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Abstract To simulate ballast performance accurately and

efficiently, the input in discrete element models should be

carefully selected, including the contact model and applied

particle shape. To study the effects of the contact model

and applied particle shape on the ballast performance

(shear strength and deformation), the direct shear test

(DST) model and the large-scale process simulation test

(LPST) model were developed on the basis of two types of

contact models, namely the rolling resistance linear (RRL)

model and the linear contact (LC) model. Particle shapes

are differentiated by clumps. A clump is a sphere assembly

for one ballast particle. The results show that compared

with the typical LC model, the RRL method is more effi-

cient and realistic to predict shear strength results of ballast

assemblies in DSTs. In addition, the RRL contact model

can also provide accurate vertical and lateral ballast

deformation under the cyclic loading in LPSTs.
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1 Introduction

Railways play a significant role in the transportation sys-

tem worldwide and work in many sectors (urban rail, high-

speed railway, heavy haul, intercity and metro) [1, 2].

Ballasted tracks, as the most widely used track type, consist

of rails, sleepers and the ballast layer [3, 4]. It possesses the

advantages such as low construction cost, simple design

and construction, and easy maintenance [5].

The ballast layer, a crucial component of ballasted track,

provides resistances to sleepers, transmits and distributes

the loads or impacts from sleepers to the subgrade, as well

as allows rapid drainage [6]. Generally, it is composed of

blasted (quarried) rock aggregate, which is required to meet

certain characteristics such as narrow-graded (20–60 mm)

and irregular particle shape, specific surface roughness,

density, hardness, resistance to attrition and weathering [7].

Even though various railway ballast standards in terms of

particle size distribution or particle shape have already

been formulated [7–9], their influences on ballast perfor-

mance (resilience, shearing strength, and settlement) have

not been sufficiently studied [10, 11].
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Laboratory or field tests are of limited use in studying

the ballast performance, because the test conditions cannot

be kept the same and many characteristics (e.g. ballast

density and sleeper type) cannot be controlled [12].

Additionally, due to the discrete nature of ballast, it is not

accurate or realistic to use the finite element method, which

simulates the ballast layer as continuous layer [13]. The

ballast performance keeps changing due to the ballast

degradation (abrasion and breakage) [12, 14–16]. In addi-

tion, the sliding and rolling of individual ballast particles

also influence the performance of the ballast layer [17].

The discrete element method (DEM) can overcome the

limitations of laboratory or field tests and the finite element

models [18, 19]. As a powerful tool, it can (1) obtain all

responses of the particles during simulations (e.g. velocity,

displacement, acceleration, and contact forces), (2) account

for the properties of granular materials (density, size, and

shape) [20], and (3) include the effects of breakage or

abrasion [17, 21–25].

Earlier studies have shown the feasibility of the DEM in

evaluating the ballast performance [26–32]. However,

there still exist some aspects for improvement.

On the one hand, the computational cost is the most

considerable limitation in developing DEM models that

may have millions of spheres (e.g. full-scale track model)

[21]. Larger number of particles means the increase in the

total number of particle contacts, which results in great

computational cost. This problem becomes more severe

when non-spherical particles are present in the DEM

models. The usage of the non-spherical particles can pro-

vide more realistic load-deformation response [18, 33]. A

non-spherical particle is generally made by a sphere

assembly, named clump or cluster in the particle flow code

(PFC, commercial DEM software) [27, 34]. Using the non-

spherical particles (sphere assembly) increases the spheres

and the number of contacts (contact points between the

particles). The contacts are updated with every cycle

according to the force–displacement law, which finally

increases the computation time considerably.

In most cases, the contact method used in the earlier

models was elementary linear model (spring-damping

model). By using the RRL, simple spheres can also be

possible to attain similar ballast performance, which can

save a large amount of computational time. For example, it

was demonstrated that the linear rolling resistance contact

model (using spheres as ballast particles) can obtain the

same ballast lateral resistance results as those from field

tests [35].

On the other hand, even if the sleeper-ballast model uses

the simple spherical or less-spherical particles, it has to be

developed in a large-scale manner (e.g. three-sleeper track

model) due to the scale effect and the boundary condition.

