

self-affine one-dimensional fractal. We provide a short discussion of a conical indenter pressed in a displacement 

controlled process into an elastomer. These analytical considerations are taken as a basis for the treatment of the 

randomly rough counter surface in contact to an elastomer with and without temperature dependent viscosity. 

We identify dimensionless quantities describing this process, introduce a thermal length scale, and give estimates 

for the coefficient of friction as function of velocity, indentation and thermal quantities. 
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1  Introduction 

The roughness of interfaces seems to be the main source 

of friction according to the groundbreaking work of 

Bowden and Tabor [1]. Greenwood and Tabor [2] 

explained the behavior of polymers in frictional 

processes as deformation losses in the material. 

Experiments by Grosch [3] supported these ideas 

looking at friction between elastomers and hard 

specimens with controlled roughness. In the following 

years, the aspects of rheology [4] and surface roughness 

[5, 6] in rubber friction were investigated. The notion 

of the coefficient of friction is mostly used in studies 

in the field. Hereby, Amontons’ laws are implicitly 

presumed to be valid: The force of friction is pro-

portional to the normal force and hence the coefficient 

of friction is independent of the normal force [7, 8]. 

This is a widely accepted relation, which is a rather 

simplified picture of real frictional systems. It is well 

established that both the static and the dynamic  

coefficient of friction can vary by a factor of four 

depending on geometrical and loading conditions  

of the tribological system under investigation [9]. 

Schallamach [10] conducted experiments in polymer 

friction. Recently, deviations from Amontons’ law were 

investigated [11, 12]. They may have their origin in 

macroscopic interfacial dynamics [13−15] or in the 

contact mechanics of rough surfaces. In this note, we 

explore the thermal behavior of elastomers due to 

frictional interaction under circumstances when the 

applicability of Amontons’ laws is at stake. Some 

fundamental understanding of the frictional answer 

of a viscoelastic body is learned from a simplistic model: 

(i) the polymer is modeled as a Kelvin body, which is 

completely defined by a constant elastic modulus and 

a thermally activated viscosity, (ii) the undeformed 

elastomer surface is flat and experiences no friction 

on microscopic scale, (iii) the counter body is rigid, 

thermally insulated and has a randomly rough, self- 

affine fractal surface, (iv) capillary and adhesive effects 

[16] are not considered, and (v) the features are 

investigated in a one-dimensional substitute model. 
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Even though these requirements simplify the situation 

greatly we still observe a non-trivial frictional and 

thermodynamic behavior of the elastomer. We do not 

claim a direct one-to-one correspondence to a complete 

three-dimensional analysis but see a broad utilization 

of our results on one-dimensional grounds if the rules 

put forward in the method of dimensionality reduction 

(MDR) [17−21] are obeyed. The MDR maps three- 

dimensional frictional problems onto one-dimensional 

ones. Li et al. [22] deal with friction of an elastomer 

surface with a rough surface at constant temperature. 

Dimaki and Popov [23] consider a smooth cone 

indenting into a polymer with temperature dependent 

viscosity. In Ref. [24], a randomly rough rigid surface 

is brought into contact with an elastomer of temperature 

dependent viscosity in a force controlled process. 

This study is organized as follows. After a short 

introduction to rough surfaces in Section 2, the polymer 

model considered is presented and the contact criterion 

is established. Power dissipation and temperature 

dependence are then introduced. Section 3 provides a 

discussion of a single asperity contact, of the extension 

to rough multi-asperity surfaces, and of temperature 

dependence. A thermal length scale is identified. Finally, 

in Section 4 conclusions are drawn and an outlook is 

presented. 

2  Modeling 

2.1 Self-affine isotropic fractal surfaces 

For the exploration of frictional behavior in the concept 

of MDR, two different steps have to be taken. On the 

one hand, the geometry of the contacting surfaces has 

to be transferred into a one-dimensional substitute 

model. On the other hand, physical observables in 

the contact have to be calculated in the model. Let us 

introduce a specific class of surfaces that we use for 

our model building. 

Certain statistical key values may describe an 

arbitrary surface. Here, we name the root mean square 

(RMS) roughness 2h h    and the RMS gradient 
2( )h h     , where   denotes the ensemble 

average over several realizations of the system. For  

a certain class of surfaces, so called randomly rough 

surfaces, there exists a close relation of the above 

quantities to the autocorrelation function (power 

spectrum) C, which completely characterizes the 

surface. Many natural surfaces are known to exhibit 

the property of fractality, at least in some range of 

wave vectors. In a one-dimensional substitute model, 

the roughness and the slope, i.e., the moments of the 

autocorrelation function, can be held constant at the 

values of an original two-dimensional surface [20] 
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where q denotes the wave number. 

The considered surfaces are fractal and self-affine 

surfaces meaning that the surface looks about the 

same as the resolution is increased or decreased. No 

natural length scale is to be found in this kind of 

surfaces. The Hurst exponent H is another quantity 

to characterize fractal surfaces. Under a rescaling of 

the spatial coordinate x x  the height coordinate h 

changes to H h . 

