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Abstract A method for analysing the vehicle–bridge

interaction system with enhanced objectivity is proposed in

the paper, which considers the time-variant and random

characteristics and allows finding the power spectral den-

sities (PSDs) of the system responses directly from the PSD

of track irregularity. The pseudo-excitation method is

adopted in the proposed framework, where the vehicle is

modelled as a rigid body and the bridge is modelled using

the finite element method. The vertical and lateral wheel–

rail pseudo-excitations are established assuming the wheel

and rail have the same displacement and using the sim-

plified Kalker creep theory, respectively. The power

spectrum function of vehicle and bridge responses is cal-

culated by history integral. Based on the dynamic respon-

ses from the deterministic and random analyses of the

interaction system, and the probability density functions for

three safety factors (derailment coefficient, wheel unload-

ing rate, and lateral wheel axle force) are obtained, and the

probabilities of the safety factors exceeding the given

limits are calculated. The proposed method is validated by

Monte Carlo simulations using a case study of a high-speed

train running over a bridge with five simply supported

spans and four piers.

Keywords Vehicle–bridge interaction system � Pseudo-

excitation method (PEM) � Derailment coefficient � Wheel

unloading rate � Lateral wheel axle force � Probability

density function

1 Introduction

The viaduct bridges are widely used in high-speed railway

systems, in order to control the foundation settlement and

to reduce the workload in railway maintenance. As a crit-

ical problem in bridge design, the dynamic effects of live

loads must be considered, which include the moving effects

of the train and the track irregularity. The vehicle–bridge

interaction system is a popular model to optimise the

design parameters of the vehicle and the bridge. However,

since the parameters used in calculations usually differ

from the actual values [1], probabilistic analysis is neces-

sary for the vehicle–bridge interaction system. As a

deterministic and time-variant system subject to random

excitations, it is important to better understand the random

responses of the running safety indices, including the

derailment coefficient, the wheel unloading rate, and the

lateral wheel axle force, so as to ensure the running safety

and to enhance the reliability and cost-effectiveness of

bridge design.

Parameters of the vehicle, bridge and track structure can

be regarded as certain deterministic factors, while the track

irregularity, as one of the system excitations, is a random

factor and expressed by known power spectrum formulas in

most cases. Traditionally, the track irregularity is input into

the interaction system model as a spatial sample, which is

numerically simulated, such as the harmony superposition

method (HSM) [2, 3]. The spatial sample is necessarily

random; thus, the dynamic response of the vehicle–bridge

interaction system is also a stochastic process and the

maximum value of the factors calculated from spatial

irregularity samples has inevitable variability. Some

attempt for statistical parameters of the dynamic response

is carried out by simulating many times with different

random phase angles in HSM. The work improved the
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reliability of calculation but its error is still difficult to

estimate.

The problem of random response of the vehicle–bridge

interaction system has attracted attention of many resear-

ches. Perrin et al. [4] established a nonstationary four-di-

mensional random field model of track irregularities and

obtained the probability density function of responses.

Wetzel et al. [5] studied the random dynamic responses of

trains under wind load by a subset simulation method.

Majka et al. [6] evaluated the safety of the vehicle–bridge

interaction system under random track irregularities con-

sidering bridge skewness. Wu et al. [7] described the

bridge using non-Gaussian uncertainty model and investi-

gated the dynamic criteria by the method of polynomial

chaos. Lombaert et al. [8] solved the interaction problem in

the frequency domain and studied the effect of the constant

moving load under road surface unevenness by decom-

posing the vehicle–bridge interaction force using the

Fourier transform. For other types of excitations present in

the interaction system, Kiureghian et al. [9] adopted ran-

dom structural vibrations produced by multi-point seismic

excitation, and Alduse et al. [10] considered the uncertainty

of wind speed and direction to study the fatigue damage in

long-span bridges.

The classical random vibration theory usually adopts

traditional sampling methods, which without exception

require a large size of samples and are therefore compu-

tationally ineffective. Therefore, other mathematical

methods are used to obtain the power spectra of the

dynamic responses directly from the input power spectrum

of track irregularity. In recent years, the pseudo-excitation

method (PEM) [11] has become the most popular of these

methods. Zhang et al. [12] improved the train riding

comfort condition by optimising the vehicle suspension

parameters with the min–max approach. Zhu et al. [13]

proposed an approach for predicting the train-induced

ground vibrations considering random track unevenness. Li

et al. [14] and Zhu et al. [15] proved that the bridge

responses follow Gaussian distributions and established a

framework to calculate the upper and lower limits of

vehicle–bridge system responses from the auto-spectra and

the cross-spectra of bridge vibrations.

