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Abstract
An enhancement in the wheel–rail contact model used in a nonlinear vehicle–structure interaction (VSI) methodology for 
railway applications is presented, in which the detection of the contact points between wheel and rail in the concave region 
of the thread–flange transition is implemented in a simplified way. After presenting the enhanced formulation, the model is 
validated with two numerical applications (namely, the Manchester Benchmarks and a hunting stability problem of a sus‑
pended wheelset), and one experimental test performed in a test rig from the Railway Technical Research Institute (RTRI) 
in Japan. Given its finite element (FE) nature, and contrary to most of the vehicle multibody dynamic commercial software 
that cannot account for the infrastructure flexibility, the proposed VSI model can be easily used in the study of train–bridge 
systems with any degree of complexity. The validation presented in this work proves the accuracy of the proposed model, 
making it a suitable tool for dealing with different railway dynamic applications, such as the study of bridge dynamics, train 
running safety under different scenarios (namely, earthquakes and crosswinds, among others), and passenger riding comfort.

Keywords Vehicle–structure interaction · Wheel–rail contact · Manchester Benchmarks · Thread–flange transition · 
Dynamic analysis · Model validation

1 Introduction

The dynamic effect on structures, such as bridges, caused by 
moving vehicles is a topic that has been attracting research‑
ers and engineering practitioners for a long time. These 
effects can be assessed through transient moving load mod‑
els [1–3] or by using more realistic vehicle–structure interac‑
tion (VSI) models [4–7]. While the first method is restricted 
to the analysis of the structural response, since the vehicle 
is represented as a set of moving loads corresponding to its 
static axle loads, the latter can also be used to assess the 
vehicle’s behavior, including its dynamic response and the 
contact forces that arise from the contact interface. These 
models can be used in both roadway [8–10] and railway 
[4–7] applications, with differences in the contact interface, 

namely, between tire–surface and wheel–rail contact mecha‑
nisms. Since the present work focuses only on railway, only 
the latter will be addressed hereinafter.

VSI models in railways can be used in a wide range of 
applications, such as the study of bridge dynamics [11–14], 
evaluation of the train running safety [15–17], and assess‑
ment of passenger riding comfort [18, 19], among others. 
Depending on the objective, the VSI models may have dif‑
ferent degrees of sophistication. The simpler ones are those 
that deal only with the vertical dynamic behavior, which 
have been widely developed since the 1980s [20–22] due 
to its simplicity on dealing with the coupling between the 
wheel and rails. However, they are restricted to the analysis 
of the vertical vibrations on both the train and the structure, 
thus not being able to deal with phenomena caused by lateral 
excitations, such as wind, earthquakes, or even lateral track 
deviations. Naturally, such drawback makes these models 
incompatible with any type of analysis that strongly depends 
on this type of excitations, namely, running safety analyses 
or riding comfort evaluation.

To overcome the aforementioned limitations, several 
researchers start to focus their work on developing complex 
contact models that could accurately simulate the behavior 
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on the wheel–rail contact interface, thus allowing the evalu‑
ation of the contact forces in all the directions, including 
the lateral one. Within this topic, special attention has 
been given by mechanical engineers in the development 
of wheel–rail contact models in multibody environments, 
where the track flexibility is not considered or is consid‑
ered in simplified forms. Examples of such applications can 
be found in several publications. Shabana and Rathod [23] 
made a comparison between planar and spatial contact detec‑
tion methods using nonlinear geometric equations, in which 
the contact points could be in a 2D plane or a 3D curve (con‑
tact points in different longitudinal positions), respectively. 
The authors concluded that the two options do not affect the 
vehicle’s critical speed, but some deviations may occur in 
the estimation of the contact forces due to small differences 
in the contact point locations. Sugiyama and Suda [24] pro‑
posed a hybrid strategy to detect the contact points, in which 
an offline approach is used to detect the tread contact point, 
and an online method is applied to detect the contact point 
in the flange. While the former is based on precalculated 
lookup tables that are interpolated during the analysis, the 
later consists of detecting the contact point in real time dur‑
ing the dynamic analysis. Bozzone et al. [25] proposed an 
alternative to the nonlinear geometric equations used by the 
previous authors. In this work, the position of the contact 
point is also determined online, but based on intersection 
volumes, i.e., the contact point location is determined based 
on the farthest points belonging to the intersection of the 
contacting surfaces that define the wheel and rail profiles. 
More recently, Magalhaes et al. [26] proposed a complex and 
comprehensive online contact model able to detect multiple 
contact points in switches and crossings scenarios, while 
Sun et al. [27] used an alternative offline contact approach 
based on lookup tables to efficiently detect contact points 
in hunting stability scenarios. These models, however, are 
restricted to multibody simulations and cannot address the 
response of the structure. Multibody software, such as SIM‑
PACK® [28] or VAMPIRE® [29], also use sophisticated 
wheel–rail contact models but they are also unable to model 
the flexibility of a structure, such as a bridge. Thus, these 
models are mainly used to study the behavior of the vehicle 
itself and to perform detailed analysis of the contact inter‑
face in switches and crossings scenarios or to study wear of 
the wheel–rail interface. Enhancements in this regard have 
been made recently by Antunes et al. [30], which developed 
a co‑simulation process to interconnect the multibody capa‑
bilities of an in‑house railway dynamics software [31] with 
a track model developed within a finite element (FE) frame‑
work. However, these important developments continue to 
be mainly focused on the behavior of the vehicle from the 
mechanical engineering point of view, thus neglecting the 
detailed analysis of the infrastructure dynamics or the mod‑
eling of more complex structures, such as bridges.

To study the coupling behavior of the train–bridge sys‑
tems, several authors brought together the knowledge of 
mechanical and civil engineers, to develop tools that per‑
form the dynamic train–bridge coupling with appropriate 
wheel–rail contact models and consider the full flexibility 
of the infrastructure through FE models with any degree 
of complexity. A detailed state‑of‑the‑art review has been 
published recently by Zhai et al. [32], where the authors 
demonstrate the evolution of these models that took place in 
the last years, as well as their main applications. Some VSI 
models based on FE, however, do not take into considera‑
tion the track model [19]. By considering the flexibility of 
the bridge, but neglecting that of the track, the computation 
of the wheel–rail contact forces, which are crucial for the 
assessment of the train running safety based on derailment 
criteria, becomes less accurate. Therefore, several authors 
started to incorporate the track in the bridge models through 
elaborate flexible components that simulate the flexibility of 
the different components of the track, namely, ballast, pads, 
fasteners, etc. Zhai et al. [6, 33, 34] presented a theoreti‑
cal framework of a train–track–bridge interaction tool, as 
well as several experiments conducted with it. Montenegro 
et al. [35] also developed the tool “VSI—Vehicle–Struc‑
ture Interaction Analysis,” which can model structures with 
any degree of complexity and that has been used in several 
train–bridge applications, such as running safety [17, 36, 
37], evaluation of the train stability depending on the track 
condition [38], as well as in the evaluation of riding com‑
fort considering different indicators in different directions 
[18]. Recently, other research groups also developed their 
own VSI tools to study the train–bridge coupling behavior 
under different conditions [15, 16, 39–42], as stated in the 
literature reviews published by Montenegro et al. [43] and Li 
et al. [44]. However, most of these models that can be found 
in the literature do not thoroughly present the validation pro‑
cess undertaken by their developers, making it hard to check 
which examples and tests were used to guarantee the correct 
correspondence between the model performance and reality.