A one-dimensional self-affine isotropic surface h is 

described by a power spectrum [20] 
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with dimensionless strength 
0

ĉ  and cut-off wave vectors 

i
q  and 

f
q . The RMS roughness and the RMS slope of 

the surface are computed as 
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Eliminating the strength 
0

ĉ , the gradient of the 

surface is given by 
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Keeping in mind that the scale are well separated 

/ 1f iq q , 
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The slope interpolates between the values for longest 

respectively shortest wave vector for Hurst exponents 

in the range 0 to 1 according to a power law with H 

as exponent. 

2.2 Discrete realization of rough surface 

For the generation of a randomly rough surface with 

the desired properties, we fall back on the Fourier 

transform: 

 



 1d 1d

1
d ( )exp ( )

2
 

π
h qB q i x         (6) 

The one-dimensional Fourier coefficients of the surface 

are proportional to the square root of the power 

spectrum [20]: 

1d 1d

2π
B C

L
                (7) 

The randomness of the different realizations of the 

surface is assured by a uniformly distributed random 

phase  .  For a discrete realization, the maximal and 

minimal wave vectors depend on the spatial step dx 

and the system length L: 

π / d , 2π /
f i

q x q L            (8) 

The one-dimensional surface is generated as the inverse 

discrete Fourier transform (DFT). In the following we 

use a one-dimensional rigid surface z0 expressed as 
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2.3 Elastomer 

After having described the generation of the one- 

dimensional substitute surface we now turn to the 

modeling of the elastomer and the contact itself. In 

the considered model, two one-dimensional substitute 

surfaces z and u move relative to each other with 

constant velocity 
0

v . The surfaces are discretized and 

the individual sites are labeled by    1, ,  .i N  In 

every site i, a spring damper combination models the 

elastomer. This combination is a Kelvin body as shown 

in Fig. 1. 

It consists of a spring with stiffness [20] 

 4 dk G x                (10) 

which is coupled in parallel with a damper with 

damping constant [20] 

4 dx                 (11) 

for incompressible media with Poisson number 

 1 / 2  . The material of the original polymer is 

described by an elastic modulus G and a viscosity η. 

The factors of four originate from the employment of 

a one-dimensional substitute model [20, 25]. The one- 

dimensional model, the elastomer surface is considered 

to be a chain of non-interacting Kelvin elements (Fig. 2). 

For the viscoelastic model, the equation of motion 

is easily found for the Kelvin element at every site 

ext 0
( )F k u u u             (12) 

for some reference coordinate u0. In terms of discretized 

variables, the force exerted at each site in contact is 
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where / G   is the relaxation time of the Kelvin 

element. The spring experiences a force according to 

 

Fig. 1 Kelvin element. 

 

Fig. 2 Chain of Kelvin elements. 
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the deviation from the undisturbed soft surface u0i = 0 

while the damper exerts a force that is proportional 

to the rate of change in the deformed surface. We 

identify 
0 0

/ ( d ) / d / ( d )v k x t v G x     as the ratio 

between the time scale of motion 
0

d d /t x v  and the 

time scale of the viscoelastic material (relaxation) 

   / / .k G  Between the elements of the surfaces, 

a force acts according to viscoelastic model Eq. (13) if 

it is in contact. The force is set to zero if surfaces are 

not in contact. Negative forces are not considered since 

this would correspond to adhesive effects which we 

exclude from our study. 

Initially, the rigid surface described by coordinates 

i
z  is generated with a certain given RMS roughness h, 

system length L, spacing dx and Hurst exponent H. 

This fixes also the RMS gradient  

2

1
1

1 / (( ) / d )
N

i i
i

z N z z x

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and the cutoff wave vectors qi and qf. Note that the 

mean of z0 is zero by construction. The moving rigid 

surface is pressed into the deformable surface in  

such a way that a given indentation d is sustained. 

The soft deformed lower surface is now described by 

coordinate ui. 

The situation is viewed as a stationary system so 

that all transient features have disappeared. The side 

step dx is fixed as well as time step dt throughout this 

study. In particular, this means that spatial derivatives 

are linked to time derivatives via 

0

d d

d d
v

t x
                  (15) 

Imagine we move along with the rough surface at 

constant speed 
0

v  to the right. One point of the surface 

is transferred to a new position some distance ahead. 

At this new position, the coordinate of the relaxing 

interface ui is calculated according to Eq. (13) without 

external force. In a continuous description, this leads 

to a simple ordinary differential equation 

0
0 u u u                 (16) 

which is solved by 
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after some time t for an undisturbed surface at 
0

0u   

for some constant (0)u  . 

In the discretized case, the solution relates one site 

to the coordinate one step further to the right 

1

d
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This solution corresponds to a free evolution and 

relaxation of the elastomer. 

2.4 Contact criterion 

For the deformable surface at a single site, four distinct 

possible scenarios exist: 

(i) The first possibility is a site that is already     

in contact and remains so. The old coordinate of   

the element is uj+1 = zj+1. It evolves freely according to 

Eq. (18). Its new coordinate fulfills the requirement  

uj ≥ zj and hence stays in contact. The force at this site 

in contact is calculated according to Eq. (13). The 

coordinate of the deformable surface is set to the 

rigid one uj = zj. 

