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Abstract Travel time reliability (TTR) is an important

measure which has been widely used to represent the traffic

conditions on freeways. The objective of this study is to

develop a systematic approach to analyzing TTR on

roadway segments along a corridor. A case study is con-

ducted to illustrate the TTR patterns using vehicle probe

data collected on a freeway corridor in Charlotte, North

Carolina. A number of influential factors are considered

when analyzing TTR, which include, but are not limited to,

time of day, day of week, year, and segment location. A

time series model is developed and used to predict the

TTR. Numerical results clearly indicate the uniqueness of

TTR patterns under each case and under different days of

week and weather conditions. The research results can

provide insightful and objective information on the traffic

conditions along freeway segments, and the developed

data-driven models can be used to objectively predict the

future TTRs, and thus to help transportation planners make

informed decisions.

Keywords Travel time reliability � Probe vehicle data �
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1 Introduction

Travel time reliability (TTR) is an important measure

which has been widely used to represent the traffic con-

ditions on freeways. Accurately modeling TTR is very

important to both transportation agencies and road users.

Different definitions of TTR have been developed in dif-

ferent studies. The Federal Highway Administration

(FHWA) [1] gave a formal definition of TTR, i.e., the

consistency or dependability in travel times, as measured

from day-to-day and/or across different times of the day. In

a Strategic Highway Research Program 2 (SHRP 2) project

conducted by Vandervalk et al. [2], TTR was defined as the

variability in travel times that occur on a facility or for a

trip over the course of time and the number of times (trips)

that either ‘‘fail’’ or ‘‘succeed’’ in accordance with a pre-

determined performance standard or schedule. Table 1

provides a summary of existing TTR definitions in

chronological order.

Different types of measures have also been widely

applied to assess traffic performances and reliability in

recent years. There are four most widely used TTR mea-

sures recommended by FHWA and they are 90th/95th

percentile travel times, buffer index (BI), planning time

index (PTI), and frequency of congestion (FOC). Other

important measures include the standard deviation [11],

coefficient of variation (COV) [12], present variation [5],

skew and width of travel time distribution [13], and misery

index [5]. Table 2 provides a summary of the TTR mea-

sures that were developed and used in past studies in

alphabetical order.

Nowadays, anonymous vehicle probe data have been

greatly improved in both data coverage and data

fidelity, and thus have become a reliable source for

freeway TTR analysis. However, in most cases, TTR
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data are analyzed in the short term, which may not be able

to account for the TTR variability characteristics for all the

segments of a corridor in the long term. Therefore, the

detailed analysis of the TTR patterns in different cases

which can represent different traffic conditions will be

helpful.

The purpose of this study is to develop a systematic

approach to illustrating how TTR distributes and varies

with respect to the time of day (TOD), day of week

(DOW), year, and weather. Case studies are conducted to

present different TTR patterns under different conditions.

The analysis of TTR conducted and the prediction model

Table 1 Summary of existing TTR definitions

Author/agency Year Reliability/TTR definition

Turner et al. [3] 1996 Range of travel times experienced during a large number of daily trips

Charles [4] 1997 Probability that a component or system will perform a required function for a given period of time when

used understated operating conditions. It is the probability of a non-failure over time

Lomax et al. [5] 1997 Impact of nonrecurrent congestion on the transportation system

NCHRP Report 399 [6] 1998 Measure of the variability of travel time

1998 California Transportation

Plan [7]

1998 Level of variability between the expected travel time and the actual travel time experienced

Fowkes et al. [8] 2004 Percent of on-time performance for a given time schedule

FHWA [1] 2006 Consistency or dependability in travel times, as measured from day-to-day and/or across different times

of the day

Elefteriadou and Cui [9] 2007 Probability of a device performing its purpose adequately for the period of time intended under the

stated operating conditions

Florida Department of

Transportation [10]

2011 Percent of travel that takes no longer than the expected travel time plus a certain acceptable additional

time

Vandervalk et al. (SHRP 2

project) [2]