The multiple-excitation analysis of vehicle–bridge

interaction system can be established by considering the

spectrum of the wind load and the seismic load. Zhang

et al. [16] analysed the nonstationary random responses of

interaction systems subjected to lateral horizontal earth-

quakes by PEM and the precise integration method (PIM)

and obtained the time-dependent power spectral density

(PSD) functions and standard deviations of the responses.

He et al. [17] proposed an efficient analysis framework for

the interaction system subjected to wind loads and studied

the nonstationary effects on the vibration responses. The

methods presented in [10–16] were all validated by Monte

Carlo simulations. By the above-mentioned studies, the

statistic characteristics of response in frequency domain

can be fully obtained, free of the accidental effect; also the

dynamic behaviour in each frequency band of the system

movements and forces can be obtained. The work improves

the objectivity of bridge dynamic analysis.

The relative position of the vehicle with respect to

bridge subsystems is ever-changing when the train is run-

ning over the bridge, and thus, the interaction system is

time variant. However, PEM requires each subsystem and

their interactions to be linear. For solving the problem,

Zhai et al. [1] defined different time steps for the subsys-

tems of the vehicle, the track, and the bridge, in order to

meet the accuracy requirements. Lei et al. [18] proposed an

iterative procedure in time and avoided solving the non-

linear equations when a nonlinear wheel–rail interaction

model was adopted. Zhang et al. [19] established an inter-

history iteration method by which the two subsystems were

solved separately. The iterative process was interposed for

faster convergence. Liu et al. [20] developed an easier

iteration method, in which the wheel–rail interaction force

is defined by the system response from the previous time

step. Zhu et al. [13] divided the vehicle–track–bridge sys-

tem into the vehicle–track subsystem and the bridge sub-

system and improved the accuracy by using a much lower

interface stiffness between the two subsystems. Moham-

mdzadeh et al. [21] simulated the wheel–train interaction

with SIMPACK software and assembled the two subsys-

tems using the importance sampling and response surface

methods. It should be noted that the calculation efficiency

was suboptimal in the former research; for example, it is

reported by He et al. [17] that a single case of PEM

analysis required 900 s of computation time, which is

much longer than that of the traditional vehicle–bridge–

wind interaction analysis.

It is known that a train has high risk of derailment while

passing over a bridge if the stiffness of the bridge is

insufficient, with which the safety factors defined in the

design code TB 10002–2017 (Code on Design of Railway

Bridges and Culverts) are concerned. Clearly, the safety

factors are random with certain probability density func-

tions, and it is required that the maximum values of the

safety factors are below the limits stipulated in the code. A

safer and more effective framework for vehicle–bridge

interaction system assessment is proposed in this paper, in

which the dynamic responses are calculated by PEM, the

probability of the safety factors exceeding the given limits

can be calculated, and the vehicle–bridge interaction sys-

tem performance can be evaluated. The Monte Carlo

method is used to validate the proposed method using a

case study of a bridge with five simply supported spans.
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2 Theoretical analysis method for vehicle–bridge
interaction system based on PEM

The load acting on the vehicle–bridge interaction system

has two parts: the deterministic one and the random one.

The deterministic load is the moving load of the train, for

which the system response can be found by the existing

methods [19] without considering the track irregularities.

The random load is induced by the dynamic effects of the

track irregularity, for which PEM can be adopted. PEM is a

popular method in random vibration analysis [11], by

which the power spectrum of system response can be

obtained directly from the power spectrum of excitation.

The track irregularity is a zero-mean Gaussian process;

thus, the dynamic response due to track irregularity must

be another zero-mean Gaussian process, too. In other

words, the mean value of the response is determined by the

moving load of the train and the standard deviation of the

response is determined by the track irregularity. It can be

proved that the standard deviation, ri, of response for the

ith degree of freedom of the system can be obtained from

the auto-power spectrum Sii(x, t) as follows:

r2
i tð Þ ¼

Z1

0

Sii x; tð Þdx; ð1Þ

where x is frequency and t is time.

Then, the probabilistic characteristics of the system

response can also be obtained. The flowchart of the solu-

tion procedure is shown in Fig. 1.

The following assumptions [19] are adopted in the

modelling of the vehicle–bridge interaction system:

A1: The vehicle and bridge subsystems are linear.

A2: The vertical wheel–rail interaction force is derived

from the assumption that the wheel and the rail have

the same vertical displacement at any time.

A3: The lateral wheel–rail interaction force is derived

from the simplified Kalker creep theory, i.e. the

lateral wheel–rail interaction force is proportional to

the wheel–rail relative velocity, and the proportion-

ality coefficient is defined in [19].

A4: The wheel–rail interaction force is distributed to the

two neighbouring bridge nodes inversely propor-

tional to the wheel-node distances.

