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Abstract This paper aims to clarify the influence of sys-

tem spatial variability on train–track interaction from per-

spectives of stochastic analysis and statistics. Considering

the spatial randomness of system properties in geometry,

physics and mechanics, the primary work is therefore

simulating the uncertainties realistically, representatively

and efficiently. With regard to the track irregularity simu-

lation, a model is newly developed to obtain random

sample sets of track irregularities by transforming its power

spectral density function into the equivalent track quality

index for representation based on the discrete Parseval

theorem, where the correlation between various types of

track irregularities is accounted for. To statistically clarify

the uncertainty of track properties in physics and

mechanics in space, a model combining discrete element

method and finite element method is developed to obtain

the spatially varied track parametric characteristics, e.g.

track stiffness and density, through which the highly

expensive experiments in situ can be avoided. Finally a

train–track stochastic analysis model is formulated by

integrating the system uncertainties into the dynamics

model. Numerical examples have validated the accuracy

and efficiency of this model and illustrated the effects of

system spatial variability on train–track vibrations

comprehensively.

Keywords Railway engineering � Stochastic dynamic

analysis � Train–track interaction � Vehicle–track coupled

dynamics � Track irregularities � Longitudinal
inhomogeneity

1 Introduction

Originated from the uncertainty of manufacturing error,

material fatigue and damage, complex excitations, envi-

ronmental effects, etc., the stochasticity of the train–track

interaction becomes an essential characteristic for this

dynamics system. Generally, the random evolution of

system properties in geometry, physics and mechanics is

aroused by the dynamic interaction between train and track

in space. The system spatial variability will inversely

influence the system vibration, accelerating the system

property evolution.

Unlike most of the other dynamic systems, train–track

interaction takes place in a longitudinally large field with

viscoelasticity, nonlinearity and high-dimensional degrees

of freedom (DOF). Consequently, the stochastic charac-

teristics of geometric, physical and mechanical parameters

of the system are actually scattered in a wide range. With

consideration of the system property evolution, it is

anticipated that train–track interaction is both a random

process and possessing abundant random information. See

for instance, the rail profile irregularities, generally denoted

as track irregularities, exist inevitably and randomly along

the whole railway line which might be hundreds or thou-

sands of kilometres long, not to mention the track
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irregularities that vary constantly with train moving loads,

track settlement, structural deformation, etc.

Train–track interaction is intrinsically an assemblage of

system parameters with various mechanical, physical and

geometrical properties, which can be effectively coupled

and characterized by dynamics methodologies. Aiming at

clarifying system stochastic behaviours, the spatial vari-

ability of system geometric and parametric excitations will

be considered with an emphasis in the modelling con-

struction and the dynamics analysis.

1.1 Spatial variation of system geometric property

It is well known that the geometric deformation inevitably

exists in dynamical systems to accommodate forces applied

to the structures or systems. In the train–track interaction

system, one of the most important and unavoidable exci-

tation is definitively the track irregularities and also the

system dynamic behaviour is indeed to be characterized on

spatially varied track portions. The track irregularity has

long been observed, measured and defined by worldwide

researchers and institutions [1, 2]; generally, power spec-

tral density (PSD) function can be used to statistically

represent the track irregularities at frequency–amplitude

field by definitive formula, such as the US railway classes

1–6 and German low- and high-speed spectrums. Using

time–frequency transformation method [3], time-domain

track irregularities, loaded as an input of train–track

interaction, can be equivalently obtained from the PSD

function.

Commonly track irregularities measured from an entire

railroad belong to the big data category, and consequently,

it is time-consuming and less efficient if loading all the

time-domain track irregularity signals into the dynamical

computations. Besides it is unreliable to reveal all system

stochastic behaviours if only the statistical average PSD

function or its relevant time-domain track irregularity is

used as the excitation. Highlighting this concern, pertinent

work on sampling track irregularity random sets from

massive data becomes an interesting topic. Perrin et al. [4]

were devoted to develop a stochastic model for track

irregularities with experimental validations. In this work,

random field theories, such as expansions of Karhunen–

Loève and Polynomial Chaos, are introduced to account for

the statistical variability and dependency of track irregu-

larities along track abscissa. In recent years, Xu et al. [3]

strode forward to propose a practical track irregularity

probabilistic model by utilizing the shape similarity of

track irregularity PSD function in a specific railroad. It is

proved that this approach can reach approachable accuracy

as the model in [4] but with higher efficiency.

1.2 Spatial variation of system properties in physics

and mechanics

Except for track irregularities, parametric excitation, trig-

gered by the spatial variability of system properties in phy-

sics andmechanics, is another objectively existing excitation

type. Thiswork has early been studied byNáprstek andFrýba

[5]. In [5], the railway track and its substructure are simpli-

fied as an infinite beam resting on Winkler foundation. The

stiffness of which is randomly generated by the spectral

density of diffuse typewith an exponential correlation. Later,

Fröhling [6] used amathematicalmodel to discuss the effects

of spatially varying track stiffness on vehicle–track dynamic

behaviours. Besides, Oscarsson and Nielsen [7–9] made

strides in investigating the influence of the scatter in track

properties with a numerical simulation model for train–track

vertical interaction; mostly important, full-scale measure-

ments in the field and laboratory measurements were carried

out to show the unevenness of track properties such as rail

pad stiffness, ballast stiffness and sleeper spacing. Also,

Andersen and Nielsen [10] dealt with a problem by pertur-

bation analysis, where a one-DOF vehicle moves along a

simple track beam with stochastically varying support

stiffness. Moreover, Wu and Thompson [11] treated the

sleeper spacing and ballast stiffness as randomvalues at each

support point. It is found that the point receptance and the

vibration decay rate are changed by the variability of track

properties.