(ii) The second possible result of the evolution of a 

site, which already has been in contact, is that it loses 

its contact uk ≤ zk. The force acting at this site is set to 

zero, fk = 0. 

(iii) Another outcome of the evolution is that a 

former free site hits the rigid surface and thus gets 

into contact uj ≥ zj. Again the force fj in this newly 

established contact site is calculated in accordance 

with Eq. (13). Finally, the coordinate is set to the rigid 

one uj = zj. 

(iv) The last possibility of evolution is a free contact 

that stays free. Its coordinate uk evolves according to 

the equation of motion Eq. (13) with external force set 

to zero and reference surface u0k = 0. The solution of 

Eq. (18) uk gives the height of the surface at this site. 

There is no force acting between the surfaces at this 

site fk = 0. 

In Fig. 3, a typical picture of the surfaces in contact 

can be found. We consider a displacement controlled 

process. In order to achieve a certain indention d, the 

coordinates of the rigid body is adjusted by an overall 

shift of this surface through this indentation 

0
  

i i
z z d                 (19) 

Summing the local forces fi over all sites yields the  
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Fig. 3 Steady state configuration of the considered surfaces in 
contact: rigid rough surface (blue solid line) and deformed elastomer 
(red dashed line). 

total force exerted between the surfaces. This force 

equals the normal forc N .ii
F f  For the computation 

of the frictional force Fx, the tangential force for all sites 

1
d

d d
i i i

x i i
i i

z z z
F f f

x x
 
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is calculated. The coefficient of friction is defined as 

ratio between the total tangential and total normal 

force 

 
N

  xF

F
                 (21) 

The contact length is computed as the sum over the 

number of contact site times the spatial step 

cont cont
cont

d d L x xN             (22) 

Another quantity of interest is the surface gradient in 

contact sites 
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which is a measure for the roughness that is actually 

experienced by the elastomer surface. 

2.5 Temperature dependence 

The temperature dependence of the simulated tribo-

logical contact is included through a viscosity, which 

is considered to be thermally activated 

0
1

B
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U

T
k T
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 

            (24) 

where T is temperature, U0 an activation potential, 

and kB the Boltzmann constant. This influences the 

thermal behavior of the contact. For small deviations 

from a certain configuration (η0, T0), the temperature 

dependence of the viscosity is expressed as 

 
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where 
0

T T T    and 2

0 B 0
(  / )U k T  . An increase 

of the temperature by 30 K typically halves the viscosity 

[23]. This corresponds to an activation energy U0 of 

11log2 = 7.62 in units of kBT0 at T0 = 300 K. 

2.6 Power dissipation 

The temperature change originates from the dissipated 

power in a viscoelastic material. The energy loss in 

the viscous part of the element leads to a rise in 

temperature in the contact. Simple considerations 

about the heat flow in the contact and bulk give rise 

to a temperature field in the contact. As shown in 

Ref. [20], the MDR concept gives a straightforward 

recipe to include heat transfer.  

In the substitute MDR model [20, 24], the heat flow in 

a single element of the Winkler foundation is given by 

2 dp T x                  (27) 

for a thermal conductivity λ. Reversing this relation, 

we obtain for the temperature change in the one- 

dimensional substitute model 

 
2 d

i
i

p
T

x
                  (28) 

For the Kelvin model in a one-dimensional Winkler 

foundation, the power dissipated in the element 

amounts to 

24 d
i i i

p u x                 (29) 

Thus, for an element with thermal conductivity λ, 
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Keeping in mind that the shift in temperature causes 

a change in the thermal and relaxation behavior of 

the elastomer, we model it exclusively as a changing 

viscosity. For every site, the viscosity 
i

  should be 

adapted to the temperature in this element. So we get 

a consistency equation at each site in contact 

2
2

0 0
d

2 exp
d

j

j j

zv
T T

x



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 
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For elements in contact the change of viscosity leads 

to a different force experienced by the surface. 

3 Results and discussion 

3.1 Single asperity-conical indenter 

Since a rough surface may be seen as a collection of 

single asperities we review shortly the indentation of a 

cone into an elastomer (see Fig. 4). This set up is far 

easier to analyze since the associated temperature is 

constant for the entire contact zone. In this section, 

we consider a rigid cone with slope c penetrating a 

viscoelastic medium with indentation depth d. The 

single conical indenter can be treated in a displacement 

controlled process: The indentation is fixed and the 

normal force FN for this given indentation is calculated. 

A similar treatment for the force controlled process is 

found in Ref. [23]. The shape of the indenter is 

   | | ( )z c x d g x d             (32) 

 

Fig. 4 Geometrical set up for a conical indenter. 