The scale effect means that the sample dimensions should

be 4–6 times larger than the ballast particle (in laboratory

tests), to ensure that the results are stable and unaffected

[19]. The boundary condition means that when a DEM

model represents only a part of the whole system (e.g. half-

sleeper track model for the whole ballasted track), the

model boundary normally provides different reactions

(displacements, forces). For example, when building the

half-sleeper track model by DEM, the boundary of the

ballast layer is mostly restricted (no displacements) [36].

This will lead to false boundary-ballast reaction, since the

boundary imposes larger forces to the contact ballast par-

ticles than in reality. When applying the dynamic loads,

such boundary condition will result false results due to

waves reflection effect.

To solve the issue of the boundary condition, the large-

scale process simulation test (LPST) model as described in

[18] was developed, in contrast to small-scale track model

(e.g. ballast box test model) [37]. It has five movable walls

at one side to provide consistent pressure stress during the

cyclic loading, and in this way the boundary condition is

included by moving the lateral walls and providing the

lateral deformation.

Therefore, to develop an efficient and accurate method

for DEM simulation, this work explores the effects of the

rolling resistance linear (RRL) model on the ballast per-

formance of the direct shear test (DST) model and LPST

model. The shear strength and settlement of the RRL

model is compared with those of the LC model. Specifi-

cally, the contact model of the spheres is the RRL, whereas

the LC model is used for the non-spherical particles.

2 Methodology

The DST model and LPST model are developed with the

commercial DEM software called Particle Flow Code in

3D (PFC3D). The numerical results derived from these

models are compared with those from Ref. [18]. The

adoption of two models can fully describe ballast perfor-

mance such as shear strength, resilience, settlement/per-

manent deformation. Of these indicators, the shear strength

is most widely used and is measured generally by the DSTs

[12, 28, 38]. The settlement/permanent deformation is

another key characteristic concerning the performance of

ballast assemblies (especially in the field), and is measured

by the cutting-edge LPSTs [18]. More importantly, this test

model is applicable to the lateral deformation of the ballast

assemblies.

2.1 DST

Figure 1 presents the setup of the DST and the corre-

sponding DEM models. The contact model parameters in
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the DST model are calibrated using the DST results.

Afterwards, we compare the results obtained from two

different contact models, i.e. the RRL model and the LC

model.

2.1.1 Experimental

In the DSTs, the ballast material is the commonly used

aggregate of basalt rock produced in Quarry Pulandian,

Dalian, China. The ballast particles have a uniformed

shape, sufficient strength, and particle size distribution that

follow the British standard [7]. The ballast density is

2530 kg/m3.

The DST rig consists of three main parts: a steel square box,

two hydraulic servo actuators and a computer control system

(see Fig. 1a). The steel square consists of an upper steel square

box (inner size: 400 mm 9 400 mm 9 200 mm), a lower

steel square box (inner size: 400 mm 9 400 mm 9 200 mm)

and a steel loading plate (size: 400 mm 9 400 mm 9 20

mm). There is a gap of 10 mm between the upper and lower

boxes.

The vertical and lateral hydraulic servo actuators can

create the maximum loading of 30 t and 10 t, respectively

(Fig. 1a). The vertical actuator can apply the normal force

on the steel plate placed on the top of the upper box. This is

utilised to provide a constant normal stress in ballast

samples. The lateral actuator is used to shift the lower box

with a constant speed.

The computer control system is utilised to measure

vertical and lateral displacements through the linear vari-

able differential transformers (LVDT). It also controls the

application of the force or speed of the two hydraulic

actuators and records the applied stress.

The ballast particles are placed in the shear box and

experience three steps. After placing ballast particles each

time, a vibratory compactor is used for compacting the

layer. After the third time of compaction, the steel plate

(weight of 25.64 kg) is placed on the top of the ballast

sample. Then, the direct shear tests are performed at a

shearing speed of 2 mm/min under three different normal

stresses of 24, 54 and 104 kPa. The final horizontal

Fig. 1 Schematic diagram of the applied methodology
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displacement of the lower DST box is 80 mm (20% shear

strain), which is adequate to obtain the peak shear stress.