The present work aims to show not only an enhancement 
in the wheel–rail contact model presented before in [35], 
in which the wheel profile can now be parameterized with‑
out any simplification in the concave regions, but also to 
demonstrate its validity with three different validation exam‑
ples, namely, the comparison of the results obtained with 
the proposed model with those published in the wheel–rail 
contact Manchester Benchmarks [45], the simulation of a 
hunting stability problem with semi‑analytical solution, and 
the validation with an experimental test that took place in the 
Railway Technical Research Institute in Japan. The model 
proposed here has been implemented in a [46] framework, 
which couples the vehicle and structure subsystems mod‑
eled with an FE package, thus not restricting it to multibody 
analyses of the vehicle, but also to the analysis of the railway 
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infrastructure, such as bridges or plain track, modeled with 
any degree of complexity.

2  Wheel–rail contact formulation

In a previous publication from the author [35], the con‑
tact model did not contemplate the possibility of finding 
wheel–rail contact pairs in the concave region of the wheel 
(transition zone between the tread and flange) due to the 
multiple solutions that could arise from the geometrical non‑
linear system of equations that will be presented later in this 
section. In this work, this drawback has been overcome with 
an alternative algorithm for detecting contact pairs in the 
concave regions of the wheel, thus avoiding the simplifica‑
tion of the wheel surface geometry adopted in [35]. The full 
contact algorithm is described in the following sub‑sections.

2.1  Geometric contact problem

The present wheel–rail contact formulation is based on profile 
surfaces that are parameterized using cubic splines defined 
from a group of points that represent, as rigorous as possible, 
the geometry of the contact surfaces. The wheel is param‑
eterized by two functions (see Fig. 1), one for the tread fw,t 
and another for the flange fw,f, making the detection of the 
contact points in the two regions of the wheel profile fully 
independent (see [35] for details about the profiles param‑
eterization) and allowing the detection of two contact points 

simultaneously, as shown in Fig. 1b. This option is particu‑
larly important in scenarios with important lateral loads, such 
as in the presence of earthquakes [37] or crosswinds [36], 
where double contact with the tread flange contact occurs 
often. In Fig. 1, the contact point and the point with maxi‑
mum curvature, which defines the division between the two 
surfaces, are denoted by Pc and Cm, respectively, while fr is 
referred to the rail profile function.

After defining the surfaces of the contacting bodies, the 
next step of the geometric problem consists of determining 
the position of the contact points between the wheel and the 
rail. In the present work, and contrary to the author’s previous 
work [35], two algorithms for the detection of contact points 
are implemented. The first algorithm is used to detect the posi‑
tion of contact points lying on convex regions of the surfaces 
(see Sect. 2.1.1), while the second is applied when the contact 
point is located on concave regions (see Sect. 2.1.2), as illus‑
trated in Fig. 2.

2.1.1  Convex contact search

The location of the potential wheel–rail contact points is deter‑
mined based on the following system of nonlinear equations:

where tt
r,y

 and tt
w,y

 are the tangent vectors to the rail and 
wheel surfaces at the potential contact point, respectively; 
n
t
r
 is the normal vector to the rail surface at the potential 
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Fig. 1  Division into tread and flange: a tread contact, b double contact, and c flange contact

Fig. 2  Wheel–rail contact point: a contact in a convex region and b contact in a concave region
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contact point; dt
wr

 is the vector that defines the relative posi‑
tion of the point of the wheel with respect to the point of 
the rail; and the superscript “t” refers to the fact that all 
the aforementioned vectors are defined with respect to the 
target element coordinate system (xt, yt, zt). The xt axis has 
the direction of the longitudinal axis of the rail profile, the 
yt axis is parallel to the track plane, and the zt axis completes 
the right‑handed system (see [35] for details). By simulta‑
neously guaranteeing that the tangent vector to the rail is 
perpendicular to the vector that defines the relative position 
between the contact pair (first condition) and that the normal 
vector to the rail is perpendicular to the tangent vector of the 
wheel (second condition), it is possible to define the contact 
point position.

The system of Eq. (1) may have multiple solutions if one 
of the contact surfaces is not convex, i.e., if the potential 
contact point lies in the transition zone between the flange 
and the rail. Therefore, after solving Eq. (1), the algorithm 
checks the convexity sign of the wheel surface at the poten‑
tial contact point location by computing its curvature �w,y 
along the lateral direction y. According to Garg and Dukki‑
pati [47], the radius of curvature of a surface is considered to 
be positive if the corresponding center of curvature is within 
the body, i.e., if the surface is convex. Thus, the potential 
contact point lies on a convex region if the following condi‑
tion is fulfilled:

otherwise, the potential contact point lies on a concave 
region, and the solution obtained with Eq. (1) is discarded. 
When this situation occurs, the concave contact search algo‑
rithm, presented in Sect. 2.1.2, is called to determine the 
actual position of the contact point.

In the scenarios in which the algorithm finds a unique 
solution for Eq. (1), i.e., the potential contact pair lies in 
a convex region, the existence of an actual contact point 

(2)𝜅w,y > 0;

is not yet mathematical guaranteed. Hence, the two bodies 
are actually in contact only if the vectors dt

wr
 and nt

r
 point in 

opposite directions, which can be mathematically described 
through the following equation:

Finally, the penetration d between the two bodies in con‑
tact is given by

2.1.2  Concave contact search

As mentioned before, one of the main contributions of the 
present paper consists of the development of an algorithm 
to detect the contact point position not only in convex 
regions, as in [35], but also in concave zones. The con‑
cave contact approach consists of determining the loca‑
tion of the contact points in the regions where the convex 
contact approach cannot find a single solution, i.e., in 
concave surfaces (see condition expressed in Eq. (1)). 
Unlike the algorithm used in the convex contact approach, 
the accuracy of this algorithm depends on the degree of 
discretization of the profiles. Therefore, although this 
approach may also be used to locate the contact points 
in convex regions, the higher computational cost that is 
required to achieve a good solution makes it computa‑
tionally less attractive. As a result, the concave contact 
approach is used only if the convex approach finds a solu‑
tion that lies in a concave region.

In the concave contact search approach, the rail and 
wheel surfaces are discretized in nr and nw points, respec‑
tively, by interpolating the profile functions fr and fw 
shown in Fig. 1. Hence, the evaluation of the potential 
contact between the two surfaces consists of determin‑
ing if any of these points lie inside the opposite surface, 

(3)d
t
wr

⋅ n
t
r
≤ 0.

(4)d = ‖‖d
t
wr
‖‖.

Fig. 3  Intersection volume: a projection of rail points and b projection of wheel points
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forming the so‑called intersection volume, illustrated in 
Fig. 3.

To determine which points belong to the intersection vol‑
ume, the points belonging to the rail surface are projected 
into the wheel surface and vice versa. Then, the vertical dis‑
tances between the points of each surface and the respective 
projection on the other surface, hr,i and hw,j, are computed 
as follows:

where ut
r,i

 and ut
w,j

 are the position vectors of the ith rail point 
into the wheel surface and of the jth wheel point into the rail 
surface (see Fig. 3), respectively, defined with respect to the 
target element coordinate system; ut

r,i
 and ut

w,j
 are the posi‑

tion vectors of the projections of the aforementioned points 
in the opposite surfaces along the vertical direction; and ezt 
is a unit base vector of the target element coordinate system. 
The point i of the rail surface and the point j of the wheel 
surface belong to the intersection volume if the following 
conditions are fulfilled, respectively:

If there are no points belonging to the intersection 
volume, the bodies are not in contact, and the potential 
contact point is discarded from further considerations. On 
the other hand, when contact is detected, each point of 
one of the surfaces belonging to the intersection volume 
has a potential contact pair in the other surface. Thus, the 
potential contact pair of a given point of the rail surface 
belonging to the intersection volume is the closest point 
of the wheel surface, which also belongs to the intersec‑
tion volume, and vice versa. The distance di between the 
ith rail point belonging to the intersection volume and 
the point of the wheel surface j that forms the potential 
contact pair is given by

where nIV
r

  and nIV
w

 are, respectively, the number of points of 
the rail and wheel surfaces which belong to the intersection 
volume.