Since the indenter is moving at constant speed v0 and 

we follow with it, we denote the corresponding 

coordinate by 
0

x x v t  . The viscoelastic medium is 

characterized as above by a parallel spring damper 

combination [20]  

4 d , 4 dk G x x             (33) 

The start and end point of the contact region are 

called 
2

a  and 
1

a . The vertical displacements u in the 

contact can be found from the geometry 

     0( , ) ( ) ( )u x t z x d g x v t         (34) 

The velocity of the elastomer surface in contact is then 

0

dd
( )

d d

gu
v g x

t t
               (35) 

The surface exerts a force on a single element 

 N 0
4 ( ( )) ( ) df G d g x v g x x           (36) 

The first contact point is determined by the condition 

that the surface is undisturbed, i.e., 

1( , ) 0u a t                  (37) 

The surfaces detach when the force in the element 

vanishes 

 N 2( , ) 0f a t                 (38) 

These requirements may be rewritten as 

  1 2 0/ , / /a d c a d c v G          (39) 

We introduce a dimensionless velocity  

0 
c

cv
v

Gd


                    (40) 

and consider two speed regimes. In the first range 

1
c

v  , the elastomer attaches to the indenter even 

after passing by the tip. In the second regime 1
c

v  , 

the relaxation of the elastomer is so slow that it loses 

contact after the tip. In the first speed domain, the 

normal force between the indenter and the elastomer is 


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1

2

2
2

N N

2
d (2 )

a

ca

Gd
F f x v

c
        (41) 
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The frictional force is given by the tangential force. 

Hence, 


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1

2

2 2
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The coefficient of friction thus becomes 
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Looking at higher velocities 1
c

v  , the contact region 

ends at the tip, 
2

0a  . Hence, the integration limits 

have to be adapted properly  
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The coefficient of friction thus becomes 


 1 1cv

c
               (45) 

Summarizing these results coefficient of friction in this 

picture is given in terms of the dimensionless velocity  
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The coefficient of friction for a conical indenter is 

described by a rather simple rational function of the 

normalized velocity up to normalized speed one. 

Thereafter it is unity. 

In the next step, we want to include heat generation 

in the contact and the corresponding temperature. The 

power dissipation and hence the heat production   

in each element take place in the damper according   

to Eq. (29). As long as there is contact between the 

indenter and the elastomer the surface u follows the 

rigid profile so that 
0

u cv   for the conical indenter. 

Substituting this into Eq. (30) we learn that the tem-

perature is shifted by 

2 2

0 02 
v c

T



               (47) 

for a temperature independent viscosity. Allowing for 

the elastomer to react on the temperature shift, i.e., 

introducing a temperature dependent viscosity ( )T , 

leads to a consistency equation Eq. (31) 

2 2

0 02 Tv c
T e 


               (48) 

This temperature is the same for all sites in the contact 

as long as the slope is constant for the indenter. 

We introduce a number of short hand notations for 

frequently appearing combinations of quantities 

2 2
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  provides a dimensionless temperature. In these 

variables, the consistency equation for the temperature 

has to be fulfilled 

( , )2 cv

c
e v e                  (50) 

0   corresponds to a temperature independent 

viscosity. Figure 5 presents the numerical solution 

( )   of Eq. (50) and analytical approximations for 

small and large values of  . The solutions * ( , )
c

v    

as functions of the parameter   are plotted in Fig. 6. 

 

Fig. 5 Numerical solution *  as function of   (blue solid). 
Analytical approximations for large (green dashed-circle, black 
dashed-star) and small (red dash-dotted) values of  . 
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Fig. 6 Solution *  as function of cv  for different values of  . 

Since the derivation of coefficient of friction Eq. (46) 

goes unaltered through, the normalized velocity is 

replaced by its temperature dependent analogue 

*

 T

c c c c
v v v e v e               (51) 

Figure 7 provides a plot of the two different velocities. 

The corrected coefficient of friction is expressed as 


 

 
 

  




2

2

4
1

2

1 1

c c
c

c

c

v v
v

v
c

v

         (52) 

It should be emphasized that 
c

v  should never 

exceed one for the coefficient of friction to remain at 

less than unity. This also leads to a critical value for 

the parameter  . From Eqs. (50) and (51), one can 

deduct that at the solution * 1   the maximum is 

reached. Simultaneously the speed at the extreme is  

given by *

E
exp( ) /v    . Hence, the critical value 

of 1 /
c

e   divides the behavior of the coefficient of  

friction into two regions (Fig. 8). For value below the 

critical value the coefficient of friction may rise to the 

saturation level and hit unity. Above the critical value, 

the speed 
c

v  never exceeds unity and the coefficient of 

friction never reaches unity. A comparison between 

the simulation of such a contact and the analytical 

formula Eq. (52) is displayed in Fig. 9. The agreement 

is good for a large range of dimensionless velocities. 

Numerical deviations are due the fact that for very 

small indentations the number of contacts is very small. 

 

Fig. 7 Temperature corrected velocity cv  as function of cv  for 
different values of  . 

In the other extreme, there might be full contact over 

the entire simulation range. 

c
v  fulfills the consistency equation Eq. (50) Hence, 

/2 / 2T T

c

T
v e Te  


 

          (53) 

Substituting this into Eq. (52), we find for the tem-

perature dependence of the coefficient of friction for 

the rigid cone shift in the contact 

 






 





   
 

 

 

   
    

  

/ 24
1( )

2

1 1

T T
T

T

T

Te Te
TeT

Te
c

Te

 (54) 

with 2 2

0
/ (2 )/ d G      as a further inverted 

temperature. Note that   is independent of c, i.e., 

the slope is not involved here. Neither, there is a 

dependence on 
0

v . 