In the last decade, researchers began to notice the spatial

variability of track properties and its influence on track

deterioration, settlement and train–track dynamic beha-

viours, etc. For example, Dahlberg [12] assumed that the

track stiffness irregularities mainly originate from two

aspects: one is the track superstructure, e.g. rails, rail pads

and ballast; the other is the substructure, e.g. foundation

and subgrade soil. In his work, it is demonstrated that the

variation of wheel–rail interaction may be considerably

reduced by an optimized design of the track stiffness

variation such as the use of grouting or under-sleeper pads.

More specifically, some researchers as shown in [13] paid

special attentions on track settlement, track transition,

switches, turnout and rail joints, etc. The track stiffness

irregularities of these track portions are born to exist and

mainly analysed by deterministic dynamic analysis meth-

ods. The relevant work is rather abundant, see the literature

review by Sañudo et al. [13].

1.3 Characterization of train–track interaction

Apart from random simulations of system geometric,

physical and mechanical properties, it is known that

another key work is to integrate these uncertainties into a

dynamics system with satisfaction of mechanics principle,
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that is, the modelling of train–track interaction with

uncertainties.

Generally track structures are modelled by beam, thin-

plate and mass elements, and the interaction between track

components is depicted by linear/nonlinear spring-dashpot

elements. In general, the vehicle is modelled as a multi-

rigid-body system with two-stage suspensions. The

methodologies to build the vehicle and the track system can

be generally classified as mode superposition method and

finite element method. The difficulty widely known is the

characterization of the wheel–rail interaction in a three-

dimensional (3D) space. Regarding the differences in

wheel–rail contact/creepage descriptions, i.e. rigid contact

[7–9, 14–17], elastic contact [3, 18–20] and elastic-plastic

contact [21–23], the complexity, accuracy and efficiency of

the model are significantly different.

To railway dynamics subject to large-scale stochastic

problems, the elastic-plastic model is accurate but ineffi-

cient to train–track dynamics problems at a macro-level,

where large random samples may be accounted for and the

random variable vector is of high dimensionality in space.

Instead the wheel–rail rigid and elastic contact model is far

more efficient and generally accurate enough to clarify the

external loads of rail substructures to explore the internal

strain–stress variation in engineering practices.

1.4 Outline of this work

It can be observed from the state-of-the-art work presented

above that the system geometric uncertainty and physics–

mechanics uncertainty have been studied as a hot topic but

generally in an independent way in the train–track
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Fig. 1 Train–track interaction model (a side view; b end view) (the symbols x, y, z, w, b and h denote the longitudinal, the lateral, the vertical,

the yaw, the pitching and the rolling motion of the bodies, respectively; the subscripts ‘c’, ‘b’ and ‘w’ denote the car body, the bogie frame and

the wheelset, respectively)
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interaction, and sometimes without quantitatively qualify-

ing the uncertainty effects from statistics.

In this work, an integrated research is presented with a

goal of constructing a train–track coupled stochastic anal-

ysis system, where system uncertainties in geometry,

mechanics and physics as the system excitation in a real-

istic and representative way have been wholly accounted

for. The organization of the following paper is as follows:

• In Sect. 2, the modelling method for the train–ballasted

track interaction is presented with brevity.

• In Sect. 3, the spatial uncertainty of system excitations

on geometry, physics and mechanics is illustrated and

the quantification methods for these random excitations

are elaborated. Besides the framework is formed by

integrating the presented works on dynamics model

construction and uncertain parameter simulation.

• In Sect. 4, numerical examples are conducted to

validate the proposed method and to survey the

influence of spatial uncertainty of system geometry

and physics–mechanics property on train–track

interaction.

• Finally in Sect. 5, some concluding remarks are

presented.

2 Dynamics model for train–track interaction

Based on the theory of vehicle–track coupled dynamics

[18, 19], the coupled matrices, as representation of the

dynamic equations of motion for the train–track interaction

shown in Fig. 1, can be established as

MVV MVT

MTV MTT

� �
€XV
€XT

� �
þ CVV CVT

CTV CTT

� �
_XV
_XT

� �

þ KVV KVT

KTV KTT

� �
XV

XT

� �

¼ FV

FT

� �
; ð1Þ

where M, C and K denote the mass, damping and stiffness

matrices, respectively; the subscript ‘V’ and ‘T’ indicate

quantities for the systems of train and track, respectively;

‘VV’ and ‘TT’ indicate matrices for the train and the track,

and ‘VT’ and ‘TV’ indicate matrices for the interaction

between the train and the tracks; €X, _X and X denote the

acceleration, velocity and displacement vectors, respec-

tively; F denotes the loading vector; MVT and MTV are

non-zero matrices for wheel–rail rigid contacts.

2.1 Construction of matrices for the train system

A train includes a group of vehicles, including motor cars

and trailers that are connected by the coupler and draft gear

system. The vehicle is modelled as a multi-rigid-body

system consisting of a car body, two bogie frames and four

wheelsets. The system components are mechanically con-

nected by two-stage suspension systems.

The detail method for constructing train matrices MVV,

CVV, KVV and FV has been presented in [24] for references.