2014 Variability in travel times that occur on a facility or for a trip over the course of time and the number of

times (trips) that either ‘‘fail’’ or ‘‘succeed’’ in accordance with a predetermined performance

standard or schedule

Table 2 Summary of TTR measures

Measure Author/agency Equation

90th/95th percentile travel times: FHWA [1] 90th/95th percentile travel times

Buffer index (BI) FHWA [1] 95thprecentile time�average travel time
average travel time

� 100%

Coefficient of variation (COV) Pu [12] Standarddeviation
Average travel time

Frequency of congestion (FOC) FHWA [1] Frequency of trips exceeding a threshold value

Misery index Lomax et al. [5] Average travel rate Top20% tripsð Þ
Average travel rate

� 1

Planning time PTI FHWA [1] 95thpercentile travel time
free flowtravel time

Present variation 1998 California Transportation Plan [7];

Lomax et al. [5];

NCHRP Report 618 [14]

Standard deviation
Average travel time

� 100%

Skew of travel time distribution Van Lint and Van Zuylen [13] kskew ¼ T90�T50

T50�T10

Standard deviation Dowling et al. [11];

Pu [12]

Standard deviation

Variability index Lomax et al. [5];

Albert [15]

Difference inpeakperiodconfidence intervals
Difference inoff peakperiodconfidence intervals

Width of travel time distribution Van Lint and Van Zuylen [13] kwidth ¼ T90�T50

T50�T10

T90 denotes the 90th percentile travel time T50 denotes the 50th percentile travel time

T10 denotes the 10th percentile travel time
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developed can greatly help decision makers plan, design,

operate, and manage a more efficient highway system.

2 Literature review

Basically, TTR can be analyzed using travel time distri-

bution data, including both single mode distribution [16]

and multimode distribution [17, 18]. Eliasson [19] inves-

tigated the relationship between travel time distribution and

different TOD periods. The result showed that travel times

are approximately normally distributed under severe con-

gestion conditions. However, the travel time distribution

was skewed under low levels of congestion conditions.

Emam and Ai-Deek [16] employed the Anderson–Darling

(AD) goodness-of-fit statistics and error percentages to

evaluate the performances of different distribution types.

The results indicated that the lognormal distribution pro-

vided the best model fit and that it was more efficient to use

the same day of the week (e.g., Mondays) in the estimation

of TTR on a roadway segment than to use mixed data (i.e.,

data collected across multiple weekdays), because of the

significant differences between traffic patterns across

multiple weekdays. In addition, the researchers also

noticed that the new reliability estimation method showed

higher sensitivity to geographical locations. Chen et al.

[18] explored the travel time distribution and variability

patterns for different road types in different time periods.

The authors compared the goodness-of-fit results of several

distribution types and analyzed TTR patterns with BI and

COV.

However, to investigate the impact of nonrecurring

congestion on TTR, different sources of travel time vari-

ability (including traffic incidents, inclement weather, and

work zones) were studied by different researchers around

the world. With the consideration of incident, Hojati et al.

[20] developed a method to quantify the impact of traffic

incidents on TTR on freeways. The authors conducted a

Tobit regression analysis to identify and quantify factors

that affect extra buffer time index based on the Queens-

land DOT and STREAMS Incident Management System

(SIMS) database. The results indicated that changes in

TTR as a result of traffic incidents are related to the

characteristics of the incidents. Charlotte et al. [21]

modeled TTR on urban roads in the year 2010 in the

region of Paris, France. The 90th percentile of the travel

time distribution was modeled with linear regression using

explanatory variables including the number of lanes, mean

value of the travel time distribution, travel direction, time

of the day, number of accidents, and roadworks. With the

consideration of weather condition, Martchouk et al. [22]

studied the travel time variability using the travel time

data on freeway segments in Indianapolis collected with

the help of anonymous Bluetooth sampling techniques.

The effects of adverse weather were discussed in the

study. The results showed that the travel time increased

during adverse weather period, and the variance in travel

times during the same time period also increased. Li et al.

