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1 Introduction

Train–track–substructure (TTS) dynamic interaction is fun-
damental multidisciplinary research filed involving vehi-
cle–track dynamics, structural dynamics, and civil engineer-
ing, etc. It devotes to depicting the interaction mechanism of 
the train, track, and substructure from a viewpoint of unifi-
cation, and consequently, a series of dynamic issues can be 
probed into, such as train derailment [1], parametric design 
[2], vibration assessment [3] and noise radiation [4].

Owing to the rapid development of computer technology, 
finite element theory and multi-body dynamics, significant 
progress has been made on the modeling and analysis of 
TTS dynamic interaction. However, the research emphasis is 
mainly put on extending the train-track dynamics to specific 
train–track–bridge (subgrade or tunnel) dynamics instead of 
general substructures. Zhai et al. [5] combined vehicle–track 
coupled dynamics proposed in Ref. [6] with bridge dynamics 
to achieve train–track–bridge dynamic interaction analysis, 
also, the subgrade and tunnel substructures have also been 
considered in Refs. [7, 8]. More details on state-of-the-art 
of train–track–substructure dynamics have been illustrated 
in Ref. [9].

Roughly speaking, train–track dynamic interaction has 
been a gradually mature filed, and it already becomes pos-
sible to construct complex substructures by computer-aided 
engineering software, e.g., ABAQUS®, ANASYS®, etc. 
However, problems start to arise when the train–track sys-
tem and the substructure are treated with coupling analysis, 
where a dilemma is the reduction in the computational effi-
ciency. It has seriously restricted the wide application of 
commercial finite element software in large-scale railway 
dynamics subject to substructures with hundreds of thou-
sand elements, especially, to a train–track–substructure 
dynamic system featured by nonlinearity, inhomogeneity, 
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and time-dependence, which must be solved by time-domain 
step-by-step integral methods. When a large number of time 
steps are required, the dynamic equations as algebraic forms 
must be solved many times and the parallel computer is inca-
pable of working well because of the sequential solution of 
the systems.

Scholars have done pioneering work to address the 
high-efficient computation problem concerning massive 
freedoms. In early stage, Hughes et al. [10] and Liu et al. 
[11] paid attention on putting forward a new family of 
implicit-explicit finite elements partition procedures. Using 
this approach, the stiff and flexible subdomains in system 
interaction are solved independently. Moreover, Belytschko 
and Mullen [12] discussed the stability in energy of explicit-
implicit mesh partitions where the central difference explicit 
integration and trapezoidal implicit integration methods are 
considered properly. Smolinski et al. [13] proved the sta-
bility of an explicit multi-time-step scheme of the second-
order differential equations. Initiating from [10–13], multi-
time-step (MTS) solution has emerged, also called mE-I 
partition, where m explicit time steps are contained in each 
implicit time step. Within the Newmark family, Gravouil 
and Combescure [14] developed a multi-time-step explicit-
implicit method for nonlinear structural dynamics. The dual 
Schur formulation was applied to model the interfaces with 
interfacial forces represented by Lagrange multipliers. Based 
on nodal partition method and modified trapezoidal rule, 
Wu and Smolinski [15] proposed an explicit subcycling 
integration method. Based on the method presented in Ref. 
[14], Prakash and Hjelmstad [16] further proposed an MTS 
coupling method using finite element tearing and intercon-
necting decomposition [17]. To solve large-scale composite 
material problems, Beneš et al. [18] introduced subcycling 
algorithm and using three-filed decomposition method to 
achieve the implementation of different time steps and pos-
sible different numerical methods on various computational 
domain.

As to the reality of train–track–substructure dynamic inter-
action, Zhai [19] proposed a new simple explicit two-step 
method, and by using the integration scheme, the simultane-
ous solving of algebraic equations is avoided, which is rather 
suitable for dynamic systems with diagonal mass matrix [5, 6]. 
Based on the precise integration method [20], Zhang et al. [21] 
proposed a method to obtain accurate and efficient solutions 
for vehicle–track systems, but it belongs to uniform time step 
solutions. Recently, Zhu et al. [22] applied the MTS method 
into train–track–bridge dynamic analysis by implementing fine 
and coarse time steps to solve the train–track subsystem and 
bridge subsystem. Besides, scholars developed iterative algo-
rithms to obtain TTS dynamic solutions [9, 23].

Summarily, pioneering work presented above intend to 
reduce the computational cost in the train–track–substruc-
ture dynamic analysis. In the work of Zhai et al. [5], the 

explicit-implicit hybrid integration method is proposed 
and proved to be accurate and efficient for the solution of 
train–track–bridge dynamic interaction. Following this 
methodology, MTS solution method is applied as a mI-nE 
type, m and n can be arbitrary real numbers, and the explicit 
Zhai method is particularly introduced to efficiently solve 
substructure responses that occupies the most part of the 
degrees of freedom (DOFs) in the TTS system, so as to 
maximizing the computational efficiency.

The following part of this paper is organized as follows. 
In Sect. 2, a brief introduction of the establishment of the 
TTS interaction model is presented. The solution method for 
TTS interaction systems is developed in Sect. 3. In Sect. 4, 
examples are provided to validate the proposed method. 
Conclusions are drawn in the last section.

2  Introduction of train–track–substructure 
interaction model

Train–track–substructure dynamic interaction model is 
developed from the vehicle–track coupled dynamics [6, 24]. 
It treats the train, track and various substructures (bridge, 
subgrade, etc.) as an entire system. Generally, the train–track 
interaction system, the substructure system and their coupled 
solution can be, respectively, depicted as below.