2.2 Construction of matrices for the track system

The track is modelled as a commonly used ballasted track

system by FEM. The rails are models as Bernoulli–Euler

beam, the nodal displacements and rotations towards X-, Y-

and Z-axes are considered. The sleeper and the track bed

are modelled as a rigid body and a mass, respectively. The

linear displacements of the sleeper along Y- and Z-axes and

angular displacement around X-axis are considered. The

vertical displacement of the track bed is accounted for,

including the shearing effect between track beds.

The detail method for the establishment of the track

matrices, i.e. MTT, CTT and KTT, has been presented in [25]

by finite elemental formulations.

2.3 Coupling method for train–track interaction

The following work is coupling the vehicle subsystem and

the track subsystem through the wheel–rail interaction as

shown in Fig. 2. The wheel–rail lateral interaction induced

by the tangential creepages (lateral, longitudinal and spin),

closely correlating to the wheel–rail relative velocity and

creep coefficient, has been described by the fundamental

work of Kalker [26], Vermeulen and Johnson [27], etc.

While for the wheel–rail vertical interaction induced by the

normal contact (or compression), different assumptions are

Fig. 2 Wheel–rail interaction model (the symbols dl and dr denote
the wheel–rail left and right contact angle respectively; hct denotes the
rail cant, and Xr, Yr, Zr, hrx, hry and hrz denote the longitudinal

displacement, the lateral displacement, the vertical displacement, the

angle around X-axis, the angle around Y-axis and the angle around Z-

axis of the rail centroid, respectively)
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made, such as the wheel–rail rigid contact [24], no com-

pression between the wheel–rail normal contact and the

wheel–rail elastic contact by assuming non-adhesive non-

linear normal contact for two spherical solids [18].

As a supplement to the vehicle–track coupled dynamics

method in [18] and following the convenience of modelling

of finite element system, the wheel–rail interaction is

characterized by matrix coupling formulations in energy

principle instead of deriving wheel–rail forces explicitly.

2.3.1 Wheel–rail vertical coupling matrices

Following the Hertzian contact theory, the wheel–rail

vertical force Fwr can be expressed by

FwrðDzÞ ¼ 1

G
Dz

� �3=2

; ð2Þ

where G is the wheel–rail contact constant (m/N2/3); Dz is

the wheel–rail elastic compression (m).

From Eq. (2), the wheel–rail equivalent contact stiffness

kwr,z can be obtained:

kwr;z ¼
FwrðDzÞ

Dz
; ð3Þ

Accordingly, the wheel–rail coupling matrix Kwr can be

obtained as

Kwr ¼
X

i

X4
j¼1

X2
g¼1

kwr;z;j;gN
T
j;gNj;g ð4Þ

with Nj;g ¼ 1 ð�1Þgþ1
dlr �1 �1

� �
jUj;g

� 	
, Uj;g¼

zw;j uw;j vr;j;g zr;j;g
� �

, j ¼ 1; 2; 3; 4, g ¼ 1; 2, where

the symbol Uj;g denotes the displacement vector corre-

sponding to the shape function; i denotes the ith vehicle; j

denotes the jth wheelset and g ¼ 1; 2 denote, respectively,

the left side and right side of a wheelset; dlr denotes half

distance between the left- and right-side wheel–rail contact

points; the subscripts ‘w’ and ‘r’ denote the wheelset and

the rail, respectively; z and u denote the vertical motion

and the roll motion, respectively; and v denotes the virtual

coordinate of track irregularity.

2.3.2 Wheel–rail lateral coupling matrices

Based on the vehicle–track coupled dynamics theory

[18, 19], the wheel–rail lateral coupling matrices have been

derived by energy variation principle in [25], which can be

introduced to this model accordingly.

Till now the methods for coupling the train and the

tracks have been illustrated with brevity. The train and the

tracks are effectively united as an entire system by coupled

matrix formulations. Through numerical validations, it had

been proved that the dynamically coupled matrices of

Eq. (1) can be solved by numerical integral schemes with

high stability and accuracy even at a relatively larger time

step size; besides no iterative procedures are required in the

numerical integration, indicating that one can simultane-

ously obtain the dynamic responses of the train and the

track responses at each time step.

3 Spatial uncertainty and quantification of system
excitation on geometries, physics and mechanics

In course of a train–track interaction event, system exci-

tations (H), including track geometries and system

parameters of physics and mechanics, show randomness in

the spatial axle, which can be assembled by

Hq ¼ ðHq;1;Hq;nÞ; ð5Þ

where q denotes the sampling number: q ¼ 1; 2; . . .; �g, and
�g is the total number; the subscript 1 denotes the track

irregularity vector, and n denotes the system physics and

mechanics parametric vector.

3.1 Generation of correlated pseudo-random

variables following arbitrary probability

distribution function

In Eq. (5), it can be known that there is a high-dimensional

random vector consisting of various random variables

following arbitrary probability distributions and probably

possessing correlations between random variables. For

generating random variables with m-dimensional correla-

tions, a linear and nonlinear two-step transformation

method [28, 29], where the sampling sequences of multi-

dimensional correlated random variables with specified

edge distribution and correlation coefficient can be

obtained, is applied in this present study.

The detail method is presented in ‘‘Appendix 1’’.

3.2 Random simulation model for track

irregularities

Xu et al. [3] have previously proposed a model for

obtaining highly representable random samples from

massive track irregularity data by probabilistic method-

ologies, but it ignores the spatial correlation of track

irregularities of different types; moreover, the track quality

representation of track irregularity spectral density function

has not been illustrated.