The vehicle–bridge interaction system is illustrated in

Fig. 2. The equations of motion for the two interacting

subsystems can be expressed as follows:

Mv 0

0 Mb

� �
€Xv
€Xb

� �
þ Cv 0

0 Cb

� �
_Xv
_Xb

� �

þ Kv 0

0 Kb

� �
Xv

Xb

� �

¼ Fv

Fb

� �
; ð2Þ

where M, C, and K are the mass, damping, and stiffness

matrices, respectively; X and F are the displacement and

force vectors; the subscripts ‘v’ and ‘b’ refer to the vehicle

and the bridge, respectively. The dynamic matrices of the

vehicle and the bridge are derived, respectively, from the

Vehicle–bridge
relative position

Vehicle 
subsystem

Bridge
 subsystem

PSD of track
irregularity

Moving load
of train

Dynamic matrices of vehicle–bridge 
interacted system

Real excitation
of vehicle–bridge system

Pseudo excitation
of vehicle–bridge system

Pseudo response
of vehicle–bridge system

PSD of vehicle–bridge 
system response

Standard deviation of 
response

Real response
of vehicle–bridge system

Mean value of response Probability density functions of 
safety factors

Fig. 1 Flowchart of solution procedure
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rigid body dynamics method and finite element method

(FEM) [19], where the damping matrix of the bridge sub-

system Cb is formed by the Rayleigh damping, and the

proportional factors are calculated by the first two fre-

quencies of the bridge model.

As an interaction system, the right-hand side terms, Fv

and Fb, in Eq. (2) are functions of Xv and Xb of the wheel

sets, as expressed in Eq. (3):

where R stands for summation over the wheel sets; m, c, k,

and f stand for the mass, damping, stiffness and irregu-

larity-induced forces, respectively, of a single wheel set;

quantities with subscripts ‘vv’ and ‘bb’ are for the vehicle

and bridge only, respectively; quantities with subscripts

‘vb’ and ‘bv’ are attributed to the interaction between the

vehicle and bridge; subscripts ‘vi’ and ‘bi’ stand for the

vehicle and bridge subsystems related to vehicle i,

respectively. Then, the dynamic equilibrium equations of

the vehicle–bridge interaction system can be formed by

moving the right-hand side terms in Eq. (2) to the left-hand

side as in Eq. (4).

Mvv Mvb

Mbv Mbb

� �
€Xv
€Xb

� �
þ Cvv Cvb

Cbv Cbb

� �
_Xv
_Xb

� �

þ Kvv Kvb

Kbv Kbb

� �
Xv

Xb

� �

¼ Fvi

Fbi

� �
: ð4Þ

For a given wheel set, its lateral (y) displacement is denoted

as y1; the relative vertical (z) displacement, and pitch (about

axis y) and yaw (about axis x) angles of the vehicle bogie are

denoted as z1, u1, and v1, respectively; for the neighbouring

nodes I and J, their lateral displacements are denoted as y2 and

y3, respectively, vertical displacements as z2 and z3, respec-

tively, and torsional rotations as u2 and u3, respectively. The

wheel–rail interaction force is distributed to the two

neighbouring bridge nodes inversely proportional to the

wheel-node distances, where the weighting factors are

denoted as p for node I and q for node J, respectively. For a

given wheel set, the equilibrium equations of the interaction

system subjected to pseudo-excitation are expressed as follows:

Vehicle

Enbankment EnbankmentBridge Wheel-rail interaction

Track irregularity

Fig. 2 Vehicle–bridge interaction system

Fv

Fb

� �
¼

P
mvv

€Xv þ cvv
_Xv þ kvv

_Xv þmvb
€Xb þ cvb

_Xb þ kvbXb þ f vi

� �
P

mbv
€Xv þ cbv

_Xv þ kbvXv þmbb
€Xb þ cbb

_Xb þ kbbXb þ f bi

� �
� �

; ð3Þ

~Fz1

~Fv1

~Fz2

~Fu2

~Fz3

~Fu3

2
666666664

3
777777775
¼ �2

1 d1 �p �pe �q �qe

d1 d2
1 �pd1 �pd1e �qd1 �qd1e

�p �pd1 p2 p2e pq pqe

�pe �pd1e p2e p2e2 pqe pqe2

�q �qd1 pq pqe q2 q2e

�qe �qd1e pqe pqe2 q2e q2e2

2
666666664

3
777777775

k1z1 þ c1 _z1

k1v1 þ c1 _v1

k1z2 þ c1 _z2

k1u2 þ c1 _u2

k1z3 þ c1 _z3

k1u3 þ c1 _u3

2
666666664

3
777777775
þ 2 k1

~dþ c1
_~d

� �
1

d1

�p

�pe

�q

�qe

2
666666664

3
777777775

¼ �KFXF � CF
_XF þ 2 k1

~dþ c1
_~d

� �
TF;

