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Abstract This study seeks to investigate the variations

associated with lane lateral locations and days of the week

in the stochastic and dynamic transition of traffic regimes

(DTTR). In the proposed analysis, hierarchical regression

models fitted using Bayesian frameworks were used to

calibrate the transition probabilities that describe the

DTTR. Datasets of two sites on a freeway facility located

in Jacksonville, Florida, were selected for the analysis. The

traffic speed thresholds to define traffic regimes were

estimated using the Gaussian mixture model (GMM). The

GMM revealed that two and three regimes were adequate

mixture components for estimating the traffic speed dis-

tributions for Site 1 and 2 datasets, respectively. The results

of hierarchical regression models show that there is con-

siderable evidence that there are heterogeneity character-

istics in the DTTR associated with lateral lane locations. In

particular, the hierarchical regressions reveal that the

breakdown process is more affected by the variations

compared to other evaluated transition processes with the

estimated intra-class correlation (ICC) of about 73%. The

transition from congestion on-set/dissolution (COD) to the

congested regime is estimated with the highest ICC of

49.4% in the three-regime model, and the lowest ICC of

1% was observed on the transition from the congested to

COD regime. On the other hand, different days of the week

are not found to contribute to the variations (the highest

ICC was 1.44%) on the DTTR. These findings can be used

in developing effective congestion countermeasures, par-

ticularly in the application of intelligent transportation

systems, such as dynamic lane-management strategies.

Keywords Dynamic transition of traffic regimes �
Hierarchical model � Bayesian frameworks � Lane lateral

locations � Days of the week � Disparity effect

1 Introduction

Establishing models that estimate the stochastic and

dynamic transition of traffic regimes (DTTR) is important

for predicting future traffic conditions and developing

timely effective countermeasures to address congestion.

For example, when two major traffic regimes—free-flow

and congested regimes—are analyzed, the DTTR involves

four transition phenomena. These include evolving from

the free-flow to congested regime (breakdown), staying in

the congested regime, congested to the free-flow regime

(recovery), and staying in the free-flow regime in the next

observation period. Since time is a major factor in their
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occurrences, the four transition processes can be referred to

as the traffic regimes’ dynamic transition.

The DTTR is complex in nature, which is influenced by

several factors, such as driver behavior, demand, vehicle

mix, and weather conditions. Furthermore, the DTTR can

vary greatly by day of the week and lateral lane locations

on the same highway. Understanding the impact of these

factors is useful for implementing advanced traffic man-

agement strategies such as variable speed limit, variable

message signs, congestion pricing, and ramp-metering to

improve the efficiency of traffic operation [1, 2].

Among the DTTR phenomena, the breakdown process is

well-studied in the literature and its theory has recently

been introduced in the roadway capacity estimation [3–12].

One major limitation of many previous investigations on

the breakdown phenomenon is the fact that they ignore the

operational differences due to lateral lane locations on the

freeways. In the analysis, the multi-lane facility’s traffic

data are usually aggregated and implicitly treated as one

unit [1, 13]. The resulting model is also called a complete-

pooled model [14, 15], which indicates that the operational

characteristics are averaged across lanes. In practice,

however, the operational characteristics of freeway seg-

ments may vary significantly across lanes [1, 13, 16],

which is sometimes influenced by the operational policies.

For instance, in urban areas, some states in the USA restrict

heavy vehicles to use lanes near the shoulder. Also, some

states discourage drivers using lanes near the median

unless passing slow moving vehicles. Moreover, the

operational characteristics of the lanes near the shoulder

can be significantly influenced by weaving (merging to the

freeway and diverging to exit a freeway) than lanes near

the median [13, 17]. These introduce variations in the

operating characteristics of a highway [18, 19]. Developing

a model that does not take into account these characteris-

tics and constrains the effect of influencing factors on the

breakdown process to be the same across all lanes may lead

to incorrect conclusions.

Recognizing the operational variations across different

lanes and thus the breakdown process on the freeway, some

empirical studies evaluated individual lanes separately.

One study compared the complete-pooled and the lane-

based approach to estimate the breakdown phenomenon on

the diverging sections [1]. The study shows that using the

lane-based approach significantly improves the accuracy of

the extracted breakdown flow rate, while the aggregated

approach underestimates the breakdown flow rate. Another

study evaluated individual lane breakdown behavior on the

merging freeway sections [16]. It also concludes that there

is a significant difference in breakdown phenomenon

among lanes.

Separating data and developing a model for each group

are also referred to as the no-pooled model [14]. One

outstanding drawback of using this model is that the

operational characteristics of lanes are assumed to be

independent, which as well implicitly suggests that data are

coming from completely different sources or different

portions of data. Such a model assumes that the operational

characteristics of one lane do not affect other lanes.