For solving above issues, a new model for random

simulation of track irregularities is extensively presented

on the foundation of spectral representation method. In a

3D space, the left- and right-side rails both have vertical
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and lateral irregularities, and the track irregularity vector

can be therefore assembled by

Hq;1 ¼ ðklðsÞ; mlðsÞ; krðsÞ; mrðsÞÞ; s 2 ð0; �S� ð6Þ

with kl;r ¼ c1 � 1
2
c3, ml;r ¼ c2 � 1

2
c4,where c1, c2, c3 and c4

denote the vertical profile, alignment, cross-level and

gauge irregularities, respectively; k and m denote the lateral
and vertical track irregularities, respectively; the subscript

‘l’ and ‘r’ denote the left- and right-side rail, respectively; s

is the longitudinal abscissa of the track, �S is the total

length.

The PSD function of track irregularity vector can be

expressed by

Pq;1 ¼ � ðHq;1Þ; ð7Þ

where � ð�Þ denotes the PSD estimator.

3.2.1 Spectral correlation of track irregularities

Divide the total length �S into N segments, i.e.
�S ¼ ðn � 1Þ�S=N; n�S=Nð �, n ¼ 1; 2; . . .;N. There will be N

PSD functions for each track irregularity type.

According to discrete Parseval theorem [30], one can

derive the following expression as

Xt�1

k¼0

wðkDsÞj j2 ¼ Dx
t

Xt

q¼1

SwðqDxÞ


 

2 � Dx

Xt

q¼1

PðqDxÞ;

ð8Þ

where Swð�Þ denotes the discrete Fourier transform (DFT)

of track irregularities; Ds and Dx denote the time and

frequency interval, respectively; w denotes the discrete

time-domain track irregularity signals; t denotes the total

discrete number; P denotes the PSD vector.

Equation (8) has exposed a close relation between time

signals and its PSD. An integration indicator Uwð�Þ used to

determine the PSD representing certain track geometric

status can be therefore defined by

Uw bð Þ¼Dx
XM�1

q¼0

PwðqDxjbÞ; ð9Þ

where b is the PSD sample; M denotes the total number of

frequency points.

With the definition of correlation coefficient, the spec-

tral correlation of track irregularities can be calculated by

Ci;j¼
CovðUi;UjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½Ui�Var½Uj�

p ; ði; jÞ 2 ½cl; ml; cr; mr�; i 6¼ j;

ð10Þ

where Ci;j denotes correlation coefficient; Ui denotes the

integration indicator, Covð�Þ denotes the covariance func-

tion, and Varð�Þ denotes the variance function

Based on Eq. (10), the correlation coefficient matrix

(CCM) for the track irregularity integration indicator Ui

can be obtained as

RW¼

1 Ckl;kr Ckl;ml Ckl;mr
Ckr;kl 1 Ckr;ml Ckr;mr
Cml;kl Cml;kr 1 Cml;mr
Cmr;kl Cmr;kr Cmr;ml 1

2
664

3
775;Ci;j¼Cj;i; ð11Þ

where the subscript W denotes the distribution type of the

track irregularity integration indicator; ‘Ci;j’ with subscript

i; j¼ ðkl; kr; ml; mrÞ denotes the correlation coefficient

between the ith and the jth irregularity type. When i ¼ j,

Ci;j¼Cj;i¼ 1.

3.2.2 Random simulation of PSD with specific correlations

From Eq. (9), one knows that track irregularity PSD can be

approximately defined by an integration indicator. Thus the

simulation of PSD is equivalent to the simulation of Uwð�Þ.
Generally, the statistical PDF of Uwð�Þ differs from a

normal distribution. The method presented in Sect. 3.1 can

be therefore applied to choose the PSD samples Uwð�Þ.

3.2.3 Random simulation of track irregularities

With the work above, one can naturally obtain the random

variables satisfying specific correlations. The algorithm is

listed concisely as below.
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In Algorithm 1, E is an indicator for judging the devi-

ation between the simulations and the standards; e0 is the

original value assigned to E; e is a tiny value, e\e0; Zn9m

is a real number matrix with order n 9 m for the variable z

following normal distribution; } denotes the random sim-

ulation operator for standard normal distribution; RW!N

denotes the CCMs correlation coefficient matrices trans-

formed from arbitrary distribution (W) to normal distribu-

tion (N); Cholð�Þ denotes the Cholesky decomposition and

Corð�Þ denotes the operator of correlation coefficient.

Because the track irregularities kl;rðsÞ and ml;rðsÞ can be

realistically measured, the PDF of the PSD indicator

UwðbÞ, b ¼ 1; 2; . . .;N, can therefore be obtained statisti-

cally and discretely, represented as fUðbjwÞ.
With acquisition of fUðbjwÞ, the random simulation of

the PSD indicator can be calculated by

UwðbÞ¼F�1
U ðF �Zn�m

ð�ziÞÞ; ð12Þ

where F denotes the cumulative distribution function of the

PSD indicator. Obviously UwðbÞ corresponds to the PSD

function PwðxÞ, as shown in Eq. (9). In train–track inter-

actions, track irregularities, as the system excitation, must

be equivalently transformed into time-domain processes.

The algorithm is presented as below.

Fig. 3 The measured track irregularities
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In Algorithm 2, fy is the frequency domain of Pw; Mil is

the length of the time-domain track irregularities; Nr is the

sampling number; �fy is the frequency range; fl and fu denote

the lower- and upper-limit frequency; conjð�Þ, interp1ð�Þ
and ifftð�Þ denote the conjugate function, 1D interpolating

function and inverse Fourier transformation function,

respectively; U follows uniform distribution at (0, 1) with

length of Lp; and u is the phase distribution.