Finally, out of all the pairs giving the maximum dis‑
tance between the rail point and the correspondent wheel 
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,
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r

and j = 1, 2,… , nIV
w
,

point, the pair where contact occurs is the one that leads 
to the maximum penetration d, given by

A schematic representation of the selection of the con‑
tact pair ij is depicted in Fig. 4.

2.2  Normal contact problem

When two non‑conforming bodies are compressed against 
each other, they will deform around the first point of contact 
and form a contact area. In the present model, the nonlin‑
ear Hertz contact theory [48] is used to analyze the normal 
contact problem. The normal contact force Fn between the 
wheel and rail is given by

where d is the penetration defined in Eq. (4) or (10), and 
Kh is a generalized stiffness coefficient that depends on the 
material properties of the bodies in contact, such as the 
Young modulus and the Poisson ratio, and on the curva‑
tures of the surfaces at the contact point [49]. Note that, in 
a wheel–rail contact problem, the assumptions of the Hertz 
theory are not met, since the surfaces of the contacting 
bodies are not totally frictionless and may be conforming. 
Moreover, the wheel and rail profiles may have non‑constant 
curvatures in the contact area, and plastic deformations may 
occur in the contact zone. Hence, more complex and realis‑
tic contact shapes [50, 51] may be necessary for analyzing 
local problems, such as wear or switch and crossings prob‑
lems. Nevertheless, the Hertz theory is still widely used by 
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many authors [52] due to its sufficient accuracy in predict‑
ing the wheel–rail normal contact forces in the majority of 
the railway applications, even when the Hertzian assump‑
tions are not fully met. For this reason, the nonlinear Hertz 
theory is used in the present application in both the convex 
and concave contact regions. For the concave regions, the 
curvature ratio B is limited to a minimal positive value in 
order to allow the calculation of the Hertzian ellipse semi‑
axes, as proposed in [50]. In this work, this minimal value 
adopted was B = 1 ×  10–6  m−1 to ensure that this parameter 
is close to zero but does not pose any numerical problem to 
the algorithm.

2.3  Tangential contact problem

When two bodies are allowed to roll over each other, some 
points on the contact area may slip while others may adhere. 
The difference between the tangential strains of the bodies in 
the adhesion area leads to a small apparent slip, called creep, 
which is crucial for the determination of the tangential forces 
that develop in the contact area. Hence, the creep may be 
defined as a combined elastic and frictional behavior in which 
two elastic bodies that roll over each other share a contact area 
where both slip and adhesion occur simultaneously. The tan‑
gential contact forces, also called creep forces, are computed 
through non‑dimensional quantities named creepages, which 
consist of the relative velocities between wheel and rail at the 
contact point normalized to the vehicle forward speed.

In this work, a lookup table based on Kalker’s USETAB 
[53] has been used. Like in the original version, the values 
from the table are normalized and calculated according to 
the following criteria: 1) the combined shear modulus of the 
wheel and rail materials G is 1; 2) the Coulomb’s friction 
limit given by �Fn is 1; and 3) the square root of the ellipse’s 
semi‑axes product 

√
ab is 1. While the table inputs are the 

semi‑axes ratio of the contact ellipse and the normalized 
creepages, the outputs consist in the normalized longitudi‑
nal and lateral creep forces and the normalized spin creep 
moment, which are linearly interpolated during the dynamic 
analysis. To build the table, the software CONTACT [54], 
which is based on Kalker’s exact three‑dimensional rolling 
contact theory [55], has been used. The normalized creep‑
ages and semi‑axes ratios were discretized in two intervals as 
in the original USETAB, namely 0 ≤ x ≤ 1 and 1 ≤ x < ∞ , 
where x is the input of the table. However, a linear and a 
logarithmic distribution of ten values were used for the dis‑
cretization of the first and second intervals, respectively, 
instead of the original linear intervals with seven values. 
Adopting an 40 × 40 element discretization of the contact 
ellipse, and by considering all possible combinations of the 
creepages and semi‑axes ratios, a total of 320,000 calcula‑
tions were performed using the software CONTACT.

An important point is the consideration of an upper 
limit for the table to avoid inaccurate extrapolations. Fur‑
thermore, according to [53], the linear interpolations with 
semi‑axes ratios close to zero or infinite should be avoided, 
since the creepage coefficients are singular in these cases. 
Therefore, an upper limit of  103 and a lower limit of  10–3 
are used for the semi‑axes ratios, and an upper limit of  103 
is adopted for the normalized creepages. If a combina‑
tion of creepages and semi‑axes ratio falls outside these 
intervals, the Polach [56] method is used to solve the men‑
tioned singularities.

3  Vehicle–structure coupling system

The vehicle–structure coupling system is solved using the 
direct method originally proposed by Neves et al. [57] for 
vertical dynamics and later extended by Montenegro et al. 
[35] to deal with lateral behavior, in which the governing 
equilibrium equations of the vehicle and structure (see 
Sect. 3.1) are complemented with additional constraint 
equations (see Sect. 3.2) that relate the displacements of 
the contact nodes of the vehicle with the corresponding 
nodal displacements of the structure. A brief explanation 
of these two types of equations is given in the next sub‑
sections, but the readers should refer to [35] for a detailed 
description of the coupling formulation.

3.1  Equilibrium equations

Considering the α method [58], the equations of motion 
of the vehicle–structure system can be written as follows:

where M is the mass matrix, R is the internal nodal force vec‑
tor, F is the vector of externally applied nodal loads, a is the 
nodal displacements, α is the algorithmic dissipation factor 
proposed by Hilber et al. [58] for the α‑method (taken as 0 
here to correspond to the Newmark method), and the super‑
scripts t and t + Δt indicate the previous and current time 
steps, respectively. After a series of mathematical operations 
in detail in Sect. 5.1 from the authors’ previous publication 
[35], the final system of equilibrium equations is given by

where K is the current effective stiffness matrix; D is a 
matrix that relates the contact forces, defined with respect to 
the target element coordinate system, with the nodal forces 
defined in the global coordinate system; Δa and ΔX are the 

(12)Mä
t+Δt

+ (1 + 𝛼)R
t+Δt

− 𝛼Rt
= (1 + 𝛼)F

t+Δt
− 𝛼Ft,

(13)
[
K D

][
Δat+Δt,i+1

ΔX
t+Δt,i+1

]

= �
(
a
t+Δt,i,Xt+Δt,i

)
,
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incremental nodal displacements and contact forces, respec‑
tively; � is the residual force vector that arises from the 
fact that the wheel–rail contact problem is nonlinear; and 
the superscripts i and i + 1 indicate the previous and current 
iteration, respectively.

3.2  Constraint equations

When contact occurs, the contact element and the target ele‑
ment are coupled in the three directions. Thus, the following 
constraint equations must be imposed:

where vc and vt are the displacements of the contact (wheel) 
and target (rail) elements, respectively, and r is the vector 
of irregularities between the contact and target elements in 
the vertical and lateral directions. After a series of math‑
ematical manipulations described in detail in Sect. 5.2 from 
the authors’ previous publication [35], the final constraint 
equation is given by

where H is the transformation matrix that transforms the 
displacements of the internal nodes of the contact and target 
elements from the global to the local coordinate system of 
the contact pair; and r is the modified irregularity vector that 
is consulted in Sect. 5.2 from [35].