However, it may not be the case in traffic operations. The

breakdown usually starts with one lane, generally on a lane

near shoulder, and then other lanes follow [20]. Conse-

quently, dependence on operational characteristics as well

as some similarities across different lanes exist. Instead of

conducting a separate analysis for each lane, some studies

have utilized the hierarchical model (random effect) to

estimate the breakdown phenomenon [13]. This type of

model is also referred to as a partial-pooled model. This

model provides a trade-off between the complete-pooled

and no-pooled model properties by accounting for both the

between-group and within-group variations [15, 21]. The

hierarchical model also recognizes the group similarities

and integrates such information in the parameter estimates

[14, 21]. Using the hierarchical Weibull model, the study in

[13] indicates that there is a significant variation in oper-

ational characteristics across different lanes on the freeway.

Further, the study suggests that aggregating data could

potentially ignore the possibility of one lane being con-

gested, while the rest of the lanes are not congested on the

same freeway segment (partial breakdown or semi-con-

gested state).

In summary, despite the growing literature in evaluating

the probabilistic characteristics of the breakdown process,

quantifying the disparity effects on the other transition

phenomena that describe the DTTR is not studied in the

literature. As a result, this study attempts to fill the research

gap by developing hierarchical regression models to cali-

brate the transition probabilities that describe the DTTR

and quantify the associated variations due to different lat-

eral lane locations and days of the week. The parameters’

posterior distributions of the proposed models are all fitted

via the Bayesian framework to account for model and

parameter uncertainties. Moreover, the transition phenom-

ena that define the DTTR are identified on the basis of the

number of traffic regimes, which are estimated using the

Gaussian mixture model (GMM). This study uses one-year

traffic data collected from a freeway facility located in

Jacksonville, Florida. To the best of the authors’ knowl-

edge, the approach herein has not been presented in the

existing literature.
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2 Study sites and data description

Data for the analysis were acquired from the Regional

Integrated Transportation Information System (RITIS)

database. For the purposes of this study, two detectors

(Sites 1 and 2) for the southbound traffic shown in Fig. 1a

located on I-295 in Jacksonville, Florida, were selected. At

these sites, the posted speed limit is 65 miles per hour

(mph). The number of lanes at Site 1 is three, while Site 2

is four. All lanes are standard 12 feet wide. The two sites

consist of general purpose lanes with no managed lanes.

Both sites are located just upstream of off-ramps that are

prone to being in the congested state especially during peak

hours. Traffic variables gathered for modeling were traffic

volume and speed aggregated at a 15-min interval. These

data were collected from March 1, 2015, to March 31,

2016, excluding weekends and public holidays.

Figure 1b shows the 24-h time series of speed variable

at Sites 1 and 2 for all data (one-year data) used in mod-

eling, respectively. Evaluating these figures reveals that

both sites experience congestion only in the morning peak

period. As seen in the figures, the peak period is from

6 a.m. to 9 a.m. Further assessing the traffic speed variable

in Fig. 1, one can say that Site 1 has a relatively lower

speed than Site 2. The higher data density in the time series

scatter plot for Site 1 is between 59 and 68 mph, while for

Site 2 is between 61 and 81 mph in the free-flow state.

In order to obtain enough data of the breakdown and

other transition events for modeling, only the morning peak

period data were evaluated in the current study. The

approach of grouping data into intervals, particularly to

obtain peak period and then developing a statistical model,

is consistent with the previous studies [22–25]. Review of

traffic data during the selected peak period indicates that

Fig. 1 Detector locations on Google map (a) and 24-h profiles of the traffic flow parameters at the two sites (b)
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there were more than 7800 observations on each lane used

to develop the dynamic transition model for Site 2. On the

other hand, data for Site 1, less than 2400 observations,

were available to the authors for the analysis for the period

from March 1, 2015, to March 31, 2016. The speculative

reason for that could be a detector malfunction. The

descriptive statistics of the traffic data by lane for both sites

are shown in Table 1.