Figure 10 shows a comparison between the numerical 

simulation of a cone and the analytical expression 

Eq. (54). The difference between the expression Eq. (52) 

and Eq. (54) lies in the fact that the first one describes 

the coefficient of friction in a system with speed and 

indentation. Given these two quantities the coefficient 

of friction and the temperature are calculated. In  

the latter parametrization, the frictional process is 

parametrized by the indentation and the temperature. 

Hence, we have given expressions for the coefficient 

of friction for a conical single asperity as a function of 

indentation, normalized velocity, or temperature. 
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Fig. 8 Normalized coefficient of friction /µ c  as function of cv  
for different values of  . For values of 1 / 0.367   e

c
 

the coefficient of friction never reaches unity. 

 

Fig. 9 Normalized coefficient of friction /µ c  as function of 

cv  for different values of  . Numerical simulation (dots) and 
analytical estimate Eq. (52) (diamonds). Again, for values of 

1 / 0.367   e
c

 the coefficient of friction never reaches 
unity. 

3.2 Rough surface 

Turning back to our original problem, we want to 

explore the frictional behavior of an elastomer in 

contact with a rough surface. The rough surface is 

characterized by Eq. (5). Thus, by construction the 

RMS slope is 


           

1
2d

2π π
2 1 d 1

HH
h N H h x H

z
L H x L H

 (55) 

 

Fig. 10 Normalized coefficient of friction as a function of the 

temperature shift for different values of the parameter .  The 

numerical simulations (dots) fit well with the analytic estimate 
Eq. (54) (diamonds). 

The rigid surface before indentation z0 is normally 

distributed with vanishing mean and standard devia-

tion h   by construction. Its derivative is a normally 

distributed random variable as well. Its mean is again 

vanishing but its standard deviation z  depends  on 

H as one can see in Eq. (55). This rigid surface is brought 

into contact with an elastomer in a displacement 

controlled process. First the properties of the elastomer 

are considered to be temperature independent, later 

on the viscosity will be thermally activated. 

3.3 Numerical values 

Since we consider a randomly rough surface the 

results shown in the following base on 200 different 

realizations of each surface with a length of L = 0.01 m 

divided into N = 5,000 elements. The roughness h of the 

surface was chosen to be 0.5 μm. The Hurst exponents 

are chosen in the range of [0, 1]. The elastomer    

is characterized by a modulus G = 10 MPa and a 

viscosity η0 = 104 Pa·s. The heat flow is controlled by a 

specific thermal conductivity of λ = 0.013 W/(m·K). The 

velocities lay in the range from 2 μm/s up to 20 m/s. 

3.4 Displacement controlled process–constant  

viscosity 

In a displacement controlled system, the contact 

configuration depends on the robust external quantity 
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indentation depth d. Figure 11 shows a typical pic-

ture of the coefficient of friction as a function of 

indentation and speed. There exists a saturation plateau 

for sufficiently large indentations and velocities. 

Besides in a region of small velocities there is a linear 

dependence. Up to a value of about the roughness h 

the indentation does not play a role but for larger 

indentations the coefficient of friction declines with 

larger indentation. We want to find an estimate to 

express this behavior. The normal force 

N 0 0
cont cont

d
4 d ( ) 4d

d
 

j

i j

z
F G x d z xv

x
         (56) 

and the coefficient of friction 
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(57) 

depend on the contact figuration through the sums. 

We assume constant viscosity for all elements for the 

moment. For rather high velocities, the last terms   

in nominator and denominator control the system. 

 

Fig. 11 Normalized coefficient of friction as function of 
indentation d and velocity v for surfaces with H = 0.7. There is a 
plateau region for sufficiently large speeds and small indentations. 

In this pure viscous regime, the coefficient of friction 

becomes independent of speed  

2 2

0

cont cont

0

cont cont

d d1

d d

d
 

1
 

d

d d

j j

j j

z zv

Gh N x x

z zv
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




   
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 

 
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Here, the plateau region is reached where most of 

elastomer materials are used. The nominator is noth-

ing but  2
cont cont .N z  The actual contact configuration 

determines the quotient. If one assumes that half of 

the surface is in contact the coefficient of friction is 

approximated by π / 2 z    but in the case of high 

speed much less than half of the elements are in contact. 

Rather the elastomer detaches from the rigid surface 

at the back of an asperity and does not reattach. The 

deformed surface stays at about the same height due 

to the high velocity until it hits the next asperity and is 

further deformed. The elastomer sees only one-sided 

contacts. The maximal values of the coefficient of friction 

are dependent on the contact configuration. In Fig. 12, 

the maximal value of the normalized coefficient of 

friction is displayed for surfaces with different Hurst 

exponents and indentations. The maxima are fairly 

good approximated by 

cont
2 z                   (59) 

in the plateau region. 