ð5Þ
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~Mu1

~Mu2

~Mu3

2
4

3
5 ¼ �2k1b

2
1

1 �p �q
�p p2 pq
�q pq q2

2
4

3
5 u1

u2

u3

2
4

3
5

� 2c1b
2
1

1 �p �q
�p p2 pq
�q pq q2

2
4

3
5 _u1

_u2

_u3

2
4

3
5

þ 2b2
1 k1

~bþ c1
_~b

� � 1

�p
�q

2
4

3
5

¼ �KMXM � CM
_XM þ 2b2

1 k1
~bþ c1

_~b
� �

TM; ð6Þ

~Hy1

~Hy2

~Hu2

~Hy3

~Hu3

2
66664

3
77775 ¼ �2cc

1 �p �ph �q �qh
�p p2 p2h pq pqh
�ph p2h p2h2 pqh pqh2

�q pq pqh q2 q2h
�qh pqh pqh2 q2h q2h2

2
66664

3
77775

_y1

_y2

_u2

_y3

_u3

2
66664

3
77775

þ 2cc _~e

1

�p
�ph
�q
�qh

2
66664

3
77775

¼ �CH
_XH þ 2cc

_~eTH;

ð7Þ
~Pz2

~Pu2

~Pz3

~Pu3

2
664

3
775 ¼ �m0

p2 p2e pq pqe
p2e p2e2 pqe pqe2

pq pqe q2 q2e
pqe pqe2 q2e q2e2

2
664

3
775

€z2

€u2

€z3

€u2

2
664

3
775

� I0

0 0 0 0

0 p2 0 pq
0 0 0 0

0 pq 0 q2

2
664

3
775

€z2

€u2

€z3

€u2

2
664

3
775� m0

€~d

p
pe
q
qe

2
664

3
775

� I0
€~b

0

p
0

q

2
664

3
775

¼ �MP
€XP � m0

€~dTP1 � I0
€~bTP2;

ð8Þ

where Eq. (5) describes the vertical pseudo-excitation,

Eq. (6) the torsional pseudo-excitation, Eq. (7) the lateral

pseudo-excitation, and Eq. (8) the pseudo-inertia excita-

tion, respectively; definitions of the symbols used in these

interaction equations are listed in Table 1.

The power spectra of the vertical, lateral, and torsional

pseudo-excitations are as follows:

Sdd xð Þ ¼ Szz
x
V

� �
=V ¼ Szz Xð Þ=V ; ð9Þ

See xð Þ ¼ Syy
x
V

� �
=V ¼ Syy Xð Þ=V; ð10Þ

Sbb xð Þ ¼ Suu
x
V

� �
=V ¼ Suu Xð Þ=V; ð11Þ

where V is the train speed; Sdd(x), See(x), and Sbb(x) are

the vertical, lateral, and torsional power spectra of

excitations; X is the spatial frequency of track

irregularity; Szz(X), Syy(X), and Suu(X) are the power

spectra of track irregularity in the vertical, lateral, and

torsional directions [14, 15].

From Eqs. (3–11), the additional loads of a single wheel

set related to the pseudo-excitations caused by irregulari-

ties d, e, and b are respectively as follows:

~Fd xð Þ ¼ 2k1
~dTF þ 2c1

_~dTF þ m0
€~dTP1

¼ 2k1TF þ 2c1ixTF � m0x
2TP1

� �
eix t�Dtð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sdd xð Þ
p

¼ 2k1TF þ 2c1ixTF � m0x
2TP1

� �
e�ixDt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sdd xð Þ

p
eixt;

ð12Þ
~Fe xð Þ ¼ 2ccixTH

ffiffiffiffiffiffiffiffiffiffiffiffiffi
See xð Þ

p
eix t�Dtð Þ

¼ 2ccixTHe�ixDt
ffiffiffiffiffiffiffiffiffiffiffiffiffi
See xð Þ

p
eixt; ð13Þ

~Fb xð Þ ¼ 2k1b
2
1
~bTM þ 2c1b

2
1
_~bTM þ I0

€~bTP2

¼ 2k1b
2
1TM þ 2c1b

2
1ixTM � I0x

2TP2

� �
eix t�Dtð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sbb xð Þ

q

¼ 2k1b
2
1TM þ 2c1b

2
1ixTM � I0x

2TP2

� �
e�ixDt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sbb xð Þ

q
eixt;

ð14Þ

where Dt is the time difference between the concerned

wheel set and the first wheel set passing over the same

point, i is the imaginary unit and equal to the square root of

-1. The pseudo-excitation of irregularities can be obtained

by adding the pseudo-excitations for all the wheel sets.