3 Speed thresholds for clustering traffic states

To identify the traffic regimes using the speed variable, the

speed distribution of each lane was examined. It was found

that the speed distributions at both sites have more than one

subpopulation. The subpopulations of the speed distribu-

tion were clustered into homogeneous components using

the finite GMM. The GMM model provides a highly

flexible framework for fitting various distribution shapes

including data with heterogeneous characteristics like

traffic speed variable [25–28]. The GMM model fitting the

speed data y can be represented as follows:

f yð Þ ¼
Xn

i¼1

wiNi yjli; r2i
� �

;

wi ¼ Dirichlet 1; . . .; 1ð Þ;
l1; . . .; ln � N 0; 1002

� �
;

r1; . . .; rn � HalfCauchy 0; 10ð Þ;

ð1Þ

where Ni yjli; r2i
� �

is the Gaussian distribution of compo-

nent i, li is the mean parameter of component i, ri is the

standard deviation of component i; n is the total number of

the Gaussian distributions in the mixture model, and wi is

the mixing probability of component i,

Two GMM models were developed in the PyMC3

package, Python programming language, to detect the

speed thresholds for clustering traffic conditions for Site 1

and Site 2 dataset. The GMM model parameters were

estimated using the Markov chain Monte Carlo (MCMC)

simulation through the No-U-Turns (NUTS) step. As

indicated in Eq. 1, the non-informative prior distributions

were used in the model. The mixing probabilities were

assumed to follow the Dirichlet distribution similar to

[27, 28] studies. For the mean parameters, the prior dis-

tribution was assigned to follow the normal distribution

with zero mean and standard deviation of 100, N 0; 1002ð Þ:
Also, the standard deviation parameters in the model were

assumed to follow the half-Cauchy distribution,

HalfCauchy 0; 10ð Þ: In the analysis, a total of 10,000 iter-

ations were sampled in each model, whereby the initial

5000 iterations were discarded as warm-up samples, while

the last 5000 iterations were used for inference. The con-

vergences were monitored using the Gelman–Rubin

statistic and trace plots.

To assign the appropriate number of mixture compo-

nents, the widely available information criterion was used

in the analysis [29]. Findings from the analysis indicate

that two mixture components for Site 1 dataset were found

to be sufficient in approximating the mixture components

for all lanes. As presented in Fig. 2a, one can conclude that

the two components GMM predict the field data distribu-

tions with a reasonable accuracy. These mixture compo-

nents can be referred to as congested and free-flow

regimes. Using the GMM estimates (mean and standard

deviation), the speed thresholds were calculated, i.e., the

speed values that minimize the classification error of data

between the estimated components. This approach has been

used before to calculate the speed thresholds that group

Table 1 Descriptive statistics of flow parameters during the peak period

Variable Metric Site 1 Site 2

Lane near

median

Middle

lane

Lane near

shoulder

Lane near

median

Inner-left

lane

Inner-right

lane

Lane near

shoulder

Speed (mph) Mean 53.3 54.0 61.7 62.6 60.8 60.6 64.8

Median 60.5 60.3 66.9 71.8 69.3 67.3 69.5

SD 13.7 12.3 12.1 22.4 19.9 17.9 18.9

Minimum 18.5 20.5 19.1 5.5 5.2 3.0 11.1

Maximum 71.1 71.4 84.6 91.1 87.5 86.9 98.4

Flow (veh/h/

lane)

Mean 1606.2 1637.9 1156.1 1359.7 1296.8 1110.6 791.2

Median 1644 1648 1144 1364.0 1304.0 1132.0 856.0

SD 339.2 219.1 308.1 372.3 250.3 306.1 482.4

Minimum 492 672 304 40.0 180.0 12.0 12.0

Maximum 2528 2216 1856 2420.0 2152.0 1852.0 1828.0

Number of observations 2297 2300 2272 8071 8079 8082 7867

SD represents standard deviation
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speed data into different traffic regimes [25, 28, 30]. The

results of the analysis reveal that the lane near shoulder has

the highest speed threshold (63.1 mph) compared to middle

lane (56.1 mph) and lane near the median (59 mph). Visual

inspection of the speed distributions in Fig. 2a suggests

that the shoulder lane has comparatively higher speeds than

the middle and median lanes. The calculated speed

thresholds presented in Fig. 2a were further used for

modeling the dynamic transition of traffic conditions.

For Site 2 dataset, three components were found to best

estimate the data distributions for each lane corresponding

to free-flow, congestion on-set/dissolution (COD) or tran-

sitional flow condition, and congested regimes. As seen in

Fig. 2b, the expected posterior distributions approximate

well the field data distributions. As opposed to Site 1, the

modeling results suggest that the lane near the median has

the highest speed threshold (56.2 mph) followed by the

inner-left lane (55.7 mph) and then the inner-right lane

(55 mph), and the lane near shoulder had the lowest speed

(51 mph) for the COD and congested regimes. A similar

pattern was seen on the thresholds that separate COD and

free-flow regime. The estimated trend for Site 2 dataset

mirrors what was revealed in one of the previous studies

[13].