2.1  Modeling of the train–track interaction

In the train–track interaction model subject to the substruc-
ture, as shown in Fig. 1, multi–rigid-body dynamics and 
finite element theory are applied. The train is modeled as a 
series of vehicles. Each vehicle has one car body, two bogie 
frames and four wheelsets, which are assumed as rigid bod-
ies connected by primary and secondary suspension systems. 
Each body has six degrees of freedom (DOFs), i.e., displace-
ments in the longitudinal x , lateral y , vertical z directions, 
and angles of yaw � , pitch � and roll � ; thus each vehicle 
has 42 DOFs.

The track system mainly includes two types: one is bal-
lasted track and the other is the ballastless track. Ballasted 
track system consists of the rail, sleeper, track bed and 
spring–dashpot elements, i.e., the rail and the sleeper are 
all assumed as spatial Bernoulli–Euler beams characterizing 
the lateral and vertical motion for the rail, and longitudinal 
and vertical displacement for the sleeper. The longitudinal 
motion of the rail and the lateral motion of the sleeper are 
assumed as a bar motion. As to the longitudinal and lateral 
motion of the rail and sleeper, bar elements are introduced, 
namely each node of the rail and sleeper beam has 6 DOFs. 
The rail pads between the rail and the sleeper are modeled 
as spring–dashpot elements. The track beds are treated as 
mass elements with 3 DOFs, i.e., longitudinal-, lateral- and 
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vertical- displacements, and considering the occlusal actions 
between ballasts represented by stiffness and damping 
coefficients.

While for the ballastless track system, it mainly consists 
of the rail, track slab, filling layer and concrete basement, 
and interlayer spring–dashpot elements. The rail is modeled 
as a Bernoulli–Euler beam, the track slab and concrete base-
ment are modeled as an assemblage of thin-plate elements. 
The interaction for the rail–track slab subsystem, and the 
track slab–basement subsystem is, respectively, modeled as 
discrete and facial supported spring–dashpot elements.

To couple the train and the track, wheel–rail spatially 
coupled dynamics model developed in [24] has been applied 
to clarify the wheel–rail contact geometries and parameters, 
and then wheel–rail coupling matrices derived by energy 
variation principle are formulated (see Ref. [25]). In this 
way, the train–track interaction model is established. More 
details have been presented in [9], which can be referred to.

2.2  Modeling of the substructure

Generally, the substructures with regular geometry morphol-
ogy can be conveniently modeled by self-compiled program 
[7–9]. However, when it involves complex structural geom-
etries, element types and local defects, the commercial finite 
element software seems to be more practical in engineering 
application. In this work,  ABAQUS@ is applied to model 
the substructures, and then the mass Mss , damping Css and 
stiffness Kss matrices are exported, also with the exportation 
of the nodal coordinates used to localize the nodal DOFs 
imposed forces from the track.

2.3  Time‑dependent coupling procedure 
between the train–track system 
and the substructure system

Unlike conventional models [24, 25], the moving length of 
the train is equal to that of the track in the train–track–sub-
structure coupled dynamic analysis. In this work, the track 
length is modeled as a minimum value of LT + 2lt no mat-
ter how long the train moves forward, where LT and lt 
denote, respectively, the train and the boundary length. The 
train–track system and the substructure system are intrinsi-
cally coupled by their interaction forces.

When there is no contact area between the track and sub-
structure, such as scenarios A and C shown in Fig. 2, the 
track–substructure interaction force vector can be obtained 
by

where kts and cts denote the track–substructure interaction 
stiffness and damping coefficient respectively; the subscripts 
t and s denote the track and substructure system, respec-
tively; the subscript � denotes a representation of the forces 
in the longitudinal-, lateral- and vertical- directions; Xt,� 
and Ẋt,𝜣 denote the displacement and velocity of the track 
bed with respect to various directions; X̃t,𝜣 and ̇̃Xt,𝜣 denote 
the displacement and velocity of the track bed element; Nt 
denotes the shape function, and Nt = 1 in this work.

(1)Fts,� = kts,�Xt,� + cts,�Ẋt,� ,

withXt,𝜣 = Nt,𝜣X̃
T

t,𝜣
, Ẋt,𝜣 = Nt,𝜣

̇̃
X
T

t,𝜣
, 𝜣 = (x, y, z),

Fig. 1  Representation of the train–track interaction model subject to substructures
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When there is contact area between the track and sub-
structure, such as scenario B shown in Fig. 2, the track–sub-
structure interaction force can be obtained by

where Xs and Ẋs denote the nodal displacement and velocity 
of the substructure with respect to various directions, and for 
non-contacting area in scenario B, Eq. (1) is applied.

In the time-dependent coupling procedure, another key 
except for the calculation of the interaction forces is accu-
rately locating the track and substructure DOFs at the con-
tact area on which the interaction forces are exerted. Besides, 
there exists DOFs mapping between the global coordinate 
O−X−Y−Z and local coordinate O�

−X
�

−Y
�

−Z
�.

The detailed coupling method has been presented in [26], 
here not presented for brevity.

3  Solution for train–track–substructure dynamic 
interaction

The explicit-implicit hybrid integration method originated 
from Ref. [5], in which the train–track system is solved by 
explicit Zhai method, and the bridge structures are solved 
by well-known implicit Newmark-β method.