Based on the fundamental assumption of PEM, the track

irregularities related to vertical direction, d, torsional angle,

b, and lateral direction, e, must be analysed independently.

In this way, the power spectra of vehicle–bridge interaction

system can be calculated.

For a single wheel set, the force of the primary sus-

pension system under pseudo-excitation related to direc-

tions y and z, and rotation u (about axis x) are as follows:

Fwy ¼ 2cc p _y2 þ ph _u2 þ q _y3 þ qh _u3 � _y1ð Þ; ð15Þ

Fwz ¼ 2k1 pz2 þ qz3 þ peu2 þ qeu3 � z1 � d1v1ð Þ
þ 2c1 p _z2 þ q _z3 þ pe _u2 þ qe _u3 � _z1 � d1 _v1ð Þ;

ð16Þ

Fwu ¼ 2k1b
2
1 pu2 þ qu3 � u1ð Þ þ 2c1b

2
1 p _u2 þ q _u3 � _u1ð Þ:

ð17Þ

The vertical acceleration, aw, and angular acceleration

about axis x, bw, are as follows:

aw ¼ p€z2 þ q€z3 þ €d
bw ¼ p€u2 þ q€u3 þ €b

	
: ð18Þ

Thus, the interaction forces at the left- and right-hand

side wheel–rail contact points are as follows:
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Fwy1 ¼ Fwy2 ¼ 1

2
Fwy ¼ cc p _y2 þ ph _u2 þ q _y3 þ qh _u3 � _y1ð Þ;

ð19Þ

Fwz1 ¼ 1

2
m0aw þ Fwz þ Gð Þ þ I0bw þ Fwu

g0

; ð20Þ

Fwz2 ¼ 1

2
m0aw þ Fwz þ Gð Þ � I0bw þ Fwu

g0

; ð21Þ

where Fwy1 and Fwy2 are the lateral contact forces at the

left- and right-hand sides, respectively; Fwz1 and Fwz2 are

the lateral contact forces at the left- and right-hand sides,

respectively; G is the static load of wheel set; and g0 is the

gauge.

The maximum values of the derailment coefficient, XDR,

the wheel unloading rate, XOL, and the lateral wheel axle

force, FAY, are required to be evaluated as safety factors in

the designing codes [2]. They are functions of the wheel–

rail forces as follows:

XDR tð Þ ¼ Q tð Þ
P tð Þ ; ð22Þ

XOL tð Þ ¼ 1 � P tð Þ
P0

; ð23Þ

FAY tð Þ ¼ 2Q tð Þ; ð24Þ

where P0 is the static wheel load, which is a constant;

P(t) and Q(t) are the vertical and lateral wheel–rail forces

at a single side of the wheel set, respectively. It can be

Table 1 Definitions of symbols used in Eqs. (3)–(8)

Symbol Definition

k1 Stiffness of primary suspension

system for each side of wheel

set

c1 Damping of primary suspension

system for each side of wheel

set

cc Coefficient of lateral wheel–rail

interaction force defined in [19]

m0 Mass of wheel set

I0 Second moment of inertia of wheel

set about longitudinal direction

d1 Longitudinal distance from bogie

centre to wheel set

b1 Half of lateral distance between

springs in primary suspension

system

e Lateral distance from bridge

section centre to track centre

h Vertical distance from bridge

section centre to track centre

~d Pseudo-excitation induced by

vertical track irregularity

~b Pseudo-excitation induced by

rotational track irregularity

~e Pseudo-excitation induced by

lateral track irregularity

~Fs Forces related to vertical pseudo-

excitation in direction s (s = z1,

v1, z2, u2, z3, u3)

KF Additional stiffness matrix related

to vertical pseudo-excitation

CF Additional damping matrix related

to vertical pseudo-excitation

XF Displacement vector related to

vertical pseudo-excitation

TF Irregularity indicator vector related

to vertical pseudo-excitation

~Ms Forces related to torsional pseudo-

excitation in direction s (s = u1,

u2, u3)

KM Additional stiffness matrix related

to torsional pseudo-excitation

CM Additional damping matrix related

to torsional pseudo-excitation

XM Displacement vector related to

rotational pseudo-excitation

TM Irregularity indicator vector related

to torsional pseudo-excitation

~Hs Forces related to lateral pseudo-

excitation in direction s (s = y1,

y3, u2, y3, u3)

Table 1 continued

Symbol Definition

CH Additional stiffness matrix related

to lateral pseudo-excitation

XH Displacement vector related to

lateral pseudo-excitation

TH Irregularity indicator vector related

to lateral pseudo-excitation

~Ps Forces related to inertia pseudo-

excitation in direction s (s = z2,

u2, z3, u3)

MP Additional mass matrix related to

inertial pseudo-excitation

XP Displacement vector related to

inertial pseudo-excitation

TP1 Irregularity indicator vector related

to vertical inertia pseudo-

excitation

TP2 Irregularity indicator vector related

to torsional inertia pseudo-

excitation
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proved by Eqs. (5–8) that Q(t) and P(t) are both an inde-

pendent random process.