2.1.2 DST model description

The DST model (Fig. 1b) is utilised to measure the shear

strength of the two contact models and four kinds of par-

ticle shapes. The porosity of the sample is 0.4, and the

particle size distribution (PSD) is based on the above

experimental tests. Note that the PSD of all the models

remains the same. The model configuration is set as the

experimental test configuration (Fig. 1a), including the box

size and the applied normal stresses.

The basic contact mode of DEM is a kind of sphere–

sphere contact interactions. Even though in some models the

non-spherical particles (clumps) are used, the interaction in

the contact areas is still based on the sphere-sphere contact

model [39]. However, if the non-spherical particles are

present, the number of contact points increases and particle

interlocking occurs, finally restraining the particle rotation.

On the other hand, if there are simple-shape particles

(spheres) with certain rolling friction, it is also possible to

result the same effect as the non-spherical particles [35].

Therefore, the rolling friction [39] is used in the DST model.

2.1.3 Contact model and particle shape

In order to determine whether the simple-shape (sphere)

particles with the rolling friction can provide the same

performance of the model as the complex-shape (clump)

particles, two types of contact model are utilised in the

model, namely, the LC model and the RRL model. The

models with the spheres use the RRL model, while the

models with the clumps use the LC model.

The RRL model has one more parameter (rolling fric-

tion) than the LC model. In other words, the only differ-

ence between the two contact models is the rolling friction.

The rolling friction will resist the particle rolling when a

force is acting on it. To be more specific, the rolling fric-

tion decides the maximum value that equals to the product

of the rolling friction with the corresponding normal force.

The restriction is defined as rolling stiffness that is assumed

as the clockwork spring (Fig. 2), and it increases with the

relative rotation.

The four types of the particle shape used in the models

are a sphere, a 5-sphere clump, a 12-sphere clump and a

23-sphere clump. Note that one model corresponds to only

one type of particle shape. The clump particles are created

with the identical template that was obtained by scanning

the real ballast particle [40].

In addition, the normal stiffness and shear stiffness (the

springs in Fig. 2) are another two parameters in the two

contact models that considerably influence the calculation

time. Figure 2 describes the LC model.

The calculation time is decided by the timestep calcu-

lated based on the two types of stiffness. Specifically, a

higher stiffness leads to a smaller timestep, causing more

calculation time. The timestep is the smallest time period in

simulation, in which the force–displacement law is applied

to every updated contact. In other words, a particle moves

at a speed in one timestep, and after the time is reached, the

forces and displacements are updated. The specific intro-

duction of the timestep can be found in [39]. For this,

several values of these two parameters (shear and normal

stiffnesses) are selected, and the results are compared for

both efficient and accurate simulation.

The properties of the DST model and contact model

parameters are listed in Table 1, where four DST models

respectively use four types of particle shapes, i.e. the

sphere, 5-sphere clump, 12-sphere clump and 23-sphere

clump. For the DST model using spheres, the RRL model

is utilised, and the particle-particle rolling friction coeffi-

cient and the values of the two stiffness (normal and shear)

are calibrated. For the DST models using non-spherical

particles, the LC model is used and its results are compared

with that of the DST model using spheres.

Fig. 2 Diagram of the normal stiffness and shear stiffness (modified after [39])
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The damping applied in the model is local damping (not