Regarding that this work put an emphasis on the structural 
dynamics instead of the very high frequency wheel–rail vibra-
tions, the responses of upper structures built by MATLAB® with 
relatively low DOFs are obtained by implicit integral scheme, and 
the responses of the sub-structures built by ABAQUS® with very 
large DOFs are obtained by the explicit Zhai method by treating 
the mass matrix of the substructure as diagonal form. Further-
more, different time step sizes are applied for the upper- and sub-
structures to improve the computational efficiency.

It should be noted that wheel–rail interaction generally 
shows high frequency vibrations, especially with consid-
eration of rail short-wavelength roughness, and applying 
an explicit integral scheme is more efficient [6]. However, 
if mainly concerning the structural dynamic performance 
such as the track structures and substructures, the vibration 
frequency analyzed can be decreased properly. Moreover, the 

(2)Fts,𝜣 = kts,𝜣
(
Xt,𝜣 − Xs,𝜣

)
+ cts,𝜣

(
Ẋt,𝜣 − Ẋs,𝜣

)
,

beam element with the consistent mass matrix is applied in 
this model and is coupled to the train model in matrix for-
mulations. With above consideration, the wheel–rail coupled 
interaction is solved by implicit integration method.

3.1  Implicit‑explicit hybrid‑integral schemes

To achieve the solution for such a large and complex 
train–track–substructure dynamic system, computational 
efficiency becomes a concern apart from the accuracy. 
Hence, an explicit-implicit hybrid-integration scheme 
combining the Park method [27] and Zhai method [19] is 
developed to efficiently obtain the train–track solution and 
substructure solution, respectively.

Except for the wheel–rail interaction, the train–track sys-
tem also undergoes time-dependent reaction forces from the 
supporting layer under the track beds.

With acquisition of the wheel–rail forces [28], the initial 
force vector for the train–track system at the time step n can 
be obtained as

where �t denotes an assemblage of track layer elements con-
tacting the substructure surface.

To obtain the train–track dynamic responses at time step 
n + 1, the following integral schemes are applied by intro-
ducing Park integration method:

Step 1 Calculate the equivalent stiffness matrix by

 where Δt denotes the time step size.
Step 2 Calculate the equivalent force vector by

with B0 = �0X
i

vt
+ �1X

i−1

vt
+ �2X

i−2

vt
 , B1 = 𝛼1Ẋ

i

vt
+ 𝛼2Ẋ

i−1

vt
+ 𝛼3Ẋ

i−2

vt
 , 

�1 = −
15

6Δt
 , �2 =

1

Δt
 , �2 = −

1

6Δt
 , where the superscripts i , 

i − 1 and i − 2 denote the three adjacent time steps before 
the (n–1)th time step.

(3)Fn
t
= Fn

wr
−
∑
�t

Fn
ts,�

⋅ N
(
�t

)
t
,

(4)K̃
n+1

vt
= 𝛼2

0
Mvt+𝛼0Cvt+Kvt, 𝛼0 =

10

6Δt
,

(5)F̃
n+1

vt
= Fn+1

vt
− 𝛼0Mvt

B0 −M
vt
B1 − C

vt
B0,

X

Train

Simplified track

Simplified substructure

Track-substructure 
interaction force

Train

Time step Time step 

t
Train

Time step kA B C

Z

X’

Contacting Non-contacting

t
t t t t
t t

Z’
X’

Z’
X’

Z’

Fig. 2  Time-dependent coupling between the train–track system and the substructure system
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Step 3 The displacement, velocity and acceleration 
response vector can be obtained by

Step 4 Update the train–track system responses at adja-
cent three steps:

The implicit Park method can be represented as a func-
tion form:

As to the substructural system, its force vector can be 
assembled as

where �s denotes an assemblage of substructural nodal 
DOFs contacting to the upper tracks.

By introducing explicit Zhai’s integration method, the 
displacement and velocity response vectors of the substruc-
tural system can be obtained by [19]

where 𝜓 = 𝜑 =

{
0 n = 1

0.5 n > 1
.

(6)

⎧⎪⎪⎨⎪⎪⎩

Xn+1
vt

=

�
K̃

n+1

vt

�−1

F̃
n+1

vt

Ẋ
n+1

vt
=

1

6Δt

�
10Xn+1

vt
− 15Xi

vt
+ 6Xi−1

vt
− Xi−2

vt

�

Ẍ
n+1

vt
=

1

6Δt

�
10Ẋ

n+1

vt
− 15Ẋ

i

vt
+ 6Ẋ

i−1

vt
− Ẋ

i−2

vt

�
.

Xi−2
vt

= Xi−1
vt

, Xi−1
vt

= Xi
vt
, Xi

vt
= Xn+1

vt
,

Ẋ
i−2

vt
= Ẋ

i−1

vt
, Ẋ

i−1

vt
= Ẋ

i

vt
, Ẋ

i

vt
= Ẋ

n+1

vt
,

Ẍ
i−2

vt
= Ẍ

i−1

vt
, Ẍ

i−1

vt
= Ẍ

i

vt
, Ẍ

i

vt
= Ẍ

n+1

vt
.

(7)

(
X
n+1

vt
, Ẋ

n+1

vt
, Ẍ

n+1

vt

)

= P

(
F
n+1

vt
,Mvt,Cvt,Kvt,X

i

vt
,X

i−1

vt
,X

i−2

vt
, Ẋ

i

vt
, Ẋ

i−1

vt
, Ẋ

i−2

vt

)
.