As a random process, the probability of a factor

exceeding its limit can be calculated from its probability

density function. The mean values of the wheel–rail ver-

tical and lateral forces, lP and lQ, can be obtained using

the deterministic loads and the standard deviation can be

calculated by Eq. (1). Then, it can be proved by the central

limit theorem that the wheel–rail vertical and lateral forces

follow Gaussian distributions when the number of samples

is large enough.

The wheel unloading rates and the lateral wheel axle

forces are functions of the wheel–rail vertical and lateral

forces; thus, they will also follow Gaussian distributions

with the following mean values and standard deviations:

lOL ¼ 1 � lP
P0

rOL ¼ rP
P0

8><
>: ; ð25Þ

lFAY ¼ 2lQ
rFAY ¼ 2rQ

	
; ð26Þ

where lOL and rOL are the mean value and standard

deviation of the wheel unloading rate, respectively; lFAY

and rFAY are the mean value are standard deviation of the

lateral wheel axle force, respectively.

The derailment coefficient is the ratio of two random

variables, P(t) and Q(t), both following Gaussian distri-

butions with known mean values and standard deviations.

Thus, the probability density function of the derailment

coefficient is as follows:

f xð Þ ¼ bxdx
a3
x

1ffiffiffiffiffiffi
2p

p
rQrP

U bx=axð Þ � U �bx=axð Þ½ �

þ 1

a2
xprQrP

exp
�c

2

� �
; ð27Þ

where U �ð Þ is the cumulative distribution function of the

standard Gaussian distribution, and

ax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

r2
Q

þ 1

r2
P

s
; bx ¼

xlQ
r2
Q

þ lP
r2
P

; c ¼
l2
Q

r2
Q

þ l2
P

r2
P

;

dx ¼ exp
b2
x � ca2

x

2a2
x


 �
:

Then, the probability of the concerned factor exceeding its

limit can be calculated by integrating the probability den-

sity function.

3 Case study

In this case study, a typical high-speed train runs over a

bridge with four column piers and five pre-stressed con-

crete simply supported spans. A mass density per metre and

frequencies are assigned to the span beams instead of a

specified cross section. The nodes at the abutments and pier

bottoms are fixed in the model. The train comprises eight

vehicles, each 25 m in length, and runs at speeds of 250,

300, and 350 km/h. To reduce the effect of sudden load

application, the first wheel set of the train is assumed to be

100 m from the bridge end when the simulations starts, i.e.

the train is on the bridge between 1.03 and 3.03 s for

350 km/h. The bridge is shown in Fig. 3, and a complete

list of the vehicle and bridge parameters are provided in

Tables 2 and 3, respectively.

The power spectra of track irregularity, S(f), are adopted

from TB/T 3352-2014 (PSD of Ballastless Track Irregu-

larities of High-Speed Railway) in the directions of profile

(z direction), alignment (y direction), and cross-lever

(about x axis) as follows:

S fð Þ ¼ A

f k
; ð28Þ

where S(f) is in mm2/m-1; f is spatial frequency in m-1;

A and k are coefficients. The values of coefficients A and

k and spatial frequency f are listed in Table 4 and Table 5,

respectively. The cross-lever is the height difference of the

two rails, which is the product of the torsional irregularity

and the gauge.

To validate the proposed method, 100 Monte Carlo

simulations were carried out with track irregularity samples

generated by HSM. A comparison of the PEM and Monte

Carlo simulation results for the train speed of 350 km/h is

shown in Figs. 4–11, where the black lines represent the

results of PEM, and the red lines represent the mean values

or standard deviations of the Monte Carlo simulations. (In

graphs throughout the paper, abbreviations Disp., Acc., and

AA stand for the displacement, acceleration, and angular

acceleration, respectively.) It is found that the two methods

agree well for all the concerned factors.

However, some noticeable differences are also found

between the PEM and Monte Carlo results, especially for

the factors with zero-mean value. This is due to the limited

sample numbers used in the Monte Carlo simulations.

Larger sample numbers were tried and it was found that the

Fixed at abutment

Fixed at pier bottom

Span length=32.6 mBeam gap=0.1 m

Pier height=15.0 m

Fig. 3 Bridge used in case study
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differences were reduced with the increase in sample

number.