4 Modeling the dynamic transition of the traffic
regimes

To analyze the dynamic transition of the estimated traffic

regimes by the GMM, two Markov chain (MC) models

were developed. The first model was the two-regime MC

Fig. 2 Speed thresholds for clustering traffic regimes. a Site 1 dataset. b Site 2 dataset
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regression for Site 1 and the second model was the three-

regime MC regression for Site 2 dataset. The discussions of

the two MC regressions are presented in the following

subsections.

4.1 Two-regime MC model

Suppose that the traffic states are observed in a sequence of

the finite regimes at a discrete time interval t (t ¼ 15minÞ,
the first-order MC model to probabilistically describe the

transition of regimes is presented in Eq. 2. Note that the

transition probabilities of this model are fitted with the

explanatory variable xt (flow rate at current time t) to

account for variations or heterogeneity associated with the

time-varying effect [24, 25]. The resulting transition

probabilities are non-stationary, which varies as time pro-

gresses depending on the current observed flow rate.

pij xtð Þ ¼ ProbðStþ1 ¼ S0jjSt ¼ Si;Xt ¼ xtÞ; ð2Þ

where pij is the probability of evolving from traffic regime i

to j, Probð Þ is the probability function, St is the current

observed traffic regime, Stþ1 is the next traffic regime, and

S
0
j is the future estimated traffic regime.

Basically, the two-regime MC regression is defined by

the four transition processes, which can be summarized in a

matrix format as follows:

P ¼ pff pfc
pcf pcc

� �
; ð3Þ

where the sum of each row equals to 1, pff is the probability

of staying in the free-flow regime, pfc is the probability to

evolve from free-flow to congested regime (breakdown

probability), pcf is the probability to evolve from congested

to free-flow regime (recovery probability), and pcc is the

probability of staying in the congested regime.

The estimated traffic regimes by the GMM are cate-

gorical in nature such as the free-flow and congested

regime. There are two commonly used regressions for

evaluating the influencing factors for the categorical

response variables: probit and logistic regression. We

selected the logistic regression model in the analysis

because its model results can be easily interpreted using the

odds ratio. To investigate the disparity effects associated

with different lateral lane locations and days of the week

(i.e., Monday through Friday) in the DTTR, the binary

hierarchical logistic regressions were applied to estimate

the transition probabilities presented in Eq. 3. In the anal-

ysis, traffic data are assumed to be nested to different lanes

and days of the week. In this case, data within the same

group are hypothesized to be correlated [14, 21, 31].

Suppose that a freeway has L lanes and m vehicles

observed in each lane in each day (m = 1,..,M, andM is the

total number of vehicles on the freeway). The transition

process of the traffic regime Rij can be predicted as follows:

Rij �Bernoulli pij xtð Þ
� �

;

pij xtð Þ ¼ 1

1þ exp �gmð Þ ;

gm ¼ a0l þ a1xmt þ �k;

ð4Þ

where a0l is the random intercept associated with the lane

lateral location, with the lane ordinal number l ¼
1; . . .; L; a1 represents the flow rate parameter; and �k is the

random effect associated with the day of the week,

k = 1,…,5.

4.2 Three-regime MC model

In calibrating the transition probabilities for Site 2 dataset,

the dynamic transition was assumed to occur in a sequen-

tial manner: free-flow to congestion on-set, then to the

congested regime and congested regime to congestion

dissolution, then to free-flow regime. The congestion dis-

solution and congestion on-set are assumed to have similar

characteristics and thus are considered as one regime in the

current study. Based on the three-phase theory by Kerner

et al. [32], which indicates that there is no direct transition

between congested and free-flow regimes, the transition

from the free-flow to congestion regime and congested

regime to free-flow is ignored in the current study. As a

result, the transition probabilities for these processes were

assigned zero in the matrix (Eq. 5).

p ¼
pff pfo 0

pof poo poc
0 pco pcc

2
4

3
5; ð5Þ

where the sum of each row equals to 1, pff is the proba-

bility of staying in the free-flow regime, pfo is the proba-

bility to evolve from free-flow to COD regime, pof is the
probability to evolve from COD to free-flow regime, poo is
the probability to stay in the COD regime, poc is the

probability to evolve from COD to congested regime, pco is
the probability to evolve from congested to COD regime,

and pcc is the probability to stay in the congested regime.

As indicated in Eq. 5, the first and third rows have two

nonzero elements, which indicate that there are two

dependent transition processes. These transitions were

calibrated using the binary logistic random-effect regres-

sion similar to those fitted for Eq. 3. In contrast, the tran-

sition processes in the second row, which include COD to

free-flow, stay in the COD regime, and COD to the con-

gested regime was calibrated using the multinomial logistic

random-effect regression (Eq. 6).