(8)Fn
s
=
∑
�s

Fn
ts,�s

,

(9)

⎧⎪⎨⎪⎩

Xn+1
s

= Xn
s
+ Ẋ

n

s
Δt + (0.5 + 𝜓)Ẍ

n

s
Δt2 − 𝜓Ẍ

n−1

s
Δt2

Ẋ
n+1

s
= Ẋ

n

s
+ (1 + 𝜑)Ẍ

n

s
Δt2 − 𝜑Ẍ

n−1

s
Δt

,

The acceleration responses can be further derived as

The explicit Zhai method can be represented as a func-
tion form:

Through Eqs. (3)–(11), it can be cognized that all sub-
system responses of the train, track and substructure can be 
solved time-dependently by updating the wheel–rail forces 
and track–substructure interaction forces by the implicit-
explicit hybrid-integral schemes.

3.2  Multi‑time‑step solution procedures

In the multi-time-step solution procedures, iteration procedures 
are not of necessity within the linear elastic dynamics. How-
ever, the time step size required to guarantee numerical solution 
stability possesses differences with respect to different integral 
schemes. With this consideration, multi-time-step solution pro-
cedures are proposed to improve the computational efficiency.

Set a time axis to label the time step vector to charac-
terize train–track system solution Tt and substructural sys-
tem solution Ts , denoted by Tt =

(
0, Δtt, 2Δtt,⋯

)
 and 

Ts =
(
0,Δts, 2Δts,⋯

)
 , respectively, Δtt and Δts are, respec-

tively, the time step size for the train–track implicit-integral 
solution and substructural explicit-integral solution.

Two steps below can be followed to achieve multi-time-
step solution:

Step 1 Set the step number Nt = 1 and Ns = 1 for the 
upper-structure (abbreviated as ‘Us’) and the sub-structure 
(abbreviated as ‘Ss’). Select a start moment as the initial 
time point at which the dynamic equations of the Us and 
the Ss are, respectively, solved by Park method and Zhai 
method, as illustrated in Fig. 3. The time step vectors for 
the Us and Ss are extended from Tt = (0) → Tt =

(
0, Δtt

)
 

and Ts = (0) → Ts =
(
0, Δts

)
 , and integral step numbers for 

the Us and Ss are updated as Nt = Nt + 1 , and Ns = Ns + 1.

(10)Ẍ
n+1

s
=
(
Ms

)−1(
Fn+1
s

− KsX
n+1
s

− CsẊ
n+1

s

)
.

(11)

(

Xn+1
s , Ẋn+1

s , Ẍ
n+1
s

)

= Z
(

Fn+1
s ,Ms,Cs,Ks,Xn

s , Ẋ
n
s , Ẍ

n
s , Ẍ

n−1
s

)

.

Fig. 3  Multi-time-step solution procedure for the Us and Ss

2, ∆3,

Us－Park method 
(consistent mass matrix)

Ss－Zhai method 
(lumped mass matrix)

to

Start moment

∆ t t 2∆ t t

… …
… …

∆ ts 2∆ ts 3∆ t s 4∆ t s 5∆ ts 6∆ ts 7∆ t s 8∆ ts t

Tt=(0, ∆tt ∆tt,…)

Ts=(0, ∆ts ∆ts ts ts,…)

∆ts 2∆ts 3∆ts 4∆ts 5∆ts 6∆ts 7∆ts 8∆ts

, 2

, 4∆
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Step 2 When Nt ≥ 2 and Ns ≥ 2 , the relative position of 
the integral time points for the Us system and Ss system at 
the time axis is judged and solution is obtained as follows.

a          Tt

(
Nt

)
= Ts

(
Ns

)
 , the Us system and the Ss system will 

be solved simultaneously by implicit-explicit hybrid 
integration method.

1.         The interaction forces between the Us system and the 
Ss system for obtaining the next step solution can be 
calculated by

   where XNt

t
∈ X

Nt

t
 , XNt

s ∈ XNt

s
 , ẊNt

t
∈ Ẋ

Nt

t
, and ẊNs

s ∈ Ẋ
Ns

s
.

2.       With acquisition of the interaction forces, the implicit-
explicit hybrid-integral schemes presented in Sect. 3.1 
can be used to obtain all sub-system responses.

3.      Update the step number Nt = Nt + 1 and Ns = Ns + 1.

b         Tt

(
Nt

)
>Ts

(
Ns

)
 , only the Ss system is solved by the 

explicit integration method.
1.      The Us responses at time point Ts

(
Ns

)
 are obtained  

by Lagrange polynomial interpolation, and the polyno-
mial degree is smaller than 2, that is, if Nt ≤ 2 , 
Xt|t=Ts(Ns) = w1X

Nt−1

t
+ w2X

Nt

t
 , Ẋt|t=Ts(Ns) = w1Ẋ

Nt−1

t
+

w2Ẋ
Nt

t
 ,   in which

   w1 =
Ts(Ns)−Tt(Nt−1)
Tt(Nt)−Tt(Nt−1)

 , w2 =
Ts(Ns)−Tt(Nt)

Tt(Nt−1)−Tt(Nt)
;

    once Nt ≥ 3 , Xt|t=Ts(Ns) = w1X
Nt−2

t
+ w2X

Nt−1

t
+ w3X

Nt

t
 ,    

Ẋt|t=Ts(Ns) = w1Ẋ
Nt−2

t
+ w2Ẋ

Nt−1

t
+ w3Ẋ

Nt

t
 ,  in which

     The Ss responses are chosen from the last step solution, 
i.e., XNt

t
 and ẊNt

t
.