damping at particle contacts), and the damping value is set

according to Ref. [41]. Though there is no consensus in a

universal damping value, it has little influence on

comparison results. Moreover, it has been proved that

different damping values have little influence on the shear

strength results when the shear speed is very slow. High

Table 2 Model properties and parameters of large-scale process simulation test

Value

With sphere

Contact model type Rolling resistance linear contact model

Particle type Sphere

Density (kg/m3) 2530.0

Particle-particle friction coefficient 0.5

Particle-particle rolling friction coefficient 0.3

Normal stiffness (N/m) 1 9 105, 2 9 105, 4 9 105 and 1 9 106

Shear stiffness (N/m) 1 9 105, 2 9 105, 4 9 105 and 1 9 106

Gravity (m/s2) 9.81

Damping 0.9

With clump

Contact model type Rolling resistance linear contact model

Particle type 5-sphere clump/12-sphere clump/23-sphere clump

Density (kg/m3) 2530.0

Particle-particle friction coefficient 0.5

Particle-particle rolling friction coefficient 0.0

Normal stiffness (N/m) 4 9 105, 1 9 106, 1 9 107 and 1 9 108

Shear stiffness (N/m) 4 9 105, 1 9 106, 1 9 107 and 1 9 108

Gravity (m/s2) 9.81

Damping 0.9

Table 1 Properties of DST model and contact model parameters

Value

With sphere

Contact model type Rolling resistance linear contact model

Particle type Sphere

Density (kg/m3) 2530.0

Particle-particle friction coefficient 0.5

Particle-particle rolling friction coefficient 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6

Normal stiffness (N/m) 4 9 105, 1 9 106, 1 9 107 and 1 9 108

Shear stiffness (N/m) 4 9 105, 1 9 106, 1 9 107 and 1 9 108

Gravity (m/s2) 9.81

Damping 0.9

With clump

Contact model type Linear contact model

Particle type 5-sphere clump/12-sphere clump/23-sphere clump

Density (kg/m3) 2530.0

Particle-particle friction coefficient 0.5

Normal stiffness (N/m) 4 9 105, 1 9 106, 1 9 107 and 1 9 108

Shear stiffness (N/m) 4 9 105, 1 9 106, 1 9 107 and 1 9 108

Gravity (m/s2) 9.81

Damping 0.9
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damping value tends to accelerate the formation of equi-

librium state.

2.2 Model description of large-scale process

simulation test

The development of the LPST model refers to the LPST

apparatus. As shown in Fig. 3a, the LPST apparatus was

designed by Indraratna to develop physical simulation of

‘‘in situ’’ railway track. It can contain specimens that are

800 mm long, 600 mm wide, and 600 mm high [42]. Most

importantly, one side of the apparatus is made by five

movable plates, which can provide consistent principal

stresses in the cyclic loading. More explanations on the

LPST apparatus can be found in Ref. [3].

The LPST model shown in Fig. 3b includes sleeper,

ballast layer and test box. The dimension of the specimen is

800 mm 9 600 mm 9 475 mm, with the ballast thickness

(under the sleeper) of 325 mm. The sleeper is constituted

by the overlapped spheres (clump), and the ballast particles

are simulated with spheres or clumps (same as DST

model).

For the model with the spheres, the sample porosity is

0.354, which is larger than the one (0.338) in Ref. [18],

whereas the models with three types of clumps have the

same porosity (0.338). Even though the porosity is differ-

ent, the results have shown that their performances can still

be the same.

The model properties and parameters are listed in

Table 2, including density, friction, stiffness, rolling fric-

tion, etc. The movable plates are simulated by walls that

keep moving slightly to provide consistent principal stress

(10 kPa). The maximum moving speed of the plates is set

as 10 mm/s.

Four developed LPST models use four different types

of particle shapes, i.e. the sphere, 5-sphere clump,

12-sphere clump and 23-sphere clump. For the model

with spheres, the RRL model is utilised and the values of

Fig. 3 Large-scale process simulation test and DEM model (Fig.3a reproduced from [18])
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Fig. 4 Shear stress and deformation results of the DST simulation with sphere under the normal stress 24 kPa
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the two stiffness (normal and shear) are calibrated. For

the LPST model with non-spherical particles, the LC

model is used and the results are compared with those of

the DST model with spheres. The applied cyclic loading

frequency is 20 Hz and it is a sinusoidal loading from 50

to 460 kPa.
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Fig. 5 Shear stress and dilation results of the DST simulation under the normal stress of 24, 54 or 104 kPa
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3 Results and discussion

3.1 DST simulation results

3.1.1 Contact model

Figure 4 presents the shear stress and deformation results

of the DST model with sphere. The rolling friction coef-

ficient is set as 0.1, and the normal stress is 24 kPa.