3.3  Hybrid system of equations to make the couple 
between vehicle and structure

The equilibrium Eq. (13) and the constrain Eq. (15) form, 
therefore, a single hybrid system, with displacements and 
contact forces as unknowns, that is solved directly. Hence, 
the vehicle–structure interaction problem can be expressed 
as follows:

Since the efficiency of the algorithm used for solving the 
system of equations is critical, a block factorization algo‑
rithm is used to solve the system of Eq. (16) that takes into 
account the specific properties of each block, namely, sym‑
metry, positive definiteness, and bandwidth. This algorithm 
is described in detail in Appendix A of the authors’ previous 
publication [35].

The vehicle–structure interaction numerical tool 
described above named “VSI—Vehicle–Structure Interac‑
tion Analysis” has been implemented in MATLAB® [46], 

(14)v
c + v

t = r,

(15)HΔat+Δt,i+1 = r,

(16)

[
K D

H 0

][
Δat+Δt,i+1

ΔXt+Δt,i+1

]

=

[
�
(
a
t+Δt,i,Xt+Δt,i

)

r

]

.

which imports the structural matrices from both subsystems 
previously modeled in a finite element (FE) software, which 
in this work was ANSYS® [59]. As mentioned before, due 
to space limitations, only a brief description of the vehi‑
cle–structure coupling model is presented in this article, 
but a complete description of the mathematical formulation 
may be consulted in the author’s previous publication [35].

4  Numerical validation of the wheel–rail 
contact model

4.1  Initial considerations

In the present section, the proposed vehicle–structure 
interaction model is validated with two numerical appli‑
cations. First, the Manchester Benchmark organized by 
Shackleton and Iwnicki [45] is revisited to validate the 
wheel–rail contact model. The benchmark consisted of a 
series of tests simulated with ten different software with 
the aim of allowing an informed choice when selecting 
a contact model for a particular railway vehicle simula‑
tion scenario. The second numerical application consists 
of a hunting stability analysis of a suspended wheelset, in 
which its lateral displacements and yaw rotations are com‑
pared with those obtained with a semi‑analytical model 
described by Wickens [60].

4.2  Manchester Benchmarks

4.2.1  Benchmark description

Shackleton and Iwnicki [45] proposed a benchmark with the 
aim of allowing an informed choice when selecting a con‑
tact model for a particular railway vehicle simulation sce‑
nario. There is a wide range of wheel–rail contact models in 
the vehicle simulation software, and, to achieve acceptable 
computational times, all of them make simplifying assump‑
tions. As a result, each model has a limit of its validity and 
restrictions to its applications that are not always apparent 
to the user. Thus, the Manchester Metropolitan University 
conducted a series of tests with ten railway vehicle simu‑
lation software and compared the results. These software 
tools vary in the way they establish the position of the con‑
tact point between the wheel and the rail; in this way, they 
predict the size and shape of the contact area and in terms 
of the methods used to simulate the forces that are generated 
in the contact interface. Table 1 summarizes the formula‑
tions adopted by each software to solve the contact problem.

The tests consisted of prescribing, both statically and 
dynamically, lateral displacements and yaw rotations 
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to a single wheelset to analyze its behavior. Four case 
studies were conducted during the benchmark with real 
wheel and rail profiles, S1002 wheel and UIC60 rail with 
a 1:40 inclination, as depicted in Fig. 5, and a vertical 
load of 20 kN applied at the center of mass of the wheel‑
set. Note that the thread–flange transition is considered 
without any simplification, so that the concave contact 
search algorithm proposed in the present article is fully 
tested with this application. These case studies are the 
following:

• Case A1.1: The wheelset is subjected to a prescribed lat‑
eral displacement from 0 to 10 mm with 0.5 mm incre‑
ments. A static analysis is performed in each position, 
and the normal contact is evaluated.

• Case A1.2: The wheelset is subjected to the previously 
described lateral displacements combined with a yaw 
rotation from 0 to 24 mrad with 1.2 mrad increments. 
A static analysis is performed in each position, and the 
normal contact is evaluated.

• Case A2.1: Forward speed of 2 m·s‑1 is given to the 
wheelset on straight track while it is subjected to the 
previously described lateral displacements. A dynamic 
analysis is performed, and both the normal and tangential 
contacts are evaluated.

• Case A2.2: The wheelset is subjected to the combinations 
of lateral displacements and yaw rotations described in 
the case A1.2. The dynamic conditions are the same as 
for the case A2.1, and both the normal and tangential 
contacts are evaluated.

The results obtained with the proposed model described 
in Sects. 2 and 3 are compared with those obtained with 
the tested software shown in Table 1. The local coordi‑
nate systems considered in the benchmark, as well as the 
adopted conventions, are described in Appendix B of [45]. 
Each tested code has been assigned a line/marker style 
(see Fig. 6), being the results obtained with the proposed 
model superimposed over those obtained with the tested 
software.

4.2.2  Contact point positions

Figures 7 and 8 show the lateral position of the contact 
point in the rails and wheels, respectively, defined in the 
local coordinate systems adopted in the benchmark, for the 
case A1.1 and for each wheelset lateral position yws. The 
solid line without a marker illustrates the rail and wheel 
profile. The proposed model shows a good agreement with 
the majority of the tested codes in both the convex and the 
concave regions of the wheel, validating the contact search 
approaches presented in Sects. 2.1.1 and 2.1.2, respectively.

4.2.3  Rolling radius difference

The rolling radius difference ΔR between the left and right 
wheels obtained in the test case A1.1 is plotted in Fig. 9. 

Table 1  Formulations adopted by each tested software in the Manchester Benchmark to solve the normal and tangential contact problems [45]

Software Normal contact formulation Tangential contact formulation

CONPOL Hertzian FASTSIM
CONTACT PC92 CONTACT CONTACT 
DYNARAIL Hertzian and Multi‑Hertzian USETAB
GENSYS Non‑Hertzian (equivalent contact ellipses) FASTSIM
LaGer CONTACT CONTACT 
OCREC Multi‑Hertzian FASTSIM
NUCARS Multi‑Hertzian Lookup tables based on DUVOROL
TDS CONTACT Hertzian FASTSIM
VAMPIRE Hertzian Lookup tables based on DUVOROL
VOCOLIN Semi‑Hertzian FASTSIM

Rail
Wheel tread
Wheel flangeS1002

UIC60

60 40 20
y (mm)

0 -20 -40 -60 -80

-10
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-20
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Fig. 5  Geometrical profiles of the S1002 wheel and UIC60 rail used 
in the benchmark
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Again, a good agreement can be observed between the pro‑
posed model and the tested software. For lateral displace‑
ments between 4.5 and 6 mm, the contact occurs in the tread/
flange transition of the right wheel, causing a small increase 
in the rolling radius. After 6 mm, however, the contact point 
jumps to the flange, leading to an abrupt increase in the right 
rolling radius and, consequently, in the rolling radius differ‑
ence between the two wheels.