2.       The Us–Ss interaction forces can be consequently 
obtained by

3.     Solving the dynamic equations of the Ss systems by 
Zhai method as

(12)Fn+1
ts

= kts

(
X
Nt

t
− X

Ns

s

)
+ cts

(
Ẋ
Nt

t
− Ẋ

Ns

s

)
,

w1 =

(
Ts

(
Ns

)
− Tt

(
Nt − 1

))(
Ts

(
Ns

)
− Tt

(
Nt

))
(
Tt

(
Nt − 2

)
− Tt

(
Nt − 1

))(
Tt

(
Nt − 2

)
− Tt

(
Nt

)) ,

w2 =

(
Ts

(
Ns

)
− Tt

(
Nt − 2

))(
Ts

(
Ns

)
− Tt

(
Nt

))
(
Tt

(
Nt − 1

)
− Tt

(
Nt − 2

))(
Tt

(
Nt − 1

)
− Tt

(
Nt

)) ,

w3 =

(
Ts

(
Ns

)
− Tt

(
Nt − 2

))(
Ts

(
Ns

)
− Tt

(
Nt − 1

))
(
Tt

(
Nt

)
− Tt

(
Nt − 2

))(
Tt

(
Nt

)
− Tt

(
Nt − 1

)) .

(13)
Fn+1
ts

= kts

(
Xt|t=Ts(Ns) − X

Ns

s

)
+ cts

(
Ẋt|t=Ts(Ns) − Ẋ

Ns

s

)
.

4.        Update the step number and time step vector for Ss 
system Ns = Ns + 1,

c        Tt

(
Nt

)
< Ts

(
Ns

)
 , only the Us system is solved by the 

implicit integration method.
1.        The Ss system responses at time point Tt

(
Nt

)
 are 

obtained by Lagrange polynomial interpolation:
if Ns ≤ 2, Xs|t=Tt(Nt) = w1X

Ns−1

s
+ w2X

Ns

s
 , Ẋs|t=Tt(Nt) =

w1Ẋ
Ns−1

s
+ w2Ẋ

Ns

s
, in which

w1 =
(Tt(Nt)−Ts(Ns−1))

(Ts(Ns)−Ts(Ns−1))
 , w2 =

(Tt(Nt)−Ts(Ns))

(Ts(Ns−1)−Ts(Ns))
,

once Nt ≥ 3 , Xs|t=Tt(Nt) = w1X
Ns−2

s
+ w2X

Ns−1

s
+ w3X

Ns

s
 , 

Ẋs|t=Tt(Nt) = w1Ẋ
Ns−2

s
+ w2Ẋ

Ns−1

s
+ w3Ẋ

Ns

s
,

The Us system responses are chosen from the last step 
solution, i.e., XNs

s
 and ẊNs

s
.

2.        The Us–Ss interaction forces can be consequently 
obtained by

     The system gravitational forces should also be consid-
ered for the Us system as shown in Eq. (2).

3.       Solving the dynamic equations of the Us systems by 
Park method as

4.       Update the step number and time step vector for Us 
system Nt = Nt + 1 , Tt

(
Nt

)
=
(
Nt − 1

)
Δtt.

(14)

(
X
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s
, Ẋ
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s
, Ẍ
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)

= Z

(
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s
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s
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Ns
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s

)
.

Ts

(
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)
=
(
Ns − 1

)
Δts.
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(
Tt

(
Nt
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(
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))(
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(
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)
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(
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))
(
Ts

(
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)
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(
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))(
Ts

(
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)
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(
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)) ,

w2 =

(
Tt

(
Nt

)
− Ts

(
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))(
Tt

(
Nt

)
− Ts

(
Ns

))
(
Ts

(
Ns − 1

)
− Ts

(
Ns − 2

))(
Ts

(
Ns − 1

)
− Ts

(
Ns

)) ,

w3 =

(
Tt

(
Nt

)
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(
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))(
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(
Nt

)
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(
Ns − 1

))
(
Ts

(
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)
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(
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))(
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(
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)
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(
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(15)
Fn+1
ts

= kts

(
X
Nt

t
− Xs|t=Tt(Nt)

)
+ cts

(
Ẋ
Nt

t
− Ẋs|t=Tt(Nt)

)
.

(16)

(
X
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, Ẋ

Nt
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, Ẋ
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, Ẋ
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)
.
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In the train–track–substructure dynamic interac-
tion, the train is constantly moving on the tracks in real 
scene. However, it is noted that the dynamic integral 
processes for the train–track system, i.e., the Us sys-
tem, can be only implemented in conditions satisfying 

Tt

(
Nt

) ≤ Ts

(
Ns

)
 , or the train should be static without 

moving forward.
Summarily the implicit-explicit integration and multi-

time-step solution can be embedded in the TTS dynamic 
interaction as shown in Fig. 4.

Fig. 4  Simulation procedure for the train–track–substructure dynamic interaction 
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4  Numerical examples

Three examples are presented to show the effectiveness, 
applicability and practical application of this work in evalu-
ating the large-scale train–track–substructure interaction 
system, even with complex soil foundations.