From Fig. 4a and b, it can be seen that the peak shear

stress increases with the stiffness; however, it increases

slightly and stays at around 60–70 kPa after the stiffness is

over 4 9 105. Moreover, the peak shear stress is reached

with shorter horizontal box displacement, when the contact

stiffness is increased from 5 9 105 to 1 9 107. Figure 4c

and d presents the deformation results at different stiffness

values. They illustrate that lower stiffness will cause sig-

nificant shear contraction, and higher stiffness can lead to

deformation results more similar to the experimental test,

i.e. 4 9 105, 5 9 105, 1 9 106 and 1 9 107. Based on the

above results, it can be seen that the shear peak stress

increases with the stiffness, but for the model with sphere

and low rolling friction (0.1) it does not agree with the

experimental shear peak stress. In addition, it is reasonable

that the peak shear stress appears when the shear dis-

placement is 30 mm.

Particularly, lower stiffness leads to less computation

time. For example, using the spheres with the stiffness at

1 9 105 and 1 9 107 take the computation time of 433 and

1242 s, respectively. In the same test condition, using the

sphere, 5-sphere clump, 12-sphere clump and 23-sphere

clump take the computation time of 51, 80, 306 and

400 min, respectively. This means using the spheres is 8

times efficient at most.

In Fig. 4e–h and i–l, the shear stress and deformation

results with increasing rolling friction are presented. From the

shear stress results, it can be observed that the peak shear

stress considerably increase with the rolling friction, and

ballast assemblies with higher rolling friction needs larger

shear displacement to reach the peak shear stress. Another

fact is that with the higher stiffness, the peak shear stress

increases at a faster rate than the rolling friction. From the

deformation results, it can be seen that the deformation

increases with the rolling friction, and high stiffness can cause

large deformation change under the increasing rolling fric-

tion. Through comparing the experimental results with sim-

ulation ones in Fig. 4, we find that the stiffness of 4 9 105 can

be chosen as the most suitable value for the DST model.

Based on the above results, both normal and shear

stiffness take the value of 4 9 105. Nevertheless, we

design the following simulation conditions to validate this

value. The DST simulations under different normal stresses

are performed and the results of shear stress and defor-

mation are shown in Fig. 5.

Figure 5a–c present the shear stress results under the

normal stress of 24, 54 and 104 kPa, respectively, and

Fig. 5d presents the shear stress with the rolling friction of

0.3. From the figure, it can be seen that with the stiffness of

4 9 105, the shear stress results under three normal stresses

are consistent with the experimental ones. More impor-

tantly, it is shown that the rolling friction value of 0.3 can

be selected for the following simulations that change par-

ticles with different shapes (clumps).

3.1.2 Particle shape

3.1.2.1 Shear stress and deformation In Fig. 6, the shear

stress and deformation of the model with the spheres are
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compared with those of the ones with the clumps (5-, 12- or

23-sphere) and the experimental one. For the spheres, the

stiffness is 49105 and the rolling friction is 0.3 (the RRL

model). For the clumps, the stiffness is 4 9 105 and no

rolling friction is applied (LCmodel). From Fig. 6a–c, it can

be observed that for the RRL model (i.e. applying rolling

friction), the simple sphere and complex shapes (clumps)

have similar shear stress results. In addition, it can be

observed that the shear stress of the 12-sphere clump is

almost the same as that of the 23-sphere clump, but under the

normal stresses of 54 and 104, their peak shear stress values

are lower than that of the 5-sphere clump.

From Fig. 6d–f, it can be observed that the deformation

results for using the sphere can better accord with the

experimental results than those for using the clump. The

5-sphere clump deformation is higher than the deformation

of other two types of clump. The 23-sphere clump has the

most realistic shape, but it provides the lowest deformation,

which is much lower than the experimental ones.

It is indicated that spheres with rolling friction can

replace complex-shaped particles (clumps). Interestingly, it

is found that the 23-sphere clump sample provides lower

shear stress than the 5-sphere clump sample. This means

the interlocks of the 5-sphere clump is stronger than the

23-sphere clump, as some particles link each other to

become one big particle. The rolling friction has the same

effects as strengthening the contacts and acting as the

interlocks.