4.2.4  Contact angles

Figure 10 presents the contact angles in the left γlft and 
right γrht wheels obtained in the test case A1.2, in which the 

lateral displacement of the wheelset is combined with yaw 
rotations. The contact angle in the right wheel reaches the 
maximum value for a lateral displacement of 6.5 mm accom‑
panied by a yaw rotation of 15.6 mrad and, like the rolling 
radius difference, suffers an abrupt increase when the contact 
point jumps to the flange. The results obtained with the pro‑
posed model for the right contact angle show a good match 
with those obtained with all the tested software. Regarding 
the left contact angle, the proposed model follows the same 
trend as the software GENSYS, NUCARS, and VAMPIRE, 
which are widely used in railway vehicle simulations. The 
other two trends are followed by VOCOLIN and by the 
software LaGer and CONTACT PC92. The discrepancies 

Fig. 6  Line/marker style assigned to each tested software
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obtained with VOCOLIN derive from the non‑consideration 
of the roll rotation of the wheelset to locate the contact point, 
while the trend followed by LaGer and CONTACT PC92 is 
justified by the fact that the output given by these codes is 
related to the wheelset coordinate system rather than to the 
track centerline coordinate system (see Appendix B of [45] 
for the definition of these coordinate systems).

4.2.5  Longitudinal creepages

The longitudinal creepages in the left υξ,lft and right υξ,rht 
contact interfaces obtained in the dynamic test case A2.1 are 
plotted in Fig. 11. According to [45], the lack of conformity 
between the results predicted by the several codes is due to 
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Fig. 9  Rolling radius difference ΔR between the right and left wheels 
in case A1.1 (adapted from [45])
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differences in the way the total longitudinal creepage is dis‑
tributed between the left and right contact interfaces. There‑
fore, in absolute terms, the output of the proposed model is 
in agreement with the outputs obtained with the software 
tested during the benchmark, except CONPOL, which fol‑
lows an isolated trend.

4.2.6  Lateral creepages

The lateral creepages in the right contact interface υη,rht cal‑
culated in the test case A2.2 are presented in Fig. 12 (the 
lateral creepages obtained in the left contact interface have 
not been published in [45]; therefore, only the results of 
the right interface are presented). The results given by the 
proposed model accompany the main trend followed by all 
codes, except CONPOL, which again shows a different out‑
put. These differences are justified by the fact that CON‑
POL neglects the effects of the yaw angle of the wheelset in 
the calculation of the creepages. This important limitation 

also affects the spin creepages, as will be shown in the next 
section.

4.2.7  Spin creepages

Finally, the spin creepages in the left υϕ,lft and right υϕ,rht 
contact interfaces obtained in the test case A2.2 are plotted 
in Fig. 13. The spin creepages follow the same trend as the 
contact angle (see Fig. 10), since they depend directly on 
it. Therefore, the different trends observed in the left side 
are justified by the same reasons presented in Sect. 4.2.4, 
while the discrepancies obtained with CONPOL in the right 
side are, once more, due to the non‑consideration of the yaw 
angle effects in the calculation of the creepages. Regarding 
the proposed model, a good agreement is observed between 
the results obtained with it in the right contact interface, and 
those obtained with the software tested during the bench‑
mark, with exception of CONPOL for the reasons stated 
above. In the left side, the proposed model follows again the 
same trend as GENSYS and VAMPIRE.

4.2.8  Final remarks

Although a general agreement between the tested software 
and the proposed model is observed, there are, in some 
cases, notable discrepancies. However, the main discrep‑
ancies are mainly justified by limitations of the contact 
models adopted by some of the tested software, especially 
CONPOL and VOCOLIN [45], rather than by limitations 
of the proposed model. Moreover, the results obtained 
with the proposed model are, in most cases, in an excellent 
agreement with those obtained with GENSYS, NUCARS, 
and VAMPIRE, which are widely used in dynamic simula‑
tions of railway vehicles. Therefore, it can be concluded 
that the wheel–rail contact model developed in this work 
is suitable for being used in railway dynamics applications.
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4.3  Hunting stability analysis of a suspended 
wheelset

4.3.1  Hunting phenomenon

Due to the specific conic shape of the train wheels, when 
a wheelset is running on a straight track and is subjected 
to a lateral perturbation, the rolling radii of the left and 
right wheel differ from each other. Hence, since both 
wheels have the same angular velocity if the wheelset 
is running with a constant speed, the wheel with larger 
radius will experiment a higher velocity than the opposite 
wheel. This phenomenon will force the wheelset to yaw 
and go back to the centered position, making the roll‑
ing radius of the opposite wheel to become larger. This 
process, called hunting motion, tends to continue indefi‑
nitely in an unsuspended wheelset making it unstable [47, 
60]. However, the creep forces that arise in the contact 
interface act as damping forces that dissipate energy and 
ensure the existence of a certain range of speeds where 
the wheelset is stable. The speed above which the wheel‑
set become unstable is called critical speed. In addition 
to the creep forces, the critical speed of a wheelset also 
depends on the wheel conicity, wheelset mechanical 
properties, and suspensions. The last one is particularly 
important to ensure that the wheelset instability occurs 
only at higher ranges of speeds.

Klingel [61] derived the following expression based 
on purely kinematic relationships, which describes the 
wavelength λKlingel of the hunting motion a non‑suspended 
wheelset:

where R0 the initial rolling radius of the wheel, Lcp is the half 
lateral distance between contact points, and γ0 is the conicity 
of the wheels. However, as aforementioned, this expression 
only considers the kinematic components of the movement, 
ignoring the inertial effects due to the mass of the wheelset, 
the influence of the suspensions’ flexibility, the creep forces 
that arise in the contact interface, and the real shape of the 
wheels (the wheels are perfectly conical in the Klingel’s 
model). Hence, to allow a reliable validation of the proposed 
model, a fully dynamic model of the wheelset is adopted in 
this second validation study.

4.3.2  Numerical models

Three different numerical models have been considered in 
the present study, namely (see generic model in Fig. 14): 

(17)�Klingel = 2π

√
LcpR0

�0
,

i)  model A, suspended wheelset without suspensions 
and with conic wheels; ii) model B, suspended wheelset 
connected to a moving frame by the primary (lateral and 
longitudinal) suspensions and with conic wheels; and iii) 
model C, equal to model B but with a realistic wheel with 
thread and flange (Shinkansen wheel with diameter ϕ of 
860 mm and JIS60 rail profile, as shown later in Fig. 20, 
and used in the experimental validation example from 
Sect. 5).

The geometrical and mechanical properties of the 
model are presented in Table 2. Note that the contact 
ellipse semi‑axes a and b, as well as the Kalker creepage 
coefficients c11 and c22 , are calculated for a static position 
of the wheelset centered with the track and maintained 
constant throughout the analysis.

4.3.3  Governing equations of motion of the semi‑analytical 
model

The results obtained with the proposed model are compared 
with those obtained with a semi‑analytical model described 
by Wickens [60] and based on the following simplifying 
assumptions:

a) The wheelset is rigid and is connected to a reference 
moving frame by lateral and longitudinal suspen‑
sions.

b) The running speed of the wheelset is constant.
c) The wheelset movement is characterized exclusively by 

two degrees of freedom: the lateral displacement yws and 
the yaw rotation ψws (see Fig. 14).

l

1

k1, y , c1, y

k1,x, c1,x

yws

xwsψws

R0

γ02Lcp

Fig. 14  Dynamic model of a suspended wheelset connected to a mov‑
ing frame (top view)
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d) The profile of the wheels is perfectly conic.
e) The assumptions of the Hertz theory (see Section 2.2) 

are valid, and the dimensions of contact area remain 
constant throughout the analysis.

f) The slip inside the contact area is neglected, being the 
tangential contact problem solved with the Kalker’s lin‑
ear theory [62].

g) The secondary effects, such as gravitational stiffness, 
gyroscopic effects, and spin creep, are neglected.

Based on these assumptions, the linear equations of 
motions that govern the dynamics of the system can be writ‑
ten as follows:

where V is the forward speed of the wheelset, fx = Gc11ab 
and fy = Gc22ab . The remaining variables present in 
Eq. (18) are described in Table 2. The system of linear dif‑
ferential Eq. (18) can be solved using a direct integration 
method. Note that for model C, in which the wheel is formed 
not only by the thread, but also by the flange, the governing 
equations of motion described in Eq. (18) are only valid until 
the moment the flange hits the rail.