123 J. Mod. Transport. (2019) 27(4):235–249
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Rij �Multinomial pij xtð Þ
� �

;

pij xtð Þ ¼ Prob Rij ¼ v
� �

¼ exp kmvð Þ
PV

v¼1 exp kmvð Þ
;

kmv ¼ b0lv þ b1vxmvt þ ekv;

ð6Þ

where pij is the probability of evolving from regime i to j,

b0lv is the random intercept for the transition process v, b1v
represents the flow rate parameter for the transition process

v, and ekv is the random-effect term for the transition pro-

cess v.

4.3 Parameter estimation for the two- and three-

regime MC regressions

The NUTS step in the MCMC simulation implemented in

the PyMC3 package was also used to calibrate the posterior

distributions of the model parameters in Eqs. 4 and 6. The

Bayesian analysis requires prior distributions of the model

parameters to be specified before the simulations. Figure 3

shows the prior distributions selected for use in the mul-

tilevel logistic and multinomial logistic regression,

respectively. As shown in both Fig. 3, the prior distribu-

tions for the random intercept in both the two- and three-

regime MC models were assigned to follow the normal

distribution with mean l1 and the standard deviation r1—
that is, a0l and b0lv � N l1; r

2
1

� �
. To borrow strength and

facilitate parameters smoothening from each group, the

hyper-parameters were shared by all intercept coefficients

[21, 31]. The advantage of assigning this type of the hyper-

parameter is the fact that the resulting model gains the

advantages of a complete-pooled model and a no-pooled

model [31]. The hyper-parameter priors (hyper-priors)

were also assigned non-informative prior distributions. For

l1; the normal distribution was specified in terms of mean

zero and the standard deviation of 100, l1 � N 0; 1002ð Þ
while the r1 hyper-parameter, the half-Cauchy distribution,

r1 � halfCauchy 0; 10ð Þ was used. Note that the hyper-pa-

rameter r1 was used to quantify the disparity effect due to

lateral lane location. For the flow model coefficients, the

prior distributions were assigned the normal distribution

with the mean of zero and the standard deviation of 100,

a1 and b1v �N 0; 1002ð Þ: Furthermore, the prior distribu-

tion for the random-effect parameter �k and ekv associated

with the days of the week was specified to follow the

normal distribution with mean l2 and the standard devia-

tion of r2, whereby l2 � N 0; 1002ð Þ and

r2 � halfCauchy 0; 10ð Þ: Also, parameter r2 was used to

calculate variations associated with days of the week.

5 Results

Similar to the GMM parameter estimation, 10,000 itera-

tions were found adequate in estimating the posterior dis-

tributions of the regression’s parameters (binary and

multinomial logit). Also, the initial 5000 iterations were

discarded and the last 5000 iterations were used for infer-

ence. The results of the estimated regressions are presented

in Tables 2 and 3. In these tables, summaries of the pos-

terior distributions—mean, standard deviation, and the

95% posterior credible intervals (CIs) of each parameter—

are reported. The next subsections discuss the results of the

analysis, starting with the results discussion of Site 1 fol-

lowed by Site 2 and concluding the section by discussing

the disparity effects associated with factors such as lane

lateral locations and days of the week.

5.1 Results of regression models for site 1

Two regression models were fitted to calibrate the transi-

tion probabilities of the breakdown and the stay in the

congested regime processes. As presented in Table 2, the

logarithm of the flow rate coefficient has a positive sign,

which potentially indicates that when the flow rate

increases the probability of traffic to breakdown also

increases. The estimate of this coefficient suggests that a

1% increase in the log-transformed flow rate increases the

likelihood of breakdown by 8.68%. The CI of this estimate

does not contain zero as one of the credible values, and

thus it is statistically significant at 95% CIs.

Figure 4a displays the relationship between flow rate

and breakdown probability using the posterior predictive

lines. This figure particularly shows an ‘‘S’’-shaped trend

on the relationship between the two variables. Although the

breakdowns were modeled as lifetime events by some

previous studies [12, 33, 34], the estimated pattern in these

studies is consistent with the pattern reported in Fig. 4a.

Moreover, the boxplots presented in Fig. 4b were used to

compare breakdown probability across lanes. Review of

this figure shows that the breakdown probabilities on the

lane close to shoulder at 1000 veh/h/lane are even higher

than those estimated at 2000 veh/h/lane for the lane near

the median and middle lane. Moreover, the likelihood of

lane near shoulder to breakdown at 2000 veh/h/lane is

nearly one, while the middle lane and the lane near

shoulder lane have approximately 0.5 likelihood. This sit-

uation, a difference existing in the estimated likelihood at

the same flow rate, can lead to a partial breakdown on a

highway. Similar observations are reported by one of the

previous studies [13], which suggests that lanes near the

shoulder have lower capacity than lanes near the median.