For further testing the vertical settlement and lateral

deformation of the sphere with rolling friction, the LPST

model is developed. The simulation results are compared

with the clumps and the results from Ref. [18].

3.1.2.2 Contact force analysis The contact force analysis

is crucial for observing the differences of different particle

shapes and contact models at the mesoscopic level. Most of

the earlier studies utilised the criterions at the macroscopic

level, such as the shear strength in the DST (or triaxial test)

[38], and the friction angle in the hopper discharge [37].

They compared the shear stress and strain or the repose

angle to present that the parameters in the model can be

confirmed. However, different parameters can similarly

match the same test results. In other words, large difference

in the parameters of the contact model may still lead to

similar response. For this reason, the analysis at the

mesoscopic level is necessary to perform with respect to

the contact force chain, contact force distribution, and

coordination number.

Fig. 7 Force chain results of the DST simulation under the normal stress 104 kPa and shearing displacement 20 mm
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3.1.2.3 Contact force chain The contact force chain is

used for observing the force transmit and the shear band.

The force chain results of the DST simulation are shown in

Fig. 7, where the shear band with the spheres are wider

than that with the clumps. The largest contact force values

are close, but the model with the spheres has large average

contact forces and clear force chain. This can also be

observed in the other conditions with the shearing dis-

placements of 80 mm and normal stresses of 54/24 kPa

(Fig. 14, ‘‘Appendix’’). This is because using the spheres

reduce the numbers of particles and contacts, and then each

contact contributes larger forces.

For easy comparison, contact force anisotropy and their

distribution are shown in Fig. 8g by the rose diagrams. In

Fig. 8, the contact force under the normal stress of 24 kPa

with 5 different shearing displacements (0 and 80 mm) is

presented, and all the rose diagrams are given in Fig. 15.

In Fig. 8g, the average contact force is calculated from

the projected forces. The contact forces are projected to the

YZ plane, and the Y-axis directs the shearing direction, as

shown in Fig. 1b. The YZ plane is chosen as the shearing

direction has the most apparent contact force chain change

during shearing.

The average contact force is calculated by averaging the

forces within a certain angle range (every five degrees).

Specifically, the forces have a direction vector that has an

angle to the Y-axis. While 360� are divided every 5� into 72
ranges, the forces with the direction vectors in one range

are averaged. The points in every ranges are connected to

form one closed curve like the black curve in Fig. 8g. The

red curve in Fig. 8g is obtained by smoothing the closed

curve for observing the primary orientation more easily.

The primary orientation is the purple line drawn by eval-

uating the direction of the red curve. Specifically, the

purple line separates the area into two equal ones.

From this figure, it can be seen that with the increase of

the shearing displacement, the primary orientation

decreases from around 90� (0 mm) to the lowest (29.7�/

29.9�/30.6�/36.3�); afterwards, the value slightly increases.

Note that the lowest primary orientation with the spheres is

approximately the same as that with the clumps except for

the 12-sphere clump.

What is more, the contact force with the spheres is 2–2.5

times larger than that with the clumps. However, the

average contact forces are approximately the same for the

models with the clumps (Fig. 8e, f). For example, in

Fig. 8b, the largest average contact force with the sphere is

around 100 N, and the smallest is around 40 N. Corre-

spondingly, the models with clumps produce the maximum

and minimum values of 40–50 N and 15–25 N, respec-

tively. It can also be seen that the average contact forces

increase with the shearing displacement.

It is significant to find that the average contact force of

the spheres is 2–2.5 times larger than that of the clumps.

This is because the contacts of the spheres are approxi-

mately half of the clumps, and thus every contact bear

more shearing stress. Alternatively, every contact of the

spheres are strengthened. The contact number of each

particle can be presented by the coordination number,

which will be discussed in the following section.

3.1.2.4 Coordination number The comparison of coor-

dination number change is shown in Fig. 9b. The coordi-

nation number is the average number of active contacts for

each particle. The coordination number is calculated by the

use of the particles that lie at the shearing zone within the

four measurement spheres, as shown in Fig. 9a. As the

shearing zone is the most important position to produce the

shearing stress, the particles at the shearing zone have the

most obvious movements. The radius of the measurement

spheres is 0.1 m, and the coordinates of the measurement

spheres are (0.1, 0.18, 0.2), (0.3, 0.18, 0.2), (0.1, 0.3, 0.2)

and (0.3, 0.3, 0.2).