Till now, the methods for random simulation of track

irregularities have been constructed entirely. In this

method, the random variables are no longer limited to

normal distribution. Instead, arbitrary distributions with/

without correlations can be simulated efficiently and

accurately.

3.2.4 Model validations

Figure 3 plots a section of track irregularities with a length

of 230 km, which are measured by a track inspection car

from a ballasted railway in China.

Set 1 km as a unit length of the track irregularity PSD.

The CCM of track irregularities can be calculated out.

Through transformations, the equivalent CCM of the nor-

mal distribution can be obtained consequently.

The detailed values of CCM are presented as follows:

RW¼

1 0:899 0:213 0:153
0:899 1 0:173 0:114
0:213 0:173 1 0:793
0:153 0:114 0:793 1

2
664

3
775

) RN¼

1 0:918 0:224 0:167
0:918 1 0:182 0:125
0:224 0:182 1 0:835
0:167 0:125 0:835 1

2
664

3
775: ð13Þ

Based on the methods presented above, the random

samples of PSD indicators can be selected by Algorithm 1,

as shown in Fig. 4, where /vl
, /vr

and /cl
denote the

vertical irregularities at the left and right sides and the

lateral irregularities at the right side, respectively. It can be

clearly observed from Fig. 4 that the vertical irregularities,

respectively, at the left and right sides of the rails are

highly correlated; however, the rail irregularities at

different directions (lateral and vertical) are correlated

weakly. Besides, the correlation coefficients Cml;mr and Cml;cl

are, respectively, with values of 0.914 and 0.222, which are

close to the reference values 0.918 and 0.224, respectively.

The PSD functions can certainly be determined using

the integration indicators demonstrated in Fig. 4. Then

Algorithm 2 is applied to obtain time-domain track irreg-

ularities that are randomly transformed from PSD func-

tions. To validate the accuracy and efficiency of the

(a) (b)

Fig. 4 Random selection of PSD indicator satisfying the correlation coefficient matrix (a correlation between the vertical irregularities at the left

and right sides; b correlation between the vertical irregularities at left side and the lateral irregularities at the right side)

(a) 

(b)

Fig. 5 PDF comparison between simulation and measurement (a
vertical irregularity mr; b lateral irregularity cr)
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developed model, Figs. 5 and 6 show the comparisons of

probility distribution function (PDF) and joint PDF of track

irregularities that are, respectively, derived from simulation

and measurement. From these comparisons, one can see

obviously that the statistical distributions of simulation and

measurement coincide well with each other, though with

slight deviations inevitably. However, there are only 50

samples used in the random model, which is significantly

lower than that of measurement (230 samples).

From the comparisons, it can be concluded that the

proposed methods have high accurateness and efficiency.

Moreover, instead of data-based methods, the present

model is purely developed from random theory and

statistics; therefore, it stands for the more general track

geometry status, providing a foundation for random exci-

tation simulation of train–track interactions.

3.3 Random simulation for system parameters

3.3.1 DEM-FEM model

Instead of the expensive full-scale experiments, an alter-

native, a combination of discrete element method (DEM)

and finite element method (FEM) to model the ballasted

track system, is therefore developed to obtain sufficiently

enough track properties to achieve statistical evaluation of

uneven track parameters.

The DEM, developed by Cundall and Strack [31], pro-

vides an effective and reliable approach to simulate the

granular characteristic of ballast assemblies. For the rail-

way ballasted track, the random property of ballast layer is

much larger than that of the subgrade. It is a fact that the

Fig. 6 Joint PDF comparison between vertical irregularities at left

and right sides (a simulation; b measurement)

Fig. 8 Vertical displacement–force curves of typical sleepers

Fig. 7 The DEM for railway ballasted track

Rail. Eng. Science (2020) 28(1):36–53123

44 L. Xu, W. Zhai



coarse granular aggregates are difficult to compact uni-

formly. Besides, research from the EUROBOLT project

recommended that the variation of the subgrade stiffness

should be limited to less than 10% of the mean value [32].

Therefore, regardless of the random nature of the subgrade

system, a railway ballast track DEM model consisting of

rail, sleepers and ballasted bed is therefore developed to

reveal the non-uniform property of the supporting stiffness

of the ballast layer.

Figure 7 shows the DEM model of railway ballasted

track. The rail is simulated as a beam using the parallel

bond, which can transmit both force and moment between

particles, and the sleeper and fastener are modelled by

bonding small particles together as a clump (super rigid

body) [33]. Especially, the ballast layer is modelled by the

compacted well-graded ballast particles with irregular

shape, which is simulated by integrating the DEM with the

image processing techniques. For more details of the DEM

model of railway ballast track, one can refer to Ref. [34].

Applying DEM to establish a large-scale track model is

yet impractical due to the large computational cost, thus

only 57 sleepers are simulated in the DEM model. The

length of the model is 35 m (including 57 sleepers) with

the sleeper spacing interval of 0.6 m, and the thickness of

ballast bed is 0.35 m. To obtain sufficiently enough track

data of sleeper support stiffness, 19 identical DEM models

of the same scale have been established simultaneously.

The differences between these track models are the random

characteristics of ballast particles in compactness, irregular

shape, size and location, etc. Therefore, a total length of

1995-m ballast track can be obtained by assembling these

segment tracks, which contacts 1083 sleepers.