Another region of interest is entered when only 

small indentations on the roughness scale are to be 

found (d << h) at small velocities. The elastomer has 

time to relax back towards its original flat shape. The 

indentation is so small that it does not alter this 

behavior. Hence we find a partial contact of the 

elastomer at the asperities which lay underneath the 

undeformed surface. The terms with the indentation 

d are neglected. The coordinates of the rough surface 

are of the order of magnitude h. 

For small velocities, we see 

2

0 0

cont cont

0

cont

d d

d d

j ji

i

z zz v

h x Gh x

z

h





 
    

 
 


        (60) 
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Fig. 12 Maxima of the normalized coefficient of friction as 

function of indentation d for surfaces with different Hurst exponents. 

The maximal value is fairly constant at a value of about 2  as 

long as the indentation is less than the roughness, which is the 
region of interest in the plateau regime. 

The first term may be rewritten as the difference of 

the square of the coordinates at the start and end of 

each contact. The order of magnitude of 
0

z  is h. In our 

simulations, it vanishes as it should. Summarizing this, 

we find 

2 20 0
cont cont cont

0
cont

i

v v
N z z

G z Gh

 
    


     (61) 

The last approximation takes the order of magnitude 

of the profile into account. 

On the other hand for large indentations ( d h ) 

and small velocities we find nearly full contact. The 

elastomer has time to relax and get into contact with 

the rough surface. The rough surface is lowered    

to the mean value d and hence many elements get 

into contact. The coefficient of friction can then be 

approximated by 

2

0

cont cont 20
cont
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d d1

d d
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z zvd
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 

  (62) 

since the first term just measures the difference between 

the first and last coordinate and vanishes.  

Interpolating between these regions results in an 

estimate for the coefficient of friction 

 
1/ 2

2 2
2

2 20 0
cont cont cont

 2
v v

z z z
Gh Gd

 

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(63) 

or approximately 

   
1/2
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v
v

z d


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    (64) 

where /d d h  and 
0 0

/ ( )
H

v v z Gh  . The empirical 

values give best fit to the numerical simulations. In 

Fig. 13, a comparison between the numerical simulation 

and the estimate Eq. (64) is shown. The estimate is a 

very good approximation over a large range of values 

of the dimensionless velocity 
H

v . Especially, the most 

interesting plateau region but even the small velocity 

range is in good agreement. For very small velocities, 

the numerical results show a tendency to a constant 

coefficient of friction. This is rather a numerical than 

a physical effect. 

3.5 Temperature dependence 

So far we considered a temperature independent 

viscosity. As in the case of the rigid cone we introduce 

a thermally activated viscosity according to Eq. (25). 

For the rough surface, there is yet another difference to 

the geometrically well-behaved cone. We cannot claim 

a constant and equal temperature in the elements of con-

tact any longer. Rather, there is a certain temperature 

associated with every element in contact. In Fig. 14, we 

display the change in the behavior of the normalized 

coefficient of friction as a reaction to temperature 

dependent viscosity. First, the plateau at sufficiently 

high velocities is reached as in the temperature inde-

pendent case. For even higher velocities, more power 

is available at the contact sites and temperature rises 

in contacting elements. This in turn leads to a lower 

viscosity. The elastomer gets more liquid and fills 

non-contact regions better. The dimensionless velocities 

drop exponentially as well. 

3.6 Thermal length 

Starting from the expression in the consistency equation  
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Fig. 13  Normalized coefficient of friction as function of 

velocity Hv  for surfaces with H = 0.7. The dots are results from 

numerical simulation. The solid lines are the estimate Eq. (64). 

The different horizontal lines correspond to different values of the 

normalized indentation 0.005,  ]0[ 50d . For values less than 

unity they tend to collapse on the same line and switch from linear 

growth to the constant value 2  at about 1H v . For values well 

above unity the curves are well separated and hit the constant 

regime when Hv  and d  coincide. 

 

Fig. 14  Normalized coefficient of friction as function of 
indentation d  and velocity Hv  for surfaces with 0.7H  with 
temperature dependent viscosity. The coefficient of friction drops 
from its maximal value for further rising velocities and indentations 
larger than the thermal length compared to Fig. 11 since a more 
power in the contact leads to a rising temperature and an 
exponentially falling viscosity. 

Eq. (50) one can consider the dimensionless variable 

  as the ratio between the relaxation length scale set 

by v0η0 /G and another length scale set by the thermal 

properties of the elastomer. It is set through the 

combination  

0
t 22

l
G




                (65) 

We call this quantity thermal length. It only contains 

properties connected to the elastomer. Using this 

thermal length the parameter 
j

  may be rewritten as 

a product of squares of a dimensionless velocity and 

of a ratio of length scale  

2 2

2 0 0

t

d

d
 

j

j Hj

zv h
v

Gh x l


 

   
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        (66) 

Here we used the idea that the rough surface may be 

interpreted as a collection of asperities. The slope c is 

replaced by the slope between the elements in 

contact d / d
j

z x . 