From Fig. 9, it can be seen that the coordination number

increases as the particle shape is more complex (from

spheres to clumps). Moreover, with the increase of the

(a)  Positions for coordination number calculation 
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Fig. 10 Particle rotation of using the spheres or clumps
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normal stress (24, 54, and 104 kPa), the coordination

number also increases, as the assemblies are more com-

pacted. The 23-sphere clumps can produce approximately

twice coordination number than the spheres. The coordi-

nation number results demonstrate that the contacts of the

spheres are less than those of the clumps.

3.1.2.5 Particle rotation In order to confirm the effects

of the rolling resistance on the particle rotation, the sphere

model with the RRL model is compared with the clump

model with the LC model, as shown in Fig. 10. This fig-

ure illustrates the projection of all the particles’ rotation on

the Y–Z Plane, and particularly, the Y-axis is the DST box-

shearing direction. The circles in the DST box represent the

magnitude and position of the particle rotation, and the
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circle colour helps to distinguish the rotation magnitude

(Fig. 10a). The figure shows part of the results that are

obtained under the normal stress 104 kPa, and all the

particle rotation results are given in Fig. 16 (‘‘Appendix’’).

The particle rotation is calculated by Eq. (1) [39]. In the

equation, the Euler angles are utilised to calculate the particle

rotation (i.e. /, h and w), which present the precession rota-

tion, nutation rotation and intrinsic rotation, respectively.

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hð Þ2þ wð Þ2þ uð Þ2
q

: ð1Þ

From the figures, it can be observed that the particle

rotation of the sphere model is almost the same as that of the

clump model. Specifically, the largest rotation (over 180�)
appears at the similar positions, which are the left side of the

upper shear box and the right side of the lower shear box, and

both of them are near the shearing interface. In addition,

most of the large circles (green, purple, and red) appear

along the diagonal line of the shear box and the line is

approximately perpendicular to the contact chain direction.

3.2 Large-scale process simulation test model

3.2.1 Stiffness and particle shape

Figure 11 presents the applied stress vs vertical displacement

with four kinds of particles and different normal and shear

stiffnesses. From the figure, it can be observed that the elastic

deformation and plastic deformation reduce as the stiffness

increase. In addition, the results at the stiffness of 4 9 105

cannot accord with the results in Ref [18], where the elastic

deformation and plastic deformation are within 0.5 mm

(Fig. 11a). After the comparison, it is found that the results

that correspond to the spheres or 5-sphere clumps with the

stiffness of 1 9 107 or 1 9 108 N/m (Fig. 11c, e) can

approximately accord with those in [18]. This proves that

using one set of contact model parameters may not be fit to all

the tests, despite testing on the same material. Even though

the DST is a well-known method for confirming the
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0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5

6

7

L
at

er
al

d
is

p
l a

ce
m

en
t

(m
m

)

Time (s)

Plate 5
Plate 4
Plate 3
Plate 2
Plate 1

(b) Sphere with rolling friction; stiffness 1×106
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(c) Sphere with rolling friction; stiffness 1×107
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(d) Sphere with rolling friction and stiffness 1×108 (e) 5-Sphere clump; stiffness 4×108 (f) 5-Sphere clump; stiffness 1×106
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(g) 5-Sphere clump; stiffness 1×107
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(h) 5-Sphere clump; stiffness 1×108
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(i) 12-Sphere clump; stiffness 4×105
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(j) 12-Sphere clump; stiffness 1×106
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(k) 12-Sphere clump; stiffness 1×107
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(l) 12-Sphere clump; stiffness 1×108
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(m) 23-Sphere clump; stiffness 4×105
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(n)23-Sphere clump; stiffness 1×106
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Fig. 13 Lateral stress vs time of the five movable plates
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parameters in the numerical models, an extra test should be

applied for confirming if the parameters are suitable for all

tests.