3.3.2 Comparison with experimental results

The sleeper support stiffness is a comprehensive and basic

index for evaluating track performance, and it can be

defined as the capacity of a track to bear a load. Herein, the

gradual increase load P (from 0 to 40 kN) is applied to a

certain sleeper unfastened with the rail (removing the fas-

tener particle), and the corresponding sleeper displacement

y is recorded. Thus, the sleeper support stiffness under this

sleeper can be expressed as 2P/y approximately (only half

of the track is considered in the model). Examples of load-

deflection characteristics for four sleepers are shown in

Fig. 8, the ‘‘Sleeper 16’’ means the No. 16 sleepers counted

from left to right facing X-axis. Note that the deflection of

sleepers varies significantly from 0.56 to 0.67 mm for the

same load level and the sleeper stiffness values are in the

range from 119 to 142 kN mm-1, which is consistent with

previous filed test results conducted by Oscarsson and

Dahlberg [35, 36] and Ma [37]. Using this DEM-FEM

model, the statistical distribution of the support stiffness for

the track can be obtained, as illustrated in Fig. 9, where the

mean and the standard deviation of the support stiffness are

112.95 and 16.46 MN m-1, respectively.

3.3.3 Random field of system parameters

Based on random field theory, the system parameter space

is denoted by S. If Hq,n is a set of dimension N, where N is

the number of physical and mechanical quantities, then

each quantity is a stochastic process of f(s) with a vector of

dimension d. Random field of system parameters means a

collection of random variables:

Hn � f ðsÞ : s 2 S
� 	

: ð14Þ

According to the statistics of DEM-FEM model

solutions, the PDF of sleeper support stiffness and ballast

mass can be obtained.

Fig. 9 Support stiffness distribution

Fig. 10 Modelling framework for stochastic dynamic analysis of

train–track systems
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The random sets of system parameters have already

been given in the random vector Hn 2 H.

For each random sample, the parameters related to the

physical properties of systems will be considered in the

dynamic matrices, where the parameters related to the

wheel–rail contacts/creepages, e.g. the wheel–rail friction

coefficient, all can be characterized in the derivation of the

dynamic loads.

3.4 Framework for system stochastic analysis

Abovementioned work has fundamentally addressed the

issues in the modelling of train–track interaction and the

simulation of uncertain geometric, physical and mechani-

cal excitations quantitatively and with statistical

significance.

The modelling framework for train–track coupled

stochastic analysis can be formed as shown in Fig. 10.

4 Numerical examples

In the numerical examples, a train consisting of three

identical vehicles is set to run with a constant speed of

160 km/h. The main parameters of the ballast tracks and

the vehicle are listed in ‘‘Appendix 2’’.

4.1 Uncertainty quantification of track geometric

excitation

The most significantly important parts in constructing a

random analysis model for train–track interactions have

been illustrated. However, a validation should be further

investigated: the practicability of the random simulation

method for track irregularities in statistically evaluating the

train–track dynamic behaviours.

In this example, random analysis is mainly conducted

from statistics and frequency prospects, in which the ran-

dom simulation method of track irregularities and the

train–track interaction model are integrated effectively.

(a) (b)

(c) (d)

(e) (f)

Fig. 11 PDF comparison between excitation types C1 and C2 (a vertical acceleration of the bogie frame; b lateral acceleration of the wheelset;

c wheel–rail vertical force; d wheel–rail lateral force; e rail lateral displacement; f rail vertical displacement)
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4.1.1 PDF comparison

For comparisons, two forms of irregularity excitation are

considered:

• C1: Excitation of the measurement: a long length of

track irregularities that are experimentally measured, as

shown in Fig. 3, is used as the system excitation.

• C2: Excitation of the simulation: the track irregularities

simulated by the random simulation method, in which

the irregularity correlation and amplitude and wave-

length characteristics are extracted from the measured

irregularities of C1, is used as the system excitation.

Figure 11 plots the comparisons of the vertical accel-

eration of the bogie frame, the lateral acceleration of the

wheelset and the wheel–rail forces between C1 and C2. It

can be observed from Fig. 11 that the PDFs of dynamic

indices excited by the measured track irregularities coin-

cide well with those excited by the simulated track irreg-

ularities. However, the sampling number of the track

geometry sets used in C2 is significantly smaller than that

in C1 (50 vs 230). Thus, the statistical distribution of the

dynamic responses of train–track systems, where the

amplitude and probability can be fully depicted, is effi-

ciently revealed by the proposed models.

(a) (b)

(c) (d)

Fig. 12 Average PSD comparison between C1 and C2 (a wheel–rail vertical force; b wheel–rail lateral force; c vertical displacement of the rail;

d lateral displacement of the rail)

Table 1 Parametric characteristics of the tracks

Track parameters Mean parametric value

Support stiffness (MN/m)

Rail pad 58

Track bed 112.95

Density (kg/m3)

Track bed 1800

(a)

(b)

Fig. 13 System responses with respect to spatial variation of track

parametric excitations (a rail displacement; b wheel–rail force)
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4.1.2 PSD comparison

The frequency characteristics of system responses can also

be given by the time-domain solutions through spectral or

frequency analysis.

Figure 12 shows the statistical average PSD of dynamic

indices, in which the spectral comparison between C1 and

C2 is presented within the effective frequency range

(	V=llim, where V is the vehicle speed, and llim is the

lower-limit wavelength of track irregularities). As observed

from Fig. 12, both the characteristic wavelength and

spectral value coincide well for different dynamic indices.