The speed above which the wheelset become unstable, 
called critical speed Vcrit, can be determined from a stability 
study described in detail in [63] and is given by

(18)
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,

For running speeds below the critical value, the wheelset 
experiences a sinusoidal lateral motion that tends to damp 
out if no further disturbances occur. However, if the criti‑
cal speed is exceeded, the wheelset undergoes an increasing 
oscillatory motion that makes it unstable.

The hunting wavelength is also a characteristic of the 
hunting motion of the wheelset, since is independent from 
the running speed. By performing a quasi‑static analysis of 

the dynamic equations of motion, the theoretical hunting 
wavelength λtheory is found to be [63]

Notice that the theoretical hunting wavelength expressed 
in Eq.  (20) becomes equal to the wavelength proposed 
by Klingel, defined in Eq. (17), if the dynamic terms are 
neglected.
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Table 2  Geometrical and mechanical properties of the suspended wheelset model

Model Variable Description Value

A, B, C mws Wheelset mass 1568 kg
Ix,ws Roll mass moment of wheelset 656 kg·m2

Iy,ws Pitch mass moment of wheelset 168 kg·m2

Iz,ws Yaw mass moment of wheelset 656 kg·m2

a Contact ellipse longitudinal semi‑axis 5.667 mm
b Contact ellipse lateral semi‑axis 4.284 mm
c11 Longitudinal creepage coefficient 4.523
c22 Lateral creepage coefficient 4.121
R0 Initial rolling radius 456.6 mm
�0 Conicity 0.025
2Lcp Lateral distance between initial contact points 1435 mm
l Distance between longitudinal suspensions 1800 mm
c1,x Damping of the longitudinal primary suspensions 0 kN·s/m
c1,y Damping of the lateral primary suspensions 0 kN·s/m

A k1,x Stiffness of the longitudinal primary suspensions 0 kN/m
k1,y Stiffness of the lateral primary suspensions 0 kN/m

B, C k1,x Stiffness of the longitudinal primary suspensions 135 kN/m
k1,y Stiffness of the lateral primary suspensions 250 kN/m



194 P. A. Montenegro, R. Calçada 

1 3 Railway Engineering Science (2023) 31(3):181–206

4.3.4  Bases of the analysis

The results obtained with the numerical integration of the 
system of Eq. (18) are compared with those obtained with 
the proposed vehicle–structure interaction method proposed 
in the present article. The time step used in all the analy‑
sis with both the numerical and semi‑analytical models is 
Δt = 0.001 s. The Newmark integration scheme with integra‑
tion parameters α = 0, β = 0.25, and γ = 0.5 is used to solve 
the equations of motion. At the beginning of the dynamic 
analysis, a lateral impulsive load of 10 kN is applied at the 
center of mass of the wheelset to drive the system away 
from its equilibrium position, causing it to oscillate over the 

track centerline. Since the equations that govern the dynamic 
behavior of the analytic model assume that there is no slip 
inside the contact area (see Eq. (18)), the Kalker’s linear 
model [62] is adopted to compute the creep forces in the 
simulations performed in the present section.

The results obtained in the dynamic analyses using the 
three models described above are presented in the next 
section.

4.3.5  Validation results

To investigate the influence of the suspensions in the wheel‑
set stability, a dynamic analysis using model A has been 

0 2 4 6 8 10
Time (s)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

La
te

ra
l d

isp
la

ce
m

en
t (

m
m

)

Proposed model
Analytical

0 2 4 6 8 10
Time (s)

-8

-6

-4

-2

0

2

4

6

8

La
te

ra
l d

isp
la

ce
m

en
t (

m
m

)

Proposed model
Analytical

(a) (b)

Fig. 15  Wheelset lateral displacement using model A: a V = 20 km/h and b V = 100 km/h
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performed. Figure 15 shows the lateral response of the wheelset 
using model A for two different speeds. Without the inclusion 
of suspensions, the wheelset is always unstable, even for low 
speeds, such as V = 20 km/h. Moreover, the numerical hunting 
wavelength λnum analyzed for all the speeds correctly matches 
the theoretical value calculated with Eq. (20) (λnum = 22.639 m 
vs. λtheory = 22.745 m). In terms of the response, a very good 
agreement between both formulations is also observed.

On the other hand, when the suspensions are considered 
in the model, the wheelset’s behavior clearly improves in 
respect to its hunting stability, as it is shown in Fig. 16. This 
figure shows the wheelset response for a running speed of 
V = 100 km/h in terms of lateral displacement and yaw rota‑
tion when considering model B. It is clear that the wheelset 

is running below its critical speed, since the energy dissipa‑
tion due to the creep forces and the stability provided by 
the primary suspensions lead to a decrement of the hunting 
amplitude. Such conclusion is supported by the analytical 
evaluation of the critical speed using Eq. (19) which, for this 
particular case, is Vcrit = 234.4 km/h. An excellent agreement 
between numerical and semi‑analytical results is observed, 
proving the accuracy of the numerical tool.

It is important, therefore, to numerically analyze the 
behavior of the wheelset using model B for a running speed 
above the critical value. The results obtained with such analy‑
sis are plotted in Fig. 17, in which the dynamic response of 
the wheelset for V = 250 km/h is presented. As expected, the 
movement is now unstable, and the system does not return to 
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its centered position. Again, for analysis performed for speeds 
above the critical value, the wheelset’s behavior is clearly cap‑
tured by the numerical tool with slight differences in relation 
to the analytical model that has been previously justified.

Regarding the hunting wavelength, which is independent 
from the running speed, the numerical values obtained for 
the analysis below and above the critical speed are, respec‑
tively, λ100 = 22.583 m and λ250 = 22.708 m. These values 
are in a good agreement with the theoretical value calcu‑
lated with Eq. (20), which is found to be λtheory = 22.754 m.

The lateral displacement of the wheelset for three differ‑
ent running speeds, including the critical speed, is plotted in 
Fig. 18a. As the speed increases, the oscillation decay rate 
tends to decrease, reaching a null value at the critical speed, 
proving that the proposed numerical tool clearly captures the 
dynamic behavior predicted with the analytical expression for 
evaluating the critical speed defined in Eq. (19). After that, 
the hunting motion grows indefinitely, and the behavior of the 

wheelset becomes unstable. The critical speed is, therefore, a 
transition in the dynamic behavior of the wheelset that can be 
analyzed with the logarithmic decrement factor δn, given by

where yws (t) and yws (t + nT) are two peak displacements 
separated by n consecutive cycles with period T. The loga‑
rithmic decrement related to the responses of the wheel‑
set for speeds ranging from 50 to 300 km/h is depicted in 
Fig. 18b. As expected, the logarithmic decrement for the 
lower speeds is positive, but starts to decrease as the speed 
increases. Once the critical speed is reached, the decrement 
becomes null, since the hunting motion maintains the ampli‑
tude throughout the analysis. Then, once the speed exceeds 
the critical value, the decrement turns negative, and the 
wheelset experiences an unstable behavior.