[23] conducted a study which focused on studying the

weather impact on traffic operations. Different rainfall

intensity data in 72 sample days in Florida were incor-

porated into the TTR model along with the historical

speed database. Different scenarios for each hour (under

clear weather, light rain, and heavy rain conditions) were

created and applied to the respective roadway segments.

The results showed that speed reductions on arterials were

10% for light rain and 12% for heavy rain. Kamga and

Yazici [24] conducted a study via merging taxi trips’ GPS

records and historical weather records of New York City

from 2009 to 2010 and then calculated the descriptive

statistics of travel time under different TOD, DOW and

various weather conditions. The authors used the classi-

fication and regression trees (C&RT) model to extract the

travel time distribution information under each DOW-

TOD-Weather category. With the analysis results of COV,

the authors pointed out inclement weather may not only

result in increased travel time but also result in higher

TTR. With the consideration of multiple influencing fac-

tors, Tu [25] developed a TTR model with the consider-

ation of four influencing factors including road geometry,

adverse weather, speed limits, and traffic accidents. The

model was validated using traffic data from urban free-

ways in Netherlands in the year 2005. The results of road

geometry impacts indicated that there was a threshold

value L for the length of ramp/weaving section. If the

actual length was less than L, the TTR would decrease

with the decreasing length of ramp/weaving sections. If

the actual length was larger than L, the length would have

far less impact on TTR. Javid and Javid [26] developed a

framework to estimate travel time variability caused by

traffic incidents based on integrated traffic, road geometry,

incident, and weather data. A series of robust regression

models were developed using the data from a stretch in

California’s highway system in 2 years. The results of the

split-sample validation showed the effectiveness of the

proposed models in estimating the travel time variability.

In conclusion, for incidents occurring on weekends, the

highway clearance time would be shorter. Shoulder exis-

tence and lane width would adversely impact downstream

highway clearance time. Kwon et al. [27] developed a

linear regression model to study the TTR with the con-

sideration of factors under three categories: traffic influ-

encing events (traffic incidents and crashes, work zone

activity, weather, and environmental conditions), traffic

demand (fluctuations in day-to-day demand and special

events), and physical road features (traffic control devices
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and inadequate base capacity). The model was tested

using the data collected from San Francisco Bay Area in

the year 2008 and used to identify how each variable

contributes to the TTR. The results of this study provided

useful insights into predicting the TTR. Schroeder et al.

[28] presented a methodology to conduct the freeway

reliability analysis based on freeway data in North Car-

olina. The variability impact considerations included

TOD, DOW, month-of-year differences, and various

nonrecurring congestion sources (such as weather, inci-

dents, work zones, and special events). The freeway sce-

nario generator (FSG) was used and resulted in 2508

scenarios based on freeway facility data in North Carolina.

The resulting travel time distribution was presented, and a

sensitivity analysis was conducted to explore the rela-

tionship between weather and incidents and the overall

reliability of the facility. Table 3 provides a summary of

several previous studies on TTR analysis and modeling in

chronological order.

Although useful, most of the studies did not consider the

long-term variation of TTR. This study focuses on the

long-term TTR analysis step-by-step in order to present

data analysis results. The developed data-driven models

can be used to objectively predict the future TTRs. This

study is novel since it identifies the segments with various

TTR patterns at different locations of a corridor, which can

help reveal the travel time characteristics of these locations

under different traffic conditions. The research results can

provide insightful and objective information on the traffic

conditions along freeway segments to help the transit

planners make informed decisions.

3 Descriptive analysis of TTR

3.1 Data description

This study focuses on the travel time data gathered from

the Regional Integrated Transportation Information Sys-

tem (RITIS) web site and uses the collected data to con-

duct the TTR analysis. A series of major freeway

segments are selected for the case study: Interstate 77 (I-

77) southbound (Fig. 1) is one of the most heavily trav-

eled Interstate highways in Charlotte area and runs from

north to south. A total of 32 roadway segments of I-77

southbound are selected in this study, which start from the

intersection with Harris Oak Blvd and end at the inter-

change with I-485 (Exit 2) at the south part of the city.