4.1  Example 1: effectiveness of the proposed 
implicit‑explicit integration method

The train and track parameters are listed in Appendix A, 
respectively. The substructure, as shown in Fig. 5, is treated as 
an isotropic soil sub-system with parameters listed in Appen-
dix B. The soil substructure is modeled as a lumped mass 
system. The total number of DOFs for the train, the track and 
the soil substructure are, respectively, 126, 12,438 and 72,414. 
The train consists of three identical vehicles with a constant 
running velocity of 200 km/h. Measured track irregularities 
on a ballasted line are considered as the excitation. The geom-
etry configuration for the model is shown in Fig. 6.

To validate the accuracy and efficiency of the proposed 
implicit-explicit integration method, and to show the robust-
ness of the method in arbitrarily choosing the time step sizes 
once satisfying integration stability for Us (train–track sys-
tem) and Ss (substructure system), several cases are imple-
mented, as illustrated in Table 1. From the time steps set in 
Table 1, it is known that the time steps of the Us and Ss can be 
non-integer multiple relations, namely an mI-nE integration 
mode. Besides, the multi-time-step solution procedures can 
be also applied to the unified implicit solutions, namely the 
Us and Ss are solved by Park method only, namely an mI-nI 
integration mode, and the results are treated as comparisons.

Figure 7 shows the comparisons on the displacement and 
acceleration of the soil foundation with respect to different solu-
tion methods and time step sizes. It can be obviously seen from 
Fig. 7 that stable solution for the displacements and accelera-
tions can be obtained by different solution methods though time 
step sizes are varied greatly. The results obtained by the mI-nE 

solution method and the mI-nI solution method coincide signifi-
cantly well. Moreover, it is noted that the responses show slight 
deviations due to the difference of excitation frequencies caused 
by the variation of time step sizes. Generally when the time step 
size is varied from 1.5 ×  10–4 s to 5.5 ×  10–4 s, the response dif-
ference is smaller than 0.25%.

Apart from the comparisons on soil vibrations, the compari-
sons on car body accelerations and wheel–rail forces can be also 
performed both from the lateral vibration and vertical vibration. 
As illustrated in Fig. 8, the car body lateral and vertical accelera-
tion show approachable results with respect to different solution 
methods. The relative deviation is generally smaller than 0.1%. 
Besides, Fig. 9 further presents comparisons on wheel–rail forces, 
from which it can be clearly seen that the time step sizes show 
remarkable influence on wheel–rail forces, especially with par-
ticipation of short-wavelength irregularity excitations at high 
frequencies. Obviously local wheel–rail forces at time step size 
of 1.5 ×  10–4 s represented by the red solid and dashed lines are 
larger than those by time step sizes 3.5 ×  10–4 s and 5.5 ×  10–4 s, 
as indicated by the power spectral　density (PSD) of wheel–rail 
forces in Fig. 10.

To show the computational efficiency of the proposed 
mI-nE-MTS method, the time spent by it and the mI-nI-MTS 
method is listed in Table 2. It is shown in Table 2 that the 
computational time is significantly reduced by the usage of 
explicit method, moreover, the computational efficiency is 
also improved by adopting the MTS strategy.

4.2  Example 2: applicability of the explicit method 
in solving substructural vibration

In above studies, the mass matrix of the soil system is rep-
resented as lumped type to be solved by the explicit Zhai 
method. It is known that the consistent mass matrix is also 
widely used in modeling railway structures [5], and solved 
by implicit algorithms such as Park method, Newmark-β 
method, etc. It is therefore of necessity to perform compari-
son analysis between the dynamic responses of the lumped 
mass soil system and the consistent mass one.

In this example, the soil system is modeled by MAT-
LAB® program with 26,568 nodes, i.e., 79,704 DOFs, the 
related parameters are shown in Appendix B, and the lumped 
and consistent mass matrices of a solid element are shown in 
Appendix C. Setting time step size vector as Δt = [0.1, 0.2, 

Fig. 5  Soil substructure by ABAQUS®

Table 1  Multi-time-step sizes for different cases (unit: s)

Case Us (train–track system) 
(×  10–4)

Ss (substructure 
system) (×  10–4)

1 1.5 2.0
2 3.5 2.0
3 5.5 2.0
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Fig. 6  Geometric configuration of the longitudinal moving of the train (unit: m)
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0.5, 1, 2] ×  10–4 s, Figs. 11 and 12 show the lateral and verti-
cal acceleration of the soil with respect to various time step 
sizes by Zhai method. It is shown in Figs. 11 and 12 that the 
maximum soil accelerations are gradually alleviated with the 
decrease of time step size, and at time step sizes 0.1 ×  10–4 
and 0.2 ×  10–4 s, the relative difference for the maximum 
responses is smaller than 0.5%.

The above soil responses are solved by Zhai method 
based on the lumped mass assumption. With consistent mass 
assumption, the soil responses can be solved by the Park 
method as illustrated in Example 1. To compare the results, 
respectively, obtained by the Zhai method (lumped mass) 
and Park method (consistent mass), both these two methods 
are applied to solve the soil vibration equations. Because of 
the low efficiency of implicit method in solving large DOF 
system, only time step size 2 ×  10–4 s is considered in the 
Park method. Figures 13 and 14 show the comparisons on 
soil lateral and vertical accelerations at time domain and 
frequency domain at time step sizes 2 ×  10–4 and 0.2 ×  10–4 s.