Besides, it can be noticed that the spectral distributions of

the rail displacement show shape similarity to those of

wheel–rail forces. Therefore, the proposed track

irregularity simulation method can also be used to char-

acterize system responses in frequency domain.

4.2 Influence of spatially uneven track parametric

excitation

In the example, the track geometric excitation is tem-

porarily ignored for clearly displaying the effects of track

parametric excitation. Besides, it is remarked that the track

transverse vibration is generally rather smaller than that of

the vertical vibration caused by track parametric excitation.

The vertical support stiffness of rail pads and ballast layer

and the mass track bed are regarded as the independent

uncertain parameters. The distribution characteristics of

track random parameters have been illustrated in Table 1.

For parameters following the normal distribution, the

coefficient of variation (COV) is set to be 0.1, 0.2 and 0.3,

respectively.

Figure 13 shows the time-varying rail vertical dis-

placement and the wheel–rail vertical force with respect to

the spatially uneven track parametric excitations on the first

wheelset of the first vehicle. It can be observed from

Fig. 13 that response amplitudes in both the rail vertical

displacement and the wheel–rail vertical force are enlarged

by the increase in COV of the random track parameters.

For example, the maximum value of rail vertical dis-

placement is 0.605, 0.652 and 0.734 mm with respect to

COV of 0.1, 0.2 and 0.3, respectively. Moreover, the

maximum wheel–rail vertical force has also been increased

from 51.3 to 54.5 kN; the difference between the wheel–

rail minimum and maximum force has also been increased

from 1.93 to 6.86 kN, i.e. a 2.55 times increase.

Moreover, Fig. 14 illustrates the time-varying interac-

tion forces between system components regarding the

moving of the first wheelset. One can see that the inter-

action forces between the rail and sleeper and between the

track bed and subgrade surface have also been significantly

increased due to the longitudinal uneven distribution of the

track properties in mechanics and physics.

Obviously, it can be observed from Figs. 13 and 14 that

the spatial uneven track parametric excitation possesses

great influence on wheel–rail interaction and track vibra-

tions. Figure 15 further shows the performance of car body

vertical acceleration against different COV of track

parameters variation, from which it can be seen that the

changes of car body acceleration are noticeable, but with

slight response amplitudes. See for instance, the maximum

car body acceleration at COV of 0.3 is about 3.8 times that

at COV of 0.1.

(a)

(b)

Fig. 14 Interaction forces between system components (a rail–

sleeper interaction force; b track bed–subgrade interaction force)

Fig. 15 Car body vertical acceleration
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4.3 Contribution of track geometric and parametric

excitations on system performance

In the above analysis, it can be cognized that the system

behaviours are greatly influenced by the track geometric

and parametric excitations. However, these two excitation

sources show different degrees of influence to different

system components. Generally, track geometric excitation,

such as the rail profile irregularities, exerts direct effects on

whole systems, but the track parametric excitation holds

more dynamic impacts on track components than those on

vehicle systems.

In this example, an emphasis is therefore put on clari-

fying the contribution of different excitation sources on

system performance, but mainly on vertical vibrations. The

state-of-track irregularities is quantitatively represented by

the probability level, denoted by c, of their equivalent

spectral density functions, as elaborated in [3], and the

variation of system parameters such as rail pad stiffness,

sleeper support stiffness and track bed mass is quantita-

tively represented by the COV denoted by f.
Set c to be varied from 0.01 to 0.99, and f to be varied

from 0.01 to 0.30.

Figure 16 presents the results of car body acceleration

against different combining excitations of track irregularity

and system longitudinal uneven parameters. It can be

observed that the car body acceleration is gradually

increased by the enlargement of track irregularity proba-

bility level, since the larger of the probability level, the

worse of the track irregularity state. However, the spatial

variation of system parameters shows little influence on car

body acceleration (Fig. 16b), because the car body accel-

eration changes little by the COV of system parameters.

Figure 17 plots the distribution of wheel–rail vertical

force with respect to the variation of track geometric and

parametric excitation. With the same manner, the wheel–

rail vertical force is also increased by the enlargement of

track irregularity excitation in general. When the

(a)

(b)

(c)

Fig. 16 Car body vertical acceleration against the changes of track

irregularity probability level c and parameter COV f (a 3D view;

b side view; c end view)

(a)

(b)

(c)

Fig. 17 Wheel–rail vertical acceleration against the changes of track

irregularity probability level c and parameter COV f (a 3D view;

b side view; c end view)
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probability level of track irregularity is bigger than 0.65,

the wheel–rail force fluctuates violently, and scenarios of

wheel–rail separation occur. Unlike the characteristics of

car body acceleration responding to the COV of spatial

parameters, the wheel–rail force is also increased by the

spatial variation of track parameters: the larger of the COV

of parameters, the severer of the wheel–rail interaction.

When the track irregularity probability level is below 0.65,

the wheel–rail interaction force is increased by about

9.57%. If the track irregularity probability level is above

0.65, the wheel–rail force might be increased by a larger

extent.

Besides, responses of track vibration indices such as rail

vertical displacement can be also derived by this work, as

shown in Fig. 18. Obviously, the rail vibrations are more

violently influenced by the spatial variation of track

parameters, compared to the car body acceleration and the

wheel–rail interaction force. For example, the rail dis-

placement can be increased by about 17.16% when the

COV of parameters grows from 0.01 to 0.30.