The total length of the selected segments is 19 miles. In

this study, travel time and speed data are obtained from

the RITIS web site which gathered information about

roadway speeds and vehicle counts from 300 million real-

time anonymous mobile phones, connected cars, trucks,

delivery vans, and other fleet vehicles equipped with GPS

locator devices. Travel time data from January 2011 to

December 2015 aggregated at 15-min intervals are used in

the present study. A sample of raw travel time data uti-

lized in this study is shown in Table 4, which contains the

following information:

TMC_Code The RITIS Probe Data Analytics Suite uses

the TMC (traffic message channel) standard to uniquely

identify each road segment. This field indicates the seg-

ment ID.

Measurement_tstamp This field indicates the time stamp

of the record.

Speed This field indicates the current estimated har-

monic mean speed for the roadway segment in miles per

hour.

Travel_time_seconds This field indicates the time it

takes to drive along the roadway segment.

3.2 Study location identification

The historical weather data aggregated at 1-h intervals

near the Charlotte Douglas International airport can be

found at the www.wunderground.com web site. From

previous studies, it is widely accepted that only severe

weather events can cause a significant impact on speeds

and travel times. Due to the weather characteristics in the

Charlotte area and the distribution of each weather cate-

gory, detailed weather conditions are further classified

into three groups including normal, rain, and snow/fog/

ice. Table 5 presents the detailed classification of the

weather conditions. Conditions such as overcast or mostly

cloudy are assumed to be no different from clear condi-

tions due to no obvious impact on traffic conditions.

These conditions are classified into normal. All the con-

ditions such as rain or thunderstorm are categorized as

rain. In order to ensure the acceptable sample size, snow,

fog, ice pellet, and other similar conditions are combined

together due to their rate of occurrence.

There are four most widely used TTR measures in

previous studies and they are BI, PTI, COV, and FOC.

However, BI and COV have a limitation since their values

depend on the average travel time, which may change

over time [30]. Therefore, the PTI is chosen and used as

the primary measure of TTR in this study. It is calculated

as the 95th percentile travel time divided by the free-flow

travel time so as to represent the percentage of extra travel

time that most people will need to add on to their trip in

order to ensure on-time arrival. For example, a PTI value

of 1.5 at 5 p.m. means that for a 20-minute trip in light

traffic, 30 min should be planned at 5 p.m. to make sure

that he or she is on time. The equation of PTI is provided

below:
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PTIi ¼
Ti95

FFTTi

;

where PTIi is the planning time index of segment I; Ti95 is

the 95th percentile travel time on the TMC segment i

during the study period across multiple days (e.g., a month)

or a year; FFTTi is free-flow travel time on TMC i during

the same observation period as mentioned above.

For each roadway segment, the free-flow travel time is

computed by dividing the length of segment by the free-

flow speed, which is defined as the 85th percentile speed

during overnight hours (10 p.m. to 5 a.m.) [10, 30, 31].

The first step to identify the study segments is to plot the

two-dimensional PTI matrix for each road segment along

the corridor. This would provide a straightforward and

visualized tool for decision makers to grasp the average

traffic conditions along a corridor. The long-term (in one-

year period) PTI values of each segment from 2011 to 2015

were calculated and shown in Fig. 2. Note that in this

Table 3 Summary of previous studies on TTR analysis and modeling

Year Author Location Data

aggregation

interval

Data source Study periods TTR measure(s) Modeling algorithm

2006 Emam and

Ai-Deek

[16]

Orlando, FL, US 5 min RTMC 3:30–6:30 p.m. Buffer index,

coefficient of

variation

Weibull, exponential,

lognormal, and

normal distribution

testing

2007 Eliasson [19] Stockholm,

Sweden

15 min Camera

detectors

6:30 a.m.–8:30

p.m.

Standard deviation N/A

2008 Tu [25] Delft,

Netherlands

N/A Regiolab-Delft

monitoring

system.

N/A kskew, kwidth Dynamic traffic

assignment

2010 Guo et al.

[17]

San Antonio,

TX, US

N/A Automatic

vehicle

identification

(AVI) stations

6:00–10:00 a.m.