(21)�n =
1

n
ln

(
yws(t)

yws(t + nT)

)

,
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To validate the two‑point contact scenario described in 
Fig. 1, the same situation shown in Fig. 17 is simulated 
using model C and compared with the analytical model in 
Fig. 19. It can be observed in Fig. 19a that, until t = 2.9 s, 
the numerical model follows the semi‑analytical solu‑
tion. However, after this point, the gap of approximately 
5.7 mm that exists between the right wheel flange and 
the lateral side of the rail closes, and the wheelset lat‑
eral movement becomes limited by the flange. Naturally, 
afterwards, the numerical solution drives away from the 
analytical one. By observing Fig. 19b, where the left and 
lateral contact forces are superimposed on the relative 
lateral displacements, it is clear that the peaks observed 
in the lateral contact forces are due to the wheel flange 
impacts with the lateral side of the rail, since they occur 
at the same moment as the gap between the flange and 
rail closes. Figure 19c and d depicts the relative position 
between the left wheel and rail in two distinct moments 
indicated in Fig. 19b when the flange is not touching the 

rail and when it hits the rail, respectively. It is clear that 
the high‑frequency lateral contact forces are fully related 
with the lateral impacts between the flange and the inner 
face of the rail. Such result proves the efficiency and accu‑
racy of the model to capture not only the tread contact, 
but also the flange contact that occurs for higher values 
of relative lateral displacement between wheel and rail.

Finally, with the objective of comparing the previous 
model presented in [35] with the one presented in this arti‑
cle that considers the detection of contact points in con‑
cave regions, Fig. 20a and b depicts the lateral response 
and lateral contact forces, respectively, obtained for the 
same example analyzed before (model C) but considering 
both contact models. The profiles used by both models 
are depicted in Fig. 20c, where it is possible to observe 
the simplification in the wheel profile geometry. As it can 
be observed, when the concave region is neglected, the 
moment where the first lateral impact occurs is different, 
showing that when simplifying the wheel profile geometry, 
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some differences may occur in the response. With the sim‑
plified profile, since the flange geometry is not so smooth, 
the stronger lateral impact occurs more suddenly and, there‑
fore, sooner. Naturally, after the first impact, the response 
deviates from each other, leading to different results. Such 
comparison shows that using simplified approaches might 
lead to less accurate and realistic responses.

5  Experimental validation of the vehicle–
structure interaction model

5.1  Initial considerations

In addition to the numerical and analytical validations 
shown in the previous section, the present article also pre‑
sents a validation based on an experimental test that took 
place in the Railway Technical Research Institute (RTRI) 
in Japan. This test, which consisted of the analysis of the 
dynamic behavior of a full‑scale railway vehicle mounted 
over a test rig that imposes vertical and lateral rail devia‑
tions while the train is running at different speeds, was 
used to draft the Displacement Limit Standard for Railway 
Structures [64] currently in use in Japan. This code pro‑
vides specifications regarding the maximum deformations 
of the railway track that should be guaranteed to ensure the 
stability of railway vehicles running over bridges during 
ordinary operating and seismic conditions. A revision of 
the main criteria stipulated in this normative document can 
be accessed in [43].

In this section, and in addition to the numerical valida‑
tion described in Sect. 4, the proposed model is validated 
based on experimental results, namely, the accelerations 
measured in the carbody above the rear bogie. While in 
one of the authors’ previous publication [35], only one 
single example has been used to validate the model (lateral 
accelerations measured for a scenario where the train runs 
at 300 km/h), in this article, a much more comprehensive 
validation is presented by comparing the experimental and 
numerical responses of the vehicle in the vertical and lat‑
eral directions caused by track deviations imposed by the 
actuators on both directions and for train speeds ranging 
between 100 and 400 km/h.

5.2  Numerical models

5.2.1  Track

Since the test has been performed on a rolling stock 
test plant, in which the railway vehicle runs over four 
wheel–shaped rails connected to the actuators, the track is 
modeled as rigid to be consistent with the test rig’s charac‑
teristics, while the rail deviations imposed by the actuators 
are considered as track irregularities and included in the 
dynamic analysis through the r vector described in Sect. 3. 
Therefore, the results presented later in Sect. 5.3 only refer 
to the vehicle’s response. It is important to highlight that, 
although this example considers a rigid structure, the 
model proposed here is based on a FE environment (see 
Sect. 3), which allows the analysis of flexible structures 
with any degree of complexity, such as those studied in 
several authors’ previous publications [17, 38, 65, 66].

During the tests, the actuators imposed two types of rail 
deviation geometries that aimed to simulate the deflection 
of consecutive bridge spans as rigid bodies. These geom‑
etries, which were used in the dynamic vehicle–structure 
interaction analyses that gave rise to the displacements 
limits imposed by the Japanese code [64] to ensure traf‑
fic stability under ordinary and seismic conditions, are the 
bending shape (BS) and the parallel shift (PS), as shown 
in Fig. 21. While the first simulates the relative rotation 
between two adjacent spans, the latter reflects the move‑
ment of a single span rotation, keeping the adjacent spans 
parallel. In the authors’ previous publication [35], only a 
lateral deviation corresponding to span lengths L of 20 and 
40 m was tested, while, in this work, the model validation 
considered a much wider range of scenarios, namely, four 

Fig. 21  Scheme of the rail lateral deviation geometries: a bending shape (BS) and b parallel shift (PS)
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Fig. 22  Detail of the transition zones in the decks’ extremities
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different span lengths (10, 20, 40, and 60 m) and lateral and 
vertical BS and PS rail deviations with maximum amplitude 
δ of 8 mm (see Fig. 21, which shows the deviation geometry 
for the lateral direction for exemplification purposes).

To guarantee a smooth geometry of the rail in the 
decks’ extremities and avoid unrealistic impacts in the 
numerical calculation, transition zones have been added 
to the deviation geometries mentioned above, as depicted 
in Fig. 22. Here, Lt denotes half‑length of the transition, 
while θt is the span rotation, and xt is the distance from the 
start of the transition. According to [35], the vertical and 
lateral deviation geometry of the transition zone rt imputed 
as a track irregularity in the numerical model is given by

in which βt is the relative bending stiffness of the rails and 
pads in the vertical or lateral directions, given by

where kp is the pad stiffness, E is the Young modulus of 
the steel, and Ir is the moment of inertia of the rail on both 
directions (see Table 3).

5.2.2  Vehicle

The vehicle used in the experiments carried out in the test 
rig consisted of a full‑scale passenger carriage, whose prop‑
erties were provided by the RTRI.1 The numerical model has 
developed in ANSYS® [59], using rigid beams to consider 
the rigid body movements of the vehicle connected through 
spring–dashpots elements to simulate the primary and sec‑
ondary suspensions. Mass point elements were included 
in the center of gravity of each rigid body of the vehicle, 
namely one at the carbody and one in each bogie and each 
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wheelset, to take into consideration both their mass and iner‑
tial effects. The wheel profile is a conic and arc profile wheel 
with diameter ϕ of 860 mm, same as that used in the Shin‑
kansen trains, while the rail corresponds to JIS60 profile, as 
shown previously in Fig. 20.

5.3  Validation results

The results obtained with the vehicle–structure interaction 
tool presented in Sects. 2 and 3 are compared with those 
obtained in the experimental test described before. The vali‑
dation is carried out based on the comparison between the 
numerical and experimental accelerations obtained in the 
carbody above the rear bogie. All the results presented in 
this section regarding the vertical accelerations are obtained 
exclusively with the imposition of vertical deflections to the 
track, while the results relative to the lateral accelerations 
are obtained with the imposition of transversal deflections.