123J. Mod. Transport. (2019) 27(4):235–249
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For the stay in the congested regime, the flow rate

coefficient estimate in Table 2 suggests that the likelihood

of staying in the congested regime process increases by

1.8% when 1% of the log-transformed flow rate increases.

As with the breakdown transition, the comparison of the

estimated probability across lanes revealed that the likeli-

hood of staying in the congested regime is higher on the

lane near shoulder than on the middle lane and the lane

near median at the same flow rate (Fig. 5b).

~j ~k~

~
Observed data

Likelihood

Parameters

Hyper 
parameters

~ ~ ~

Multinomial−1( 0 + + )

=

~

μ1 σ1 μ2 σ2

HalfCauchy(0, 10)
HalfCauchy(0, 10)

Normal Normal Normal

Normal
Normal

HalfCauchy

N(0, 1002)

N(0, 1002)
N(0, 1002)

N( 1, σ1
2) N(μ2, σ2

2)

(b)
HalfCauchy

(a)

~j ~k~

=

~
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Likelihood
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Hyper 
parameters

~~ ~ ~

Logit−1( 0 + 1 + )

N(0, 1002)

N(0, 1002)
N(0, 1002)

N( 1, σ1
2) N(μ2, σ2

2)

HalfCauchy(0, 10) HalfCauchy(0, 10)

Normal Normal Normal

Normal
Normal

HalfCauchy HalfCauchy

μ1 σ1 μ2 σ2

Fig. 3 Hierarchical structure of the multilevel regressions. a Logistic regression. b Multinomial logistic regression
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It is noteworthy to know that the stay in the free-flow

and the recovery transition processes (congestion to free-

flow) are not presented because these were considered as

the base category in the model. To clarify this, the stay in

the free-flow and breakdown probabilities in the transition

matrix presented in Eq. 3 sum up to 1. Since the logit link

function was used in the hierarchical regression to fit the

transition matrix, the breakdown estimates and the stay in

the free-flow regime are the same but in opposite sign

(negative vs. positive). Similarly, the estimate of the stay in

the congested regime and the recovery transition processes

are the same but with different signs.

5.2 Results of regression models for site 2

Due to Site 2 dataset having three regimes—free-flow,

COD, and congested regimes—three regression models

were fitted to calibrate the transition processes in Eq. 5.

These include two binary and one multinomial logistic

hierarchical regression. Table 3 gives the calibrated

regression coefficients. The analysis of the free-flow to

COD transition reveals that a 1% increase in the log-

transformed flow rate increases the transition probability

by 1.02%. For the transition from congested to COD

regime process—queue discharging process—the results in

Table 3 show the positive relationship: an increase in the

flow rate on the highway increases the likelihood of dis-

charging the queue. Specifically, the model estimate shows

that a 1% increase in the log-transformed flow rate when

Table 2 Parameters posterior distributions summaries for Site 1 models

Binary logistic hierarchical regression

Coefficients Breakdown process Pfcð Þ Stay in the congested regime Pccð Þ

Posterior mean Posterior SD 95% credible intervals Posterior mean Posterior SD 95% credible intervals

Intercept - 65.10 3.29 - 71.10 - 58.30 - 11.50 2.90 - 17.0 - 5.80

Log of traffic flow 8.68 0.36 8.00 9.35 1.80 0.40 1.06 2.50

Dispersion r1 3.02 1.74 0.75 6.79 0.87 1.00 0.07 2.80

Dispersion r2 0.25 0.19 0.01 0.59 0.17 0.20 0.00 0.50

Stay in the free-flow regime Pffð Þ and recovery transition process Pcfð Þ were treated as the base category in the models

Table 3 Parameters posterior distributions summaries for Site 2 models

Binary logistic hierarchical regression

Free-flow to COD pfoð Þ Congested regime to COD pcoð Þ

Coefficients Posterior mean Posterior SD 95% credible intervals Posterior mean Posterior SD 95% credible intervals

Intercept - 8.73 0.71 - 10.03 - 7.36 - 3.67 0.47 - 4.58 - 2.81

Log of traffic flow 1.02 0.08 0.86 1.18 0.28 0.06 0.17 0.4

Dispersion r1 0.62 0.55 0.13 1.54 0.18 0.28 0.03 0.5

Dispersion r2 0.21 0.13 0.05 0.46 0.22 0.12 0.05 0.49

Multinomial logistic hierarchical regression

COD to free-flow pofð Þ COD to congested regime pocð Þ

Coefficients Posterior mean Posterior SD 95% credible intervals Posterior mean Posterior SD 95% credible intervals