3:00–7:00 p.m.

Standard deviation,

90th percentile

travel time

Maximum likelihood

function; Mixture

normal model

2010 Martchouk

et al. [22]

Indiana, US N/A Microwave

detectors

N/A Standard deviation Hazards-based model

2011 Kwon et al.

[27]

San Francisco,

CA, US

N/A PeMS database 7–9 a.m. Buffer time FDOT TTR model

2013 Schroeder

et al. [28]

Durham, NC, US 15 min INRIX 2–8 p.m. Travel time index FREEVAL HCM

model

2014 Kamga and

Yazici [24]

NYC, US N/A Taxis GPS data N/A Standard deviation,

average travel

time, coefficient of

variation

Classification and

regression trees

(C&RT) model

2016 Li [23] FL, US N/A FDOT database N/A Actual travel time FDOT TTR model

2016 Hojati et al.

[20]

Queensland,

Australia

N/A Queensland

database

N/A Extra buffer time

index

Tobit model

2017 Charlotte

et al. [21]

Paris, France 6 min Loop detectors 7–10 a.m.

5–8 p.m.

10 p.m.–5 a.m.

90th percentile travel

time

N/A

2017 Wang et al.

[29]

Seattle, WA, US 20 s GPS data 5:00–11:00 a.m. Coefficient of

variation

Maximum likelihood

method; K-means

analysis

2018 Javid and

Javid [26]

California, US 5 min PeMS database N/A Index of agreement,

correlation

coefficient

Robust regression

2018 Chen et al.

[18]

Beijing, China 1 min Probe vehicle

data

Typical peak/off-

peak hours

Coefficient of

variation, buffer

time index

Weibull, exponential,

lognormal, and

normal distribution

testing
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figure, the horizontal axis denotes the time of day and the

vertical axis represents TMC segments along the selected

section on I-77 southbound. Each cell represents the PTI

value. The darker the color, the higher the PTI.

In order to select the sections which can represent dif-

ferent traffic conditions, the qualitative ratings for each

freeway segment in the study area are conducted and further

classified into different categories/levels based on the qual-

itative criteria of a previous study [32]. The ratings, based on

the PTI values, are given as: (1) reliable (PTI\ 1.5); (2)

moderately to heavily unreliable (1.5\ PTI\ 2.5); and (3)

extremely unreliable (PTI[ 2.5).

Based on the rating criteria mentioned above, eight

segments (shown in Fig. 3) which contain four PTI rating

cases are selected as the sample study segments. The four

cases are

Case 1 (p.m. peak only): The average PTI during a.m.

peak period is reliable and during PM peak period is

unreliable/extremely unreliable. The selected segments are

125-04779 and 125N04780.

Case 2 (a.m. peak only): The average PTI during a.m.

peak period is unreliable/extremely unreliable and during

PM peak period is reliable. The selected segments are

125N04788 and 125-04788.

Case 3 (Double peak): The average PTI during both a.m.

and p.m. peak periods are unreliable/extremely unreliable.

The selected segments are 125N04784 and 125N04785.

Case 4 (No peak): The average PTI during both a.m. and

p.m. peak periods are reliable. The selected segments are

125-04790 and 125N04791.

3.3 TTR variability patterns at different study

locations

3.3.1 TTR variability pattern under all conditions

The PTIs of each segment from 2011 to 2015 are shown in

Fig. 4. The TTR variability pattern in each case can be

categorized as follows:

Fig. 1 Selected I-77 southbound segments

Table 4 Sample raw travel time data

TMC Code Measurement_tstamp Speed

(mph)

Travel_time_seconds

(s)