It is shown in Figs. 13 and 14 that the soil acceleration 
converges faster by applying implicit Park method at time 

step size 2 ×  10–4 s, and from viewpoint of soil responses at 
frequency- domain, it is known that the divergences between 
the implicit Park solution and explicit Zhai solution mainly 
appear at high frequencies larger than 260 and 343 Hz with 
respect to the lateral and vertical accelerations. The high 
frequency response is not dominant to the soil system, and 
when the time step size reaches 0.2 ×  10–4 s, the high fre-
quency responses are significantly dissipated in the solution 
by Zhai method. Moreover, the calculation time required for 
Zhai method is, respectively, 2.57 and 3.46 h for time step 
sizes 2 ×  10–4 and 0.2 ×  10–4 s, but for Park method, the time 
spent is significantly increased to 100.49 h with time step 
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Table 2  Time spent for different cases

Cases mI-nE-MTS method 
(×  103 s)

mI-nI-MTS 
method (×  103 s)

1 4.036 20.843
2 2.360 17.474
3 1.330 14.257
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size of 2 ×  10–4 s. That is to say, the calculation efficiency is 
increased by 50 times by applying Zhai method comparing 
to Park method. Though it can be observed that there possess 
obvious differences for the soil acceleration between Zhai 
method and Park method at frequencies higher than 260 Hz 
for lateral acceleration and 343 Hz for vertical acceleration. 
However, the soil vibration at such high frequencies is gen-
erally small, and its influence on the dynamic evaluation is 
negligible in practice.

4.3  Example 3: train–track–bridge interaction 
with complex tunnel–soil–pile foundations

As a real scenario shown in Fig. 15, a shield tunneling con-
struction is conducted to underpass a high-speed railway via-
duct. Given the influence of shielding tunnels on foundation 
stiffness and a series of problems such as subgrade settlement, 
it is of necessity to evaluate the running safety of a train on the 
track–bridge system with complex tunnel–soil–pile foundations.

Fig. 11  Soil lateral acceleration at various time step sizes solved by Zhai method: a time-varying responses; b maximum responses

Fig. 12  Soil vertical acceleration at various time step sizes solved by Zhai method: a time-varying responses; b maximum responses
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To achieve this goal, the complex foundations including soil, 
tunnel, pile, and pile caps are established by the ABAQUS® 
software, as illustrated in Fig. 16. There are totally 70, 3680 
DOFs. By applying the implicit-explicit integration and  
multi-time-step method, and coupling the train–track–bridge 
interaction system and the complex foundation system in  
the MATLAB platform by procedures presented in Sect. 2.3, 
where the stiffness, damping and mass matrices of the tun-
nel–soil–pile foundation are exported from the ABAQUS®.

To validate the accuracy of the solution by implicit-explicit 
multi-time-step solution, comparisons are made between this 
model and the ABAQUS model. In the calculation of the sys-
tem responses by ABAQUS, the external excitations, recorded 
from the interaction forces between the bridge girder and the 
pier, are time-dependently loaded on the surficial nodes of the 
Pier elements. Figure 17 shows the comparisons of pier dis-
placement and acceleration, from which it can be observed 
that the maximum displacements of this model and ABAQUS 
model are, respectively, 8.487 and 8.317 μm, and the maximum 
accelerations are, respectively, 0.02937 and 0.02784 m/s2.  

Obviously, this model can obtain approachable results compar-
ing to those by ABAQUS model.

The response deviations lie in the difference of the time 
step sizes and solution methods, which directly influence 
the dynamic solutions. The time step size used in this model 
is 2 ×  10–5 s by explicit Zhai method and the time step size 
used in the ABAQUS model is  10–3 s by ABAQUS/Explicit 
Quasi-static solution. However, CPU time consumed by 
this model and ABAQUS model is, respectively, 32,294 
and 57,184 s; namely this model increases the computa-
tional efficiency by 43.53%, not to mention the fact that the 
ABAQUS model is relatively difficult to model and analyze 
the train–track–bridge dynamic interaction analysis consid-
ering complex wheel–rail contacts.

To show the influence of the shielding tunnel on the 
train running performance on the track–bridge system, 
conditions with and without underground shielding tun-
nel are considered as C1 and C2, respectively. Figure 18 
shows the comparisons on bridge pier and girder under 
various foundation conditions. It is shown in Fig. 18 that 
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Fig. 15  Recommended scheme for passing through the high-speed railway bridge
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the dynamic displacement of the bridge pier is obviously 
enlarged in C1 condition, which is triggered by the softening  
of the sub-soil foundation by shielding the tunnel. The maxi-
mum displacements for C1 and C2 conditions are, respectively, 
49.5 and 11.2 μm, and the maximum accelerations for C1  

and C2 conditions are, respectively, 0.12 and 0.102 m/s2.  
As to the responses of the bridge girder illustrated in Fig. 18c 
and d, it is seen that the maximum displacement of C1 is also 
larger than that at C2 condition, but with slight deviations 
smaller than 8 ×  10–3 mm.

Fig. 16  Complex foundations subjected to the train–track–bridge dynamic interaction system: a configuration for bridge–pier related founda-
tions (unit: m); b ABAQUS model
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Fig. 18  Comparisons of bridge pier and girder dynamic responses: a displacement of the pier; b acceleration of the pier; c displacement of the 
girder; d acceleration of the girder
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In addition, the train running comfort and safety can be also 
evaluated by the proposed method. As illustrated in Fig. 19, 
the car body vertical acceleration and wheel unloading rate 
with respect to different foundation conditions are presented. 
The maximum differences against the car body acceleration 

and wheel unloading rate are, respectively, 1.4 ×  10–4 and 
1.35 ×  10–3 s, indicating that the shielding tunnel exerts a 
slight influence on the train running performance on comfort 
and safety in this case study, where the effects of the periodic-
ity of the tunnel segment are not considered.
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5  Conclusions

In this work, an implicit-explicit integration and multi-time-
step method was proposed. The implicit Park method and the 
explicit Zhai method were introduced into multi-time-step 
solution procedures, in which the time step size for the implicit 
integration and explicit integration can be arbitrarily chosen 
once satisfying the integration stability and maximum fre-
quency interested. The examples demonstrate the practicality 
of the explicit Zhai method in solving large-scale substructure 
dynamics by satisfying the lumped mass matrix assumption. In 
specific conditions, it increases the computational efficiency by 
50 times than the Park method. Certainly, the maximum natu-
ral frequency of vibration should also be concerned in applying 
the explicit integration method.