Additionally, it also demonstrates that the sphere model

with rolling friction can have the same or even better per-

formance compared with the clump model. Particularly, the

hypothesis of the interlocks (Sect. 3.1.2) can be proved again

by comparing the results in Fig. 11c, e, g and i. Specifically,

the spheres with rolling friction has less vertical deformation

than the clumps. Moreover, the 5-sphere clump has less

deformation than the 12-sphere clump and 23-sphere clump.

The stiffness cannot be 1 9 107 or 1 9 108 due to two

facts: (1) the initial stage (before applying loadings) of

ballast particle in the numerical simulation plays an

important role on the first a few cycles. This can be illus-

trated from Fig. 11, showing that the first cycle has the

largest deformation than the other following cycles. In

addition, there is large deformation in the first 5 cycles;

afterwards, the deformation becomes small and stable,

whichmeans the contacts between the sleeper and the ballast

particles become more and the ballast particles near the

sleeper are rapidly compacted. (2) The elastic deformation

and plastic deformation values have a large range due to the

discrete nature of railway ballast [43, 44]. In response to this,

the lateral displacement and stress results of five movable

plates are presented and compared with the results in [18].

3.2.2 Lateral displacement and stress

The lateral displacement results of the five movable plates

are shown in Fig. 12, and their stress results are shown in

Fig. 13. From Fig. 12a–d, it can be seen that the lateral

displacements reduce with the stiffness increase. Accord-

ing to Fig. 12q, after 100 cycles, the lateral displacements

of all five movable plates are within 5 mm. To match the

test lateral displacements, the stiffness values of 4 9 105

and 1 9 106 are not suitable for the LPST model.

Particularly, the stress from the five movable plates

become a constant (10 kPa) for the stiffness of 1 9 108, as

shown in Fig. 13d, h, l, and p. This demonstrates that the

sphere with rolling friction can provide adequately reliable

results. To be more specific, in Fig. 13d, the stresses

become stable from 32 kPa to 10 kPa after one cycle, while

the other particle shapes stabilize from much higher values,

75 kPa (5-sphere clump), 105 kPa (12-sphere clump) and

185 kPa (23-sphere clump). In addition, the 12-sphere

clump and 23-sphere clump need more cycles to become

stable, 11 and 9 cycles, respectively.

4 Conclusions

To increase the DEM simulation efficiency, the DEM

models for the DST and the LPST are developed and

applied to analyse the ballast performance in terms of shear

strength and deformation. The efficiency of different con-

tact model types and particle shapes are studied. The

numerical results are compared with the experimental

results and results from the literature. From the results and

discussion, the following conclusions can be summarised:

1. Using spheres and linear rolling resistance model with

properly chosen parameters, it is possible to simulate

ballast performance accurately. The parameters can be

confirmed by comparing the modelling results with the

experimental tests.

2. The RRL model can limit the particle movements by

enhancing the forces at the contacts between particles,

complex shape particles with the LC model can

achieve the same performance in this way.

3. The macroscopic ballast performance (e.g. shear

strength) is dependent on the particle contact at the

mesoscopic level (i.e. coordination number). The

performance differences of the different particle

shapes are mainly decided by the coordination number.

4. After calibrating the contact model parameters of a test

model, the numerical results can be quite approximate

to the experimental ones; nevertheless, the calibrated

parameters may not be available for other test models.

5. The DEM models with spheres and the RRL model can

present similar macro performance with those with

clumps if model parameters have suitable values.

Nevertheless, these models have quite different parti-

cle scale performance; e.g. there are still large

discrepancies among the particle performances (move-

ments) in these models.

The LPST model was tested in 15 loading cycles, and it

is necessary to observe the long-term deformation perfor-

mance after thousands of cycles. Additionally, the spheres

with the rolling friction can lead to the same results as

those from the tests; however, the detailed reasons and

mesoscopic mechanics at the particle contacts can be

analysed deeper in a way of the DEM simulations. It should

be emphasised that the contact model parameters need

further investigations to settle the most suitable ones.

Finally, the particle degradation has not been considered in

this work, and further studies will be performed in this

respect.
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Fig. 16 Particle rotation illustration of the DST models
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