125N04784 1/1/2015 0:00 62.91 53.58

125N04783 1/1/2015 0:00 61.17 12.82

125N04786 1/1/2015 0:00 60.43 47.56

125N04785 1/1/2015 0:00 61.3 11.85

125N04780 1/1/2015 0:00 63.97 14.59

125N04782 1/1/2015 0:00 63.04 21.73

125N04781 1/1/2015 0:00 62.79 12.42

125N04788 1/1/2015 0:00 65.03 29.6

125N04787 1/1/2015 0:00 63.5 53.76

125-04783 1/1/2015 0:00 62.98 33.22

125-04782 1/1/2015 0:00 62.75 35.68

Table 5 Classification of the weather conditions

New weather category Original weather condition

Snow/fog/ice Haze

Fog

Smoke

Patches of fog

Mist

Shallow fog

Light freezing

Light ice pellet

Ice pellets

Light snow

Snow

Heavy snow

Normal Clear

Partly cloudy

Mostly cloudy

Scattered clouds

Overcast

Unknown

Rain Light rain

Rain

Heavy rain

Light drizzle

Heavy thunderstorm

Light thunderstorm

Thunderstorm

Squalls

Drizzle
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Case 1 These two sections are located at the south part of

the Charlotte downtown area. The volume of outbound

traffic during p.m. hours is high and therefore contributes to

the frequent congestion under p.m. peak condition. In more

detail, in the year 2015, these two segments had obviously

higher PTI values during peak hours than those in the years

of 2011–2014. The condition like this may be attributed to

different factors such as the traffic volume, weather condi-

tion, and accidents. One potential reason behind this could

be the traffic volume on the segments of case 1 from 2011 to

2015 (annual average daily traffic (AADT): 15,300, 15,200,

15,400, 15,900, and 15,900, respectively). The correlation

values between the AADT and average daily PTIs of these

two segments are 0.86 and 0.83, respectively, which means

that they are highly correlated. Therefore, the traffic volume

may be a primary reason of the TTR distribution charac-

teristics. Based on the historical weather data, the frequency

of adverse weather in the year 2015 is higher than that in the

years from 2011 to 2014. In order to eliminate the possible

influence of adverse weather, the TTR distributions under

only normal conditions during each year are also tested and

the average daily PTI of 2015 is reduced a little bit (from 2.1

to 2.0) but is still higher than those of years 2011–2014.

With respect to traffic accident, no detailed historical crash

information about I-77 is found. However, the number of

total crashes in Mecklenburg county in each year had been

increasing from 2011 to 2015 (15,476, 15,915, 16,790,

19,847, and 21,096, respectively) [33]. This can also be

another potential reason that contributes to the worsening of

the traffic condition in the year 2015.

Case 2 These two sections are located at the north part of

the Charlotte downtown area. The volume of inbound traffic

during a.m. hours is high and therefore contributes to the

frequent congestion under a.m. peak condition. Similar to

case 1, in the year 2015, these two segments had obviously

higher PTI values during peak hours than those of years from

2011 to 2014. The condition like this may also be explained

by the potential factors such as traffic volume (with the

correlation values being 0.83 and 0.89, respectively), adverse

weather and accident that contribute to the worsening of the

traffic condition in the year 2015, as presented in case 1.

Case 3 These two sections are located adjacent to Char-

lotte downtown area. The volume of inbound traffic during

a.m. hours and outbound traffic during p.m. hours are both

125-04791
125N04791
125-04790
125N04790
125-04789
125N04789
125-04788
125N04788
125-04787
125N04787
125-04786
125N04786
125-04785
125N04785
125-04784
125N04784
125-04783
125N04783
125-04782
125N04782
125-04781
125N04781
125-04780
125N04780
125-04789
125-04779
125N04779
125-04778
125N04778
125-04777
125N04777
125-04776
125N04776

0:00 12:00 18:00 23:45
Time of day

0

8.06

PT
I

I77 TTR distribution heatmap of year 2011 I77 TTR distribution heatmap of year 2012 I77 TTR distribution heatmap of year 2013

I77 TTR distribution heatmap of year 2014 I77 TTR distribution heatmap of year 2015

TM
C

 c
od

o

Fig. 2 PTI heat maps of I-77 segments in 5 years
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high and therefore contributes to the frequent congestion

under double peak conditions. Similar to cases 1 and 2, in

the year 2015, these two segments had obviously higher PTI

values during peak hours than those in the years of

2011–2014. However, the correlation values between traffic

volume and average daily PTIs are not statistically signifi-

cant (i.e., 0.56 and 0.71, respectively). Therefore, the con-

dition like this may be explained by other potential factors

(such as adverse weather and accident) that contribute to the

worsening of the traffic condition in the year 2015.