5 Conclusions

In this work, a systematic modelling framework is devel-

oped to achieve the stochastic analysis of train–track

interaction with consideration of the spatial variation of

system properties. With novelty, new simulation models

are developed to quantitatively characterize the random-

ness of system properties in track irregularities and statis-

tical properties of railway ballast in physics and mechanics.

Apart from model validations, some conclusions can be

obtained from the numerical examples:

(1) The spatial variation of system physical–mechanical

parameters will affect the system vibration substan-

tially, the larger of the coefficients of variation of

system random parameters, the larger of the disper-

sion of system responses.

(2) The extent of influence caused by the system

parametric variation is absolutely different for various

system components. Generally, the track parametric

variation exerts slight influence on vehicle responses

compared to its influence on track vibrations.

(3) System geometric variation, such as the track irreg-

ularities, plays an important role in figuring out the

random behaviour of the train and track. In the

presented cases, it can be confirmed that when the

track irregularity probability level reaches 0.65 or

above, its dynamic influence is remarkably larger than

those brought out by track parametric variation.
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(a)

(b)

(c)

Fig. 18 Rail vertical displacement against the changes of track

irregularity probability level c and parameter COV f (a 3D view;

b side view; c end view)
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Appendix 1

Set zm�n ¼ ðz1; z2; . . .; znÞ as the random variable sequences

with order of m � n following a normal distribution, i.e.

there are n variables and m samples, with the mean value

vector of u ¼ ðu1; u2; . . .; unÞ and covariance matrix Cz,

that is,

Cz ¼
C11 � � � C1n

..

. . .
. ..

.

Cn1 � � � Cnn

0
B@

1
CA: ð15Þ

The covariance matrix Cz can be decomposed into the

form of

Cz¼RRT: ð16Þ

It can be derived that

z ¼ RY þ u;

� ½z� ¼ RRT;

(
ð17Þ

where Ym�n ¼ Y1; Y2; . . .; Ynð Þ is the n dimensional inde-

pendent standard normal distribution; � ½�� is an operator of

deriving covariance matrix.

To variables of non-normal distribution, a nonlinear

transformation between normal distribution and arbitrary

distribution can be obtained byZ zi

�1
fZi
ðziÞdzi ¼

Z vi

�1
fVi
ðviÞdvi ¼ FVi

ðviÞ ð18Þ

with zi ¼ F�1
Zi
ðFVi

ðviÞÞ, vi ¼ F�1
Vi
ðFZi

ðziÞÞ, where fZi
ðziÞ is

the PDF of normal distribution; fVi
ðviÞ is the PDF of an

arbitrary distribution; zi and vi denote, respectively, vari-

able value following normal distribution represented by

subscript ‘Zi’ and arbitrary distribution represented by

subscript ‘Vi’.

The correlation coefficient matrix in Equation (15) will

be modified by the following steps:

(1) The correlation coefficient between two variables, Vi

and Vj, can be equivalently defined by

CVi;Vj
¼

E ðvi � uVi
Þðvj � uVj

Þ
� �

rVi
rVj

; ð19Þ

where E �½ � is the mathematical expectation operator; u

denotes the mean value of a variable; and r denotes the

standard deviation of a variable.

(2) Through the nonlinear transformations, Equation (18)

can be then deduced as

CVi;Vj
¼

Z 1

�1

Z 1

�1

ðF�1
Vi
ðFZi

ðziÞÞ � uVi
ÞðF�1

Vj
ðFZj

ðzjÞÞ � uVj
Þ

rVi
rVj

� 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

Zi;Zj

q e
�

ðz2
i
�2Czi ;zj zizjþz2

j
Þ

2ð1�C2
Zi ;Zj

Þ

� �
dzidzj:

ð20Þ

Following Equation (19), the mathematical relation

between CVi;Vj
and CZi;Zj

is established, and a mapping

relation between Cz of normal distribution and Cv of

arbitrary distribution is obtained accordingly.

By substituting Cz as the modified Cv into Equa-

tion (16), and by Equation (17) the correlated pseudo-

random vector can be obtained.

Appendix 2

See Tables 2 and 3.

Table 2 Vehicle parameters

Parameter Value Unit

Wheelset mass (mw) 2100 kg

Bogie mass (mb) 2600 kg

Car body mass (mc) 27,216 kg

Primary stiffness coefficient per axle box along longitudinal, lateral and vertical direction (kpx, kpy, kpz) 15.68, 7.5, 1.1 MN/m

Secondary stiffness coefficient per axle box along longitudinal, lateral and vertical direction (ksx, ksy, ksz) 0.18, 0.18, 0.32 MN/m

Primary damping coefficient per axle box along longitudinal, lateral and vertical direction (cpx, cpy, cpz) 0.0, 0.0, 5.0 kN�s/m
Secondary damping coefficient per axle box along longitudinal, lateral and vertical direction (csx, csy, csz) 10.0, 3.0, 6.0 kN�s/m
Moment of inertia of car body against rolling, pitch and yaw motion (Icx, Icy, Icz) 112, 1720, 1720 Mg�m2

Moment of inertia of bogie frame against rolling, pitch and yaw motion (Ibx, Iby, Ibz) 2.6, 1.8, 3.3 Mg�m2

Moment of inertia of wheelset against rolling, pitch and yaw motion (Iwx, Iwy, Iwz) 949, 118, 967 kg�m2

Wheel diameter (dw) 0.86 m

Half of wheelbase in one bogie (Lb) 1.25 m

Half of bogie centroid distance (Lc) 8.72 m
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