Intercept 15.72 1.11 13.56 17.84 - 7.01 1.24 - 9.41 - 4.52

Log of traffic flow - 2.39 0.13 - 2.64 - 2.12 0.82 0.09 0.65 0.99

Dispersion r1 0.9 0.72 0.19 2.23 1.8 1.13 0.51 4.05

Dispersion r2 0.07 0.09 0 0.2 0.17 0.12 0.01 0.39

Stay in the COD regime was treated as the base category in the multinomial logistic regression, while the stay in the free-flow and stay in the

congested regime were treated as the base category in the binary logistic regressions
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the current state is congested regime increases the queue

discharge probability by 0.28%. The posterior predictive

trend in the relationship between the COD to congested

transition probability and the flow rate is indicated in

Fig. 6a. This figure shows that the predicted trend has high

uncertainties because the whisk lines are spread from the

expected predictive line. One reason that is attributed to the

estimates to have high uncertainties is data variations. The

comparison of the estimated transition probability in

Fig. 6b shows that the queue discharge in the lane near

shoulder has comparatively lower likelihood than in other

lanes at the same flow rate.

The results of the multinomial logistic hierarchical

regression in Table 3 were calibrated by considering the

stay in the COD transition as the base category. The

selection of this variable was done arbitrarily. One can

select either the COD to free-flow or COD to congested

regime transition as a base category, and the results of the

analysis will yield the same interpretation. As indicated in

Table 3, the COD to the free-flow regime transition has a

negative sign with the traffic flow parameter. This suggests

that increasing the traffic flow reduces the likelihood of the

highway to evolve to free-flow state. The model coefficient

particularly reveals that a 1% increase in the log-trans-

formed flow rate reduces the probability of this transition

Fig. 4 Breakdown probability and flow rate relationship for Site 1. a Breakdown probability versus flow rate. b Breakdown probability across

lanes at different flow rates
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process by 2.39%. The association between the flow rate

and the COD to free-flow transition probability is illus-

trated in Fig. 7a. As demonstrated in this figure, the esti-

mated trend is a decreasing ‘‘concave upward’’ shape.

Paralleling the COD to free-flow transition probability

across lanes, the shoulder lane indicates the highest prob-

ability for this transition, while the lane near the median,

inner-right, and inner-left lanes has the nearly the same

likelihood at the same flow rate (Fig. 7b).

Also presented in Table 3, the results for the COD to

congested transition were significant at the 95% CI. The

estimate of the logarithm of traffic flow is 0.82, which

indicates that a 1% increase in the logarithm of flow rate

would cause the likelihood of COD to congested transition

to increase by 0.82% relative to staying in the COD regime.

5.3 Disparity effects caused by different lane lateral

locations and days of the week

To quantify the disparity effects associated with lane lateral

locations and different days of the week, the intra-class

correlation coefficient (ICC) was calculated for each

model. The ICC quantifies the proportion of variations that

would not have been accounted in the model that ignores

data clustering [35]. Alternatively, this value can be viewed

as the measure of the correlation between observations

within the same cluster. Because variances are non-nega-

tive in the model, the ICC normally ranges between 0 and

1. The disparity parameters presented in Tables 2 and 3

were used to calculate the ICC. The ICC analysis for the

breakdown model (Site 1) shows that about 73% of the

total variations are associated with the different lane lateral

locations (Eq. 7). This value is relatively larger than the

within-group variation: a variation due to standard logistic

distribution. In this case, the breakdown events within the

Fig. 5 Stay in the congested transition probability and flow rate relationship for Site 1. a Stay in the congested regime probability versus flow

rate. b Stay in the congested regime probability across lanes at the different flow rate
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same lane are more similar than the breakdown events in

different lanes.

ICC ¼ r21
r21 þ r22 þ r2sl

� �
� 100%

¼ 3:02

0:252 þ 3:02 þ p2
3

 !
� 100% ¼ 73%; ð7Þ

where r2sl represents within-group variance, which is r2sl ¼
p2
3
¼ 3:29 for the standard logistic distribution [35].

On the other hand, different days of the week were

found to have 0.5% contribution to the total variations.

Furthermore, the ICC for the stay in the congested regime

model is 18% for different lane lateral locations, while the

factor—different days of the week—contributes only 0.7%

to the total variations for Site 1 dataset.