The time‑histories of the vertical accelerations measured 
in the rear part of the carbody relative to a scenario in which 
the vehicle is running at 300 km/h over vertical rail devia‑
tions corresponding to span lengths of 20 and 40 m are plot‑

ted in Fig. 23, while the analogous results but for the lateral 
direction are depicted in Fig. 24. A general good agreement 
can be observed for both analyzed directions between the 
measured data, and the numerical results using both the pre‑
vious model presented in [35], and the one presented in this 
article that considers the detection of contact points in con‑
cave regions with realistic wheel profiles. The differences 
observed with the experimental data may be caused by the 
fact that the numerical model of the vehicle used in this work 
does not account for any kind of structural flexibility that may 
exist in the carbody. Nevertheless, the global behavior of the 
responses is well captured by the proposed model, proving 
its capacity to simulate generic railway dynamic scenarios. 
Regarding the comparison between both numerical models, 
the differences are negligible, since the consideration of the 
realistic wheel profile does not significantly impact in the 
carbody’s response due to the filtering effect provided by 
two levels of suspensions. Figure 25 shows a comparison 
between the two numerical models but at the wheel–rail con‑
tact  interface level, namely, in terms of wheel–rail contact 
forces (due to space limitations, only the BS scenarios are 
represented, but the conclusions to the remaining ones are 
the same). As it can be observed, the only differences occur 
on the lateral contact forces corresponding to the scenario 

Table 3  Parameters of the transition zones

Parameter Unit Value

Vertical Lateral

kp kN/m/m 9.42 ×  104 47.1 ×  104

Ir cm4 3032 509
Lt m 3 3
E GPa 210 210

1 The geometrical and mechanical properties of the test vehicle are 
not published due to confidential matters from the manufacturer.
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with 20‑m span with lateral irregularity (see Fig. 25c). This 
is due to the fact that it is the only scenario where lateral 
flange impact takes place, which highlights the differences 
between the two models (note that in the scenario with 40‑m 
span depicted in Fig. 25d, the lateral contact forces are much 
smaller because there are no flange impacts). This conclu‑
sion agrees with that drawn in the application presented in 
Sect. 4.3. Naturally, when the irregularity is imposed only in 
the vertical direction (see Fig. 25a and b), the responses are 
the same because there is only contact in the tread region, 
which does not differ on both models. Hence, depending 
on the level of the lateral impacts, these differences may be 
higher or smaller. However, it is important to stress that in 
scenarios in which the lateral contact forces pose a signifi‑
cant role in the train running safety, such as in the presence 
of crosswinds or earthquakes, the consideration of a more 

realistic contact model leads to more accurate results and, 
consequently, to more accurate predictions of the safety 
performance.

To further enhance the model validation, Figs. 27 and 
28 present, respectively, the maximum vertical and lateral 
accelerations in the rear part of the carbody obtained in 
the experimental tests and with the proposed model with 
realistic wheel profiles. The results refer to a wider range 
of span lengths, namely, 10, 20, 40, and 60 m and vehicle 
speeds ranging between 100 km/h and 400 km/h with steps 
of 50 km/h (the experimental and numerical results for each 
span length have been assigned with a specific marker and 
line, respectively, as shown in Fig. 26). Again, the numeri‑
cal results show a good agreement with the experimental 
results, with some discrepancies which may be justified 
by the inaccuracy of the vehicle’s numerical model to 
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reproduce the effects that arise from the flexibility of the 
carbody. However, as stated before, the global trend is per‑
fectly captured by the numerical model, which reinforces 
once again its ability to be used in railway dynamic applica‑
tions, such as the study of train running safety [17, 36, 37] 
or passenger riding comfort [18].

6  Conclusions

In a previous work from the authors, the contact point detec‑
tion has been performed through the solution of a pair of 
nonlinear geometrical equations. However, this approach 
does not give a single solution if one of the contact surfaces 

is concave. Therefore, this paper proposes an additional 
algorithm, called the concave contact search, to deal with 
contact points located in the tread–flange concave transi‑
tion zone. This algorithm consists of discretizing the wheel 
and rail profile surfaces in points to evaluate the potential 
contact between them by determining if any of these points 
lie inside the opposite surface, forming the so‑called inter‑
section volume.

The validation process is of the utmost importance for any 
new developed tool; however, most of the existing models 
in the literature related with VSI analysis do not thoroughly 
present it, making it hard to check which examples and tests 
were used to guarantee the correct correspondence between 
the model performance and reality. Thus, the VSI model 
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developed in the present article is validated with three appli‑
cations, two numerical and one experimental, from which 
the following conclusions were drawn:

• In the first application, the Manchester Benchmark is 
revisited to validate the concave contact search proposed 
in this article. The benchmark comprised a series of tests 
that consisted of prescribing, both statically and dynami‑
cally, lateral displacements and yaw rotations to a single 
wheelset to analyze its behavior. Several contact charac‑
teristics were analyzed during the benchmark, namely, 

the contact point positions on both wheels of the wheel‑
set, the rolling radius difference between wheels, the 
contact angles, and the creepages. The results obtained 
with the proposed model for all the analyzed quantities 
showed an excellent agreement with those obtained with 
other railway vehicle dynamics multibody software, such 
as GENSYS, NUCARS, and VAMPIRE. The few dis‑
crepancies observed are mainly justified by limitations 
of the contact models adopted by some of the tested soft‑
ware, especially CONPOL and VOCOLIN, rather than 
by limitations of the proposed model.
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• The second validation example consists of evaluat‑
ing the lateral stability of a single wheelset running at 
several speeds. The dynamic response of the wheelset 
calculated with the proposed model is compared with 
that obtained using a semi‑analytical model with two 
degrees of freedom available in the literature. A good 
agreement between the responses obtained with the 
proposed model and those obtained by the integra‑
tion of the equations of motion of the semi‑analytical 
model is observed. As expected, for speeds below the 
critical limit, both the lateral displacement and the yaw 
rotation of the wheelset tend to damp out after being 

driven away by a lateral disturbance. This is due to the 
energy dissipation provided by the creep forces and to 
the stability provided by the suspensions. However, 
when the speed exceeds the critical value, the behavior 
of the wheelset becomes unstable, leading to a hunting 
motion that grows indefinitely. The critical speed pre‑
dicted by the proposed formulation using a logarithmic 
decrement factor is also in a perfect agreement with 
the theoretical value determined from a stability study 
described in the literature. Moreover, the two‑point con‑
tact scenario (flange and tread contact points) was also 
validated through an example in which a flange was 
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introduced to the wheel profile. The results showed that, 
exactly after the moment when the gap between flange 
and rail closes, the wheelset lateral movement became 
limited by the flange, and an abrupt increment in lateral 
contact forces occurred, demonstrating the capabilities 
of the model on capturing the flange impacts with the 
rail. Finally, differences were detected in the magni‑
tude of the contact forces and in the moment when the 
first flange impact occurs between the simplified model 
presented in one of the authors’ previous publications 
and the model presented here that considers the concave 
region of the wheel profile.

• Finally, an experimental test conducted in a test rig 
from the RTRI, in which a full‑scale railway vehi‑
cle runs over a track subjected to vertical and lateral 
deviations, is reproduced numerically. Unlike in one 
of the authors’ previous publication, where only a sin‑
gle example has been used to validate the model (lat‑
eral accelerations measured for a scenario where the 
train runs at 300 km/h), a much more comprehensive 
validation is presented in this paper, consisting of the 
comparison between the experimental and numeri‑
cal responses of the vehicle in the vertical and lateral 
directions caused by track deviations imposed by the 
actuators on both directions and for train speeds rang‑
ing between 100 and 400 km/h. The results showed 
a good agreement between all the examples, proving 
the capacity of the model to deal with generic rail‑
way dynamic applications. Regarding the differences 
between the simplified and the realistic model pre‑
sented here, they are only notorious during the occur‑
rence of lateral flange impacts, because it is in these 
moments that the contact points may be located in the 
concave transition zone.
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