Obviously, the implicit or explicit method for solving the 
train–track dynamic equations can be also replaced by meth-
ods of Wilson-θ, Newmark-β, etc., because they are appli-
cable to consistent mass system instead of lumped mass. In 
other words, the integral schemes applied to the train–track 
subsystem and substructure subsystem are alternative.
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Appendix A

See Tables 3 and 4.

Table 3  Main parameters of the train

Notation Parameter (unit) Values

Mc Car body mass (kg) 48,000
Mt Bogie mass (kg) 3200
Mw Wheelset mass (kg) 2400
Icx Mass moment of inertia of car body about X-axis (kg·m2) 115,000
Icy Mass moment of inertia of car body about Y-axis (kg·m2) 2,300,000
Icz Mass moment of inertia of car body about Z-axis (kg·m2) 2,300,000
Itx Mass moment of inertia of bogie about X-axis (kg·m2) 3200
Ity Mass moment of inertia of bogie about Y-axis (kg·m2) 7200
Itz Mass moment of inertia of bogie about Z-axis (kg·m2) 6800
Iwx Mass moment of inertia of wheelset about X-axis (kg·m2) 1200
Iwy Mass moment of inertia of wheelset about Y-axis (kg·m2) 200
Iwz Mass moment of inertia of wheelset about Z-axis (kg·m2) 1200
kpx Stiffness coefficient of primary suspension along X-axis (MN/m) 9
kpy Stiffness coefficient of primary suspension along Y-axis (MN/m) 3
kpz Stiffness coefficient of primary suspension along Z-axis (MN/m) 1.04
ksx Stiffness coefficient of secondary suspension along X-axis (MN/m) 0.24
ksy Stiffness coefficient of secondary suspension along Y-axis (MN/m) 0.24
ksz Stiffness coefficient of secondary suspension along Z-axis (MN/m) 0.4
cpz Damping coefficient of primary suspension along Z-axis (kN·s/m) 45
csy Damping coefficient of secondary suspension along Y-axis (kN·s/m) 3
csz Damping coefficient of secondary suspension along Z-axis (kN·s/m) 98
Lc Semi-longitudinal distance between bogies (m) 7.85
Lt Semi-longitudinal distance between wheelsets in bogie (m) 1.25
R0 Wheel radius (m) 0.46

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Table 4  The ballasted track parameters

Item Value Unit

Elastic modulus of the rail 2.059 ×  1011 N/m2

Torsional inertia of the rail 3.741 ×  10–5 m4

Rail second moment of area about the Y-axis 3.217 ×  10–5 m4

Rail second moment of area about the Z-axis 5.24 ×  10–6 m4

Rail torsional stiffness coefficient 1.958 ×  105 N·m/rad
Rail mass per unit length 60.64 kg/m
Sleeper mass 250 kg
Rail–sleeper interaction vertical stiffness coefficient 6.5 ×  107 N/m
Rail–sleeper interaction lateral stiffness coefficient 2.0 ×  107 N/m
Rail–sleeper interaction vertical damping coefficient 7.5 ×  104 N·s/m
Rail–sleeper interaction lateral damping coefficient 5.0 ×  104 N·s/m
Sleeper–track bed interaction vertical stiffness coefficient 5.29 ×  107 N/m
Sleeper–track bed interaction lateral stiffness coefficient 5.0 ×  107 N/m
Sleeper–track bed interaction vertical damping coefficient 2.0 ×  104 N·s/m
Sleeper–track bed interaction lateral damping coefficient 2.0 ×  104 N·s/m
Sleeper spacing 0.545 m
Ballast shear stiffness coefficient 7.84 ×  107 N/m
Ballast shear damping coefficient 8.0 ×  104 N·s/m

Table 5  Soil parameters in Example 1

Length (m) × 
Width (m) × 
Height (m)

Density 
(kg/m3)

Elastic 
modulus 
(MPa)

Poisson’s 
ratio

Damping 
ratio

Solid 59.95 × 10 × 10 1800 180 0.35 0.035

Table 6  Soil parameters in Example 2

Length (m) × 
Width (m) × 
Height (m)

Density 
(kg/m3)

Elastic 
modulus 
(MPa)

Poisson’s 
ratio

Damping 
ratio

Solid 32.155 × 10 × 2 2000 120 0.2 0.035

Appendix B

See Tables 5 and 6.

Appendix C

Lumped mass matrices for solid element

where me is the mass of a solid element.

Consistent mass matrices for solid element
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where s , t  and n denote the local coordinate; xi , yi and zi 
(i = 1, 2, ..., 8) denote the nodal coordinate of the 8-node 
solid element; det[⋅] denotes the determinant of the square 
matrix; m̃ denotes the mass per unit volume of the solid 
element.
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