The power spectra densities (PSDs) of bridge mid-span

displacements and accelerations, the car body accelera-

tions, and the wheel–rail forces of the first wheel set are

calculated and shown in Figs. 12–15, where DPSD, APSD,

and FPSD stand for displacement PSD, acceleration PSD,

and force PSD, respectively.

It can be observed in the figures that the dominant fre-

quencies of the bridge are the lateral natural frequency of

25 Hz and the torsional natural frequency of 15 Hz. For

vertical direction, the dominant frequency of bridge is the

loading frequency of 3.9 Hz, which is determined by the

Table 2 Parameters of vehicle

Parameter Value

Half of longitudinal distance between wheel sets 1.25 m

Half of longitudinal distance of bogies 8.75 m

Half of lateral distance between springs in primary suspension system 1.00 m

Half of lateral distance between springs in secondary suspension system 1.00 m

Vertical distance between car body centre and secondary suspension system 0.80 m

Vertical distance between secondary suspension system and bogie centre 0.20 m

Vertical distance between bogie centre and primary suspension system 0.10 m

Radius of wheel set 0.43 m

Mass of wheel set 2000 kg

Second moment of inertia of wheel set about longitudinal axis 1000 kg�m2

Mass of bogie 3000 kg

Second moment of inertia of bogie about longitudinal axis 3000 kg�m2

Second moment of inertia of bogie about lateral axis 3000 kg�m2

Second moment of inertia of bogie about vertical axis 3000 kg�m2

Mass of car body 40 t

Second moment of inertia of car body about longitudinal axis 100 t�m2

Second moment of inertia of car body about lateral axis 2000 t�m2

Second moment of inertia of car body about vertical axis 2000 t�m2

Longitudinal damping of primary suspension system at bogie side 1 kN�s/m

Lateral damping of primary suspension system at bogie side 1 kN�s/m

Vertical damping of primary suspension system at bogie side 20 kN�s/m

Longitudinal damping of secondary suspension system at car body side 60 kN�s/m

Lateral damping of secondary suspension system at car body side 60 kN�s/m

Vertical damping of secondary suspension system at car body side 10 kN�s/m

Longitudinal stiffness of primary suspension system at bogie side 1000 kN/m

Lateral stiffness of primary suspension system at bogie side 1000 kN/m

Vertical stiffness of primary suspension system at bogie side 1000 kN/m

Longitudinal stiffness of secondary suspension system at car body side 200 kN/m

Lateral stiffness of secondary suspension system at car body side 200 kN/m

Vertical stiffness of secondary suspension system at car body side 200 kN/m

Table 3 Parameters of bridge

Parameter Value

Young’s modulus of concrete 35.5 GPa

Span length (bearing to bearing) 31.50 m

Distance from beam end to bearing 0.55 m

Beam gap 0.10 m

First vertical frequency 7 Hz

First torsional frequency 15 Hz

First lateral frequency 25 Hz

Mass per metre with secondary load 42 t/m

Damping ratio of all modes 0.01

Pier height 15 m

Pier diameter 4 m
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Table 4 Fitting formula coefficients for mean spectra

Type Segment 1 Segment 2 Segment 3 Segment 4

A (9106) K A (9106) k A (9106) k A (9106) k

Profile 10.544 3.3891 3558.8 1.9217 19,784 1.3643 394.88 3.4516

Alignment 3951.3 1.8670 11,047 1.5354 765.33 2.8171 – –

Cross-lever 3614.8 1.7278 43,685 1.0461 4586.7 2.0939 – –
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train speed (350 km/h) divided by train length (25 m). The

vertical inertia force of the wheel set is proportional to the

second derivative of track irregularity by assumption A2

and Eq. (12); thus, there is a much stronger high-frequency

component in bridge accelerations compared to

displacements.

For a similar reason, much stronger high-frequency

components due to the inertia force of the wheel set exist in

the vertical wheel–rail forces. On the other hand, the lateral

(a) (b) (c)
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Table 5 Spatial frequencies at segment division points

Type Spatial frequency f (m-1)

Segments 1 and 2 Segments 2 and 3 Segments 3 and 4

Profile 0.0187 0.0474 0.1533

Alignment 0.0450 0.1234 –

Cross-

lever

0.0258 0.1163 –
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wheel–rail force has a peak in the frequency range

10–20 Hz, which is related to the lateral local resonant of

the two subsystems. The irregularity is a wideband exci-

tation, i.e. between 1.2 and 97.2 Hz, considering the train

speed of 350 km/h. So the dominant frequency of the

vehicle response is around the first-order natural frequency

due to resonance, which is much lower than that of the

bridge subsystem.