ICC ¼ r22
r21 þ r22 þ r2sl

� �
� 100%

¼ 0:252

0:252 þ 3:02 þ p2
3

 !
� 100% ¼ 0:5%: ð8Þ

Similar analyses were conducted for Site 2, and the

estimates indicate that the lateral lane location has the

largest impact on the COD to congested transition process

(ICC = 49.4%) followed by the COD to free-flow

Fig. 6 Transition probability and flow rate relationship for Site 2. a Congested to COD transition probability versus flow rate. b Congested to

COD transition probability across lanes at different flow rates
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transition (ICC = 19.7%), the free-flow to COD transition

(ICC = 10.5%), and the congested to COD transition

(ICC = 1%). For different days of the week, the

congested to COD transition has the highest variation

(ICC = 1.44%) followed by the free-flow to COD

transition (ICC = 1.2%), COD to congested transition

(ICC = 0.5%), and COD to free-flow transition

(ICC = 0.1%).

In summary, there is considerable evidence that lane

lateral locations contribute a significant amount of varia-

tion to the DTTR than different days of the week (con-

sidering only weekdays). This observation is consistent

across the two sites. Moreover, the highest disparity esti-

mate associated with different days of the week is 1.44%.

Based on this estimate, one may conclude that different

days of the week are insignificantly causing variability in

the DTTR. Even though the study in [36] investigated the

difference in flow capacity due to different days of the

week using the analysis of variance (ANOVA) approach,

the same conclusions were made that there is no variation

attributed to different days of the week on estimated

capacity flow.

6 Discussion

This study has presented an empirical approach aimed at

investigating disparity effects of the lateral lane locations

and days of the week on the dynamic transition of traffic

regimes (DTTR). In the analysis, the Markov chain theory

and hierarchical regressions were integrated to describe the

transition processes and the dependence of traffic regimes

and capture the hierarchical structure of observations of the

traffic data. The historical traffic flow parameters—speed

Fig. 7 Transition probability and flow rate relationship for Site 2. a COD to free-flow transition probability versus flow rate. b COD to free-flow

transition probabilities across lanes at different flow rates
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and flow—collected for 1 year (2015–2016) from two sites

on the freeway highway, were applied.

Using the GMM, the speed threshold of each lane that

defines traffic conditions was identified in the analysis.

Overall, the results of the hierarchical regressions in esti-

mating the MC transition probabilities indicated that the

log-transformed flow rate is the significant variable, at 95%

posterior credible intervals, in predicting the likelihood of

evolving from one traffic regime to the next. The lane near

shoulder was estimated to have the highest likelihood of

transitioning from one regime to the next compared to

other lanes at a similar flow rate. Using the intra-class

correlation coefficient (ICC) analysis, it was revealed that

different lane lateral locations contribute a significant

percentage to the total variations in the DTTR for Site 1

dataset. More specifically, the breakdown process was

found to be more influenced by the variations than the rest

evaluated transition processes (ICC = 73%). For Site 2

dataset, the largest variation due to lateral lane location was

observed on the transition from the COD to the congested

regime (ICC = 49.4%). Different days of the week, on the

contrary, were found not to cause variations in the transi-

tion probabilities describing the DTTR. The highest esti-

mate of the ICC among the fitted hierarchal models for

both Site 1 and 2 was 1.44%.

The findings from this study can be possibly used to

enhance the lane-distribution strategy in the application of

the intelligent transportation systems, particularly in the

dynamic lane-management to improve operations effi-

ciency. Furthermore, results are anticipated to increase the

awareness of the variation associated with different lateral

lane locations and days of the week in traffic operations to

both researchers and practitioners. This information is also

useful to transportation agencies in developing other con-

gestion countermeasures.

One limitation that could be further improved in this

study is that the data that were used in modeling the DTTR

from the detectors were not filtered to remove data that had

overlapping bottlenecks between the exit and entrance

ramps. It would be the future research task to consider this

situation in the analysis. Also, more research using data

with different site characteristics is required to validate the

conclusion made in the current study. In addition, it is not

clear if a similar conclusion will be made if different data

resolution is used in modeling, such as 2 min, 5 min. In the

future work, different data resolutions can be used in the

model and compared with the current study results.

Another future work would be the analysis of effects of the

spatial heterogeneity, vehicle mix, weather, and driving

characteristics on the DTTR and the number of traffic

regimes in the GMM. Although the two sites evaluated in

this study have different geometric characteristics and two

regimes were identified on Site 1, while three regimes

optimally describe the operating speed for Site 2, it is not

yet clear if sites with similar geometric characteristics will

yield a similar number of traffic regimes.
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