Case 4 These two sections are located far away from

Charlotte downtown area. The traffic volumes during both

AM and PM hours are low and therefore contribute to the

no peak condition. The variation of PTIs throughout the

day of each year does not change significantly (from 1.02

to 1.13, and 1.04 to 1.15, respectively).

3.3.2 TTR variability patterns for different days of week

The PTIs of each segment from Monday to Sunday are

shown in Fig. 5, and the average PTIs are shown in

Table 6. The TTR variability patterns for different days of

week in each case can be categorized as follows:

Case 1 For the segments showing the p.m. peak char-

acteristics, the travel time on Friday is least reliable. This

result is consistent with a previous study [29]. The TTR

variability patterns on weekends are significantly different

from weekdays. There are no PM peak characteristics of

the TTR of these two segments on weekends as the PTIs

Fig. 3 Location of selected I-77 segments
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Table 6 Average PTIs from Monday to Sunday

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Segment 125-04779

Average PTI 1.29 1.30 1.30 1.32 1.40 1.10 1.08

Rank 5 3 4 2 1 6 7

Morning peak (7–9 a.m.) PTI 1.10 1.14 1.11 1.10 1.11 1.06 1.06

Rank 5 1 2 4 3 6 7

peak (4–7 p.m.) PTI 2.39 2.42 2.31 2.47 2.63 1.13 1.09

Rank 4 3 5 2 1 6 7

Segment 125N04780

Average PTI 1.37 1.39 1.38 1.44 1.51 1.11 1.09

Rank 5 3 4 2 1 6 7

Morning peak (7–9 a.m.) PTI 1.11 1.15 1.12 1.12 1.11 1.07 1.08

Rank 4 1 2 3 5 7 6

Afternoon peak (4–7 p.m.) PTI 2.89 2.89 2.81 3.19 3.26 1.16 1.11

Rank 4 3 5 2 1 6 7

Segment 125N04788

Average PTI 1.28 1.32 1.28 1.27 1.18 1.06 1.06

Rank 3 1 2 4 5 7 6

Morning peak (7–9 a.m.) PTI 3.09 3.74 3.13 3.23 2.55 1.04 1.05

Rank 4 1 3 2 5 7 6

Afternoon peak (4–7 p.m.) PTI 1.23 1.16 1.28 1.18 1.25 1.14 1.05

Rank 3 5 1 4 2 6 7

Segment 125-04788

Average PTI 1.32 1.37 1.31 1.31 1.25 1.07 1.07

Rank 2 1 4 3 5 6 7

Morning peak (7–9 a.m.) PTI 2.91 3.53 3.11 3.01 2.14 1.04 1.05

Rank 4 1 2 3 5 7 6

Afternoon peak (4–7 p.m.) PTI 1.14 1.08 1.12 1.09 1.09 1.07 1.05

Rank 1 5 2 3 4 6 7

Segment 125N04784

Average PTI 1.74 1.78 1.85 1.97 2.02 1.15 1.12

Rank 5 4 3 2 1 6 7

Morning peak (7–9 a.m.) PTI 2.98 3.31 3.09 3.08 2.49 1.05 1.05

Rank 4 1 2 3 5 6 7

Afternoon peak (4–7 p.m.) PTI 4.30 3.94 4.41 5.29 5.14 1.35 1.45

Rank 4 5 3 1 2 7 6

Segment 125N04785

Average PTI 1.49 1.46 1.57 1.73 1.77 1.11 1.11

Rank 4 5 3 2 1 6 7

Morning peak (7–9 a.m.) PTI 2.73 2.94 2.89 2.92 2.30 1.05 1.06

Rank 4 1 3 2 5 7 6

Afternoon peak (4–7 p.m.) PTI 2.84 2.27 3.01 4.18 4.33 1.12 1.10

Rank 4 5 3 2 1 6 7

Segment 125-04790

Average PTI 1.06 1.07 1.06 1.06 1.05 1.06 1.06

Rank 3 1 4 6 7 5 2

Morning peak (7–9 a.m.) PTI 1.08 1.22 1.09 1.07 1.04 1.05 1.06

Rank 3 1 2 4 7 6 5

Afternoon peak (4–7 p.m.) PTI 1.05 1.05 1.05 1.05 1.05 1.04 1.05
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throughout the day do not change significantly. The max-