The indentation for a single cone d is comparable 

to the height difference between two subsequent 

elements, which is of the order of the roughness h. The 

solution of the consistency equation depends on the 

thermal length scale. Especially, the velocity is altered 

through the exponential factor. In practice this means 

that the coefficient of friction diminishes when the 

length scale of motion becomes larger than the thermal 

length scale (see Fig. 14). With the values chosen in our 

calculation the thermal length is about 10h. As expected 

the coefficient of friction drops from its maximal 

value for indentations larger than 10h. The coefficient 

of friction for the temperature dependent case is 
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where *

j
  is the solution to the consistency equation 
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,

d
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j j Hj
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e v e

zv
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as before (see Fig. 5). The elastic contributions to the 
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normal and tangential forces are not altered through the 

temperature dependent viscosity. Hence, the coefficient 

of friction is changed only in those parameter ranges 

where the viscous parts play an important role.  

For small velocities, we see that the behavior of the 

coefficient of friction is scarcely changed. More 

interesting is the plateau region. The maximal value 

of the coefficient of friction is about 1.16. The plateau 

is not reached for large indentations when they reach 

the thermal length scale. Then the coefficient exhibits 

the behavior already shown in Fig. 9 for a single cone. 

The coefficient decreases. For even higher velocities 

the coefficient increases again but never reaches the 

plateau region. As a crude estimate for the coefficient 

of friction we propose 

1/2
2

2 2(1.16) ( 1.15 ) H
H

v
v

z d


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 
  
         


     (69) 

where 
*

H H
v v e   is the corrected temperature depen-

dent velocity. The consistency equation solution is 

found numerically for the RMS slope z . From this 

it becomes clear that the more the actual contact 

configuration departs from full contact the less reliable 

is the estimate. A comparison between numerical 

solution and estimate is displayed in Fig. 15. 

 
Fig. 15 Normalized coefficient of friction as function of 

indentation d  and velocity Hv  for surfaces with H = 0.7 with 

temperature dependent viscosity and an estimate according to 

Eq. (69). For small indentations the curves collapse onto a single 

line (most upper part). For small indentations the maximal value 

is never reached which is also seen in the estimate. The drift to 

higher values at high speed and large indentation is not captured. 

3.7 Master curves 

We find a dependence of the coefficient of friction on 

the identified dimensionless parameters as follows  

)
)

 (
(

H
v

z d
f d


 

    
 


           (70) 

for a temperature dependent viscosity. The RMS slope 

in the contact region is governed by the indentation 

depth d through the actual contact configuration. An-

other function   whose argument is a ratio between the 

normalized velocity and a function of the normalized 

indentation describes the dependence on the velocity. 

In a double logarithmic diagram of the coefficient of 

friction, curves as function of velocity will be shifted by 

some log ( )z d  vertically and    0log( ) log( ( ))z Gf d  

horizontally. This allows constructing master curves for 

elastomer properties that would be out of experimental 

reach. Similar conclusions are drawn in Ref. [26]. 

4 Conclusions and outlook 

In this study, we have shown that the coefficient of 

friction between a rough rigid surface and a Kelvin 

model elastomer surface with Arrhenius-like tem-

perature dependent viscosity is a function of the 

dimensionless combinations of material and geometric 

parameter. These combinations are dimensionless 

velocity 
0 0

/ ( )
H

v v z Gh  , indentation /d d h  and 
2 2

0
2 / ( )G h   . It sets a thermal length scale 

t
l  

via 2 2

t
  /h l  . The latter parameter is independent 

of the geometry of the rough surface encoded by z . 

Former studies of the frictional behavior between 

elastomers and rough plain surfaces [22] or rough 

surfaces without thermal effects [27] point to the 

conclusion that the characteristics are similar to single 

asperity contact, which is explored in a displacement 

controlled process in this work. The coefficient of 

friction is a function of the dimensionless combinations 

of the loading and material parameters. Estimates for 

the coefficient of friction have been given for both 

temperature independent and dependent viscosity. 

The actual coefficient of friction is dependent on   

the geometrical set up of the problem including the 

roughness and indentation through the contact con-

figuration. We anticipate that our results provide a 
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qualitative understanding of the thermal behavior of 

elastomer surfaces in contact with rigid surfaces. The 

employment of master curves in this context has 

been addressed. Further investigations are required. 

Acknowledgements 

The author thanks V. L. Popov for discussions. R. H. 

is supported by DFG project PO 810/12-2. 
 

Open Access: The articles published in this journal 

are distributed under the terms of the Creative 

Commons Attribution 4.0 International License (http:// 

creativecommons.org/licenses/by/4.0/), which permits 

unrestricted use, distribution, and reproduction in 

any medium, provided you give appropriate credit to 

the original author(s) and the source, provide a link 

to the Creative Commons license, and indicate if 

changes were made. 

References 

[1] Bowden F P, Tabor D. The Friction and Lubrication of 

Solids. Oxford University Press, 1985. 

[2] Greenwood J A, Tabor D. The friction of hard sliders on 

lubricated rubber: The importance of deformation losses. 