In order to analyse the distribution of the safety factors,

the results produced by the proposed method were com-

pared to those by the Monte Carlo method, as illustrated in

Table 6 and Figs. 16–18, where the numbers of samples in
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Fig. 12 PSDs of a vertical, b lateral, and c torsional mid-span displacements
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corresponding ranges are shown at the top of the bars.

There were 100 simulations and 3000 time steps in each

simulation; thus, the theoretical number of samples in a

given range can be calculated from the corresponding

probability multiplied by 300,000.

It can be seen that the numbers of samples from the

Monte Carlo simulations in the given ranges are similar to

the theoretical ones calculated by the proposed method in

all the considered cases.

The results can also be analysed by examining the time

histories of the safety factors. A ‘‘common range’’ is

defined by the ‘‘three-sigma rule’’, by which outlying

observations can be highlighted. The upper and lower limit

comparison of the PEM and Monte Carlo simulation are

shown in Figs. 19–23, where the black lines represent the

Fig. 13 PSDs of a vertical, b lateral, and c torsional mid-span accelerations

Fig. 14 PSDs of a vertical, b lateral, and c torsional car body accelerations

Fig. 15 PSDs of a vertical left-hand side, b vertical right-hand side, and c lateral wheel–rail forces
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confidence intervals and mean values of PEM, the blue

lines represent the upper and lower limits of Monte Carlo

simulations, and the red lines represent the mean value of

Monte Carlo results and the confidence intervals related to

the criteria defined by the ‘‘three-sigma rule’’. It can be

seen in the figures that most of the simulated data are in the

‘‘common range’’.

It is clear that the probability of the safety factors

exceeding the limits increased with the analysis duration,

which may lead to loss of objectivity. The limits concerned

in this paper are from the codes for evaluating the safety

performance based on the maximum values measured in a

single experiment or calculation. Thus, it is not the original

intention of the code to ensure that the safety factors are

less than the limits for every train over the entire service

life of the bridge. The probability density functions of the

three safety factors are studied in this paper, based on

which reasonable limits can be probabilistically established

in future work.

Table 6 Ranges of safety factors

No OL and FAY DR Theoretical

value
Lower limit Upper limit Lower limit Upper limit

1 -? -4 -? F-1(U(-4)) 10

2 l - 4r l - 3r F-1(U(-4)) F-1(U(-3)) 395

3 l - 3r l - 2r F-1(U(-3)) F-1(U(-2)) 6420

4 l - 2r l - r F-1(U(-2)) F-1(U(-1)) 40,770

5 l - r l F-1(U(-1)) F-1(U(0)) 102,390

6 l l ? r F-1(U(0)) F-1(U(1)) 102,390

7 l ? r l ? 2r F-1(U(1)) F-1(U(2)) 40,770

8 l ? 2r l ? 3r F-1(U(2)) F-1(U(3)) 6420

9 l ? 3r l ? 4r F-1(U(3)) F-1(U(4)) 395

10 l ? 4r ? F-1(U(4)) ? 10

DR, OL, and FAY stand for the derailment coefficient, the wheel unloading

rate, and the lateral wheel axel force, respectively. F(x) is the probability

distribution function of the derailment coefficient obtained from its probability

density function (Eq. (27)) by integration, and U(�) is the cumulative distri-

bution function of the standard Gaussian distribution.
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Fig. 19 Limits of derailment coefficient of left wheel for a 250 km/h, b 300 km/h, and c 350 km/h (black lines: PEM; blue lines: upper and

lower limits of Monte Carlo; red lines: mean value of Monte Carlo)
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Fig. 20 Limits of derailment coefficient of right wheel for a 250 km/h, b 300 km/h, and c 350 km/h (black lines: PEM; blue lines: upper and

lower limits of Monte Carlo; red lines: mean value of Monte Carlo)
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4 Conclusions

(1) Despite its time variety and randomness, the vehicle–

bridge interaction problem can be solved by the

method proposed in the paper based on PEM, by

which the power spectrum densities of vehicle–bridge

interaction system responses can be obtained directly

from the power spectrum density of the track irreg-

ularity. The proposed method has been validated by

Monte Carlo simulations.

(2) A typical Chinese high-speed railway bridge has been

adopted as a case study, in which the dynamic

responses of the vehicle, the bridge, and wheel–rail

interaction forces were calculated by the proposed

method. It has been found that the dominant fre-

quency of bridge vertical response is the load

frequency of train, while the dominant frequencies

of bridge lateral responses are the natural frequencies

of bridge.

(3) The wheel unloading rate and the lateral wheel axle

force follow Gaussian distributions, while the derail-

ment coefficient follows the probability density

function shown in Eq. (27), using which the proba-

bility of the safety factors exceeding the given limits

can be calculated for the duration of time when the

train runs over the bridge.
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