Proc Phys Soc 71: 989–1001 (1958) 

[3] Grosch K A. The relation between the friction and visco- 

elastic properties of rubber. Proc R Soc 274: 21–39 (1963) 

[4] Barquins M, Courtel R. Rubber friction and the rheology of 

viscoelastic contact. Wear 32: 133–150 (1975) 

[5] Klüppel M, Heinrich G. Rubber friction on self-affine road 

track. Rubber Chem Technol 73: 578–606 (2000) 

[6] Persson B N J. Theory of rubber friction and contact 

mechanics, J Chem Phys 115: 3840–3861 (2001) 

[7] Lorenz B, Persson B N J, Fortunato G, Giustiniano M, 

Baldoni F. Rubber friction for tire tread compound on road 

surfaces. J Phys: Condens Matter 25: 095007 (2013) 

[8] Popov V L, Dimaki A V. Using hierarchical memory to 

calculate friction force between fractal rough solid surface 

and elastomer with arbitrary linear rheological properties. 

Tech Phys Lett 37: 8–11 (2011)  

[9] Popova E, Popov V L. The research works of Coulomb and 

Amontons and generalized laws of friction. Friction 3(2): 

183–190 (2015) 

[10]  Schallamach A. The load dependence of rubber friction. Proc 

Phys Soc B 65: 657–661 (1952) 

[11]  Ben-David O, Fineberg J. Static friction coefficient is not a 

material constant. Phys Rev Lett 106: 254301 (2011) 

[12]  Otsuki M, Matsukawa H. Systematic breakdown of Amontons’ 

law of friction for an elastic object locally obeying Amontons’ 

law. Sci Rep 3: 1586 (2013) 

[13]  Rubinstein S M, Cohen G, Fineberg J. Detachment fronts 

and the onset of dynamic friction. Nature 430: 1005–1009 

(2004) 

[14]  Ben-David O, Cohen G, Fineberg J. The dynamics of the 

onset of frictional slip. Science 330: 211–214 (2010) 

[15]  Amundsen D S, Scheibert J, Thögersen K, Trömborg J, 

Malthe-Sörenssen A. 1D model of precursors to frictional 

stick-slip motion allowing for robust comparison with 

experiments. Tribol Lett 45(2): 357–369 (2012) 

[16]  Heise R, Popov V L. Adhesive contribution to the coefficient 

of friction between rough surfaces. Tribol Lett 39(3): 

247–250 (2010) 

[17]  Heß M. About Mapping of Some Three-dimensional Contact 

Problems to Systems with a Lower Spatial Dimensionality. 

Göttingen: Cullier Verlag, 2011. 

[18]  Heß M. On the reduction method of dimensionality: The exact 

mapping of axisymmetric contact problems with and without 

adhesion. Phys Mesomech 15: 264–269 (2012) 

[19]  Pohrt R, Popov V L, Filippov A E. Normal contact stiffness 

of elastic solids with fractal rough surfaces for one- and 

three-dimensional systems. Phys Rev E 86: 026710 (2012) 

[20]  Popov V L, Heß M. Method of Dimensionality Reduction in 

Contact and Friction. Berlin Heidelberg: Springer, 2015. 

[21]  Popov V L, Dimaki A, Psakhie S, Popov M. On the role of 

scales in contact mechanics and friction between elastomers 

and randomly rough self-affine surfaces. Sci Rep 5: 11139 

(2015) 

[22]  Li Q, Popov M, Dimaki A, Filippov A E, Kürschner S, 

Popov V L. Friction between a viscoelastic body and a rigid 

surface with random self-affine roughness. Phys Rev Lett 

111: 034301 (2013) 

[23]  Dimaki A V, Popov V L. Coefficient of friction between a 

rigid conical indenter and a model elastomer: Influence of 

local frictional heating. Phys Mesomech 17(5): 57–62 (2014) 

[24]  Heise R. Flash temperatures generated by friction of a 

viscoelastic body. Facta Universitatis 13(1): 47–65 (2015) 

[25]  Popov V L. Contact Mechanics and Friction, 1st Ed. Berlin 

Heidelberg: Springer, 2010.  

[26]  Popov V L. What does friction really depend on? (Robust 

governing parameters in contact mechanics and friction). 

Phys Mesomech 18 (4): 5–11 (2015) 

[27]  Popov V L, Voll L, Li Q, Chai Y S, Popov M. Generalized 

law of friction between elastomers and differently shaped 

rough bodies. Sci Rep 4: 03750 (2014) 



64 Friction 4(1): 50–64 (2016)  

 

Rainer HEISE. He is postdoctoral 

researcher at Technische Universität 

Berlin. He studied engineering 

physics at Chalmers University of 

Technology in Göteborg (1996–2001) 

and received his PhD degree from 

Göteborg University in 2005. After 

a postdoc period at Albert Einstein 

Institute in Potsdam Golm he works at the Department 

of System Dynamics and the Physics of Friction in 

the Institute of Mechanics at TU Berlin. His research 

interests include mathematical physics, numerical 

simulation of frictional processes, tribology, the 

influence of ultrasound on friction and issues related 

to materials such as elastomers but also particle 

physics.  
   