imum (and average) PTIs on weekends of these two seg-

ments are 1.28 (1.10) and 1.24 (1.08), respectively. The

results indicate that traffic congestion on weekends

becomes less frequent and also travel demand on weekends

is perhaps much lower than that on weekdays, which is

consistent with previous studies [18, 34].

Case 2 For the segments showing the a.m. peak char-

acteristics, the travel time on Tuesday is the least reliable.

Similar to case 1, there are also no a.m. peak characteristics

of the TTR of these two segments on weekends as the PTIs

throughout the day do not change significantly.

Case 3 For the segments showing the double peak

characteristics, the travel time on Friday is least reliable.

Similar to case 1, there are also no a.m. peak characteristics

of the TTR of these two segments on weekends as the PTIs

throughout the day do not change significantly.

Case 4 For the segments showing no peak characteristics,

average PTIs of each DOW do not change significantly

(from 1.05 to 1.07 and 1.07 to 1.09, respectively). The

results indicate that the traffic congestions on these two

segments are not frequent on both weekdays and weekends.

3.3.3 TTR variability patterns under different weather

conditions

The PTIs of each segment under different weather condi-

tions are shown in Fig. 6. The TTR variability patterns in

each case under different weather conditions can be cate-

gorized as follows:

Case 1 The TTR variability patterns of these two seg-

ments under normal and rain conditions are similar, and the

pattern is unique under the snow/ice/fog condition. In more

detail, the PTIs under rain condition have obviously higher

values than those under normal condition throughout the day.

This probably suggests that rain can cause several travel

problems (such as visibility issues) while driving a vehicle.

Heavy rainfall may lead to hydroplaning, slippery surfaces

for tires, and road flooding. Therefore, the values of PTIs

under rain condition also increase and the traffic congestion

becomes more frequent. This result is consistent with other

studies [23, 35]. The PTIs under snow/ice/fog conditions are

also higher than those under normal condition throughout the

day because of the influence of road surfaces and visibility

problems [36]. Results clearly show that snow/fog/ice can

contribute to unexpected condition on the roadway anytime

throughout the day, resulting in the unique TTR variability

pattern under the snow/fog/ice conditions. This result is also

consistent with a previous study [37]. In particular, there is an

extremely high PTI value at noon. Since the geometric design

characteristics of all the segments are similar, the potential

reason behind this unique pattern could be the nonrecurrent

condition such as the incidents happened during snow con-

dition on the case segments. This hypothesis should be

checked in the future if more detailed data are available.

Case 2 and Case 3 Similar to case 1, the PTIs under rain

condition have obviously higher values than those under

normal condition throughout the day. PTIs under the snow/

ice/fog condition are also higher than the PTIs under normal

condition throughout the day and demonstrate unique vari-

ability pattern.

Case 4 For segments 125-04790 and 125N04791, the

PTIs under rain condition have higher values than those

under normal condition but do not increase significantly.

However, the PTIs under the snow/ice/fog conditions are

much higher than the PTIs under normal condition

throughout the day. This result shows the adverse weather

(such as snow, fog, and ice) can significantly affect the

traffic condition of the segment, and the traffic congestion

becomes more frequent no matter when.

4 TTR prediction

4.1 Time series-based TTR prediction methodology

Exponential smoothing (ETS) model is a commonly used

method in time series analysis and has been widely adopted

Table 6 continued

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Rank 3 1 4 6 5 7 2

Segment 125N04791

Average PTI 1.08 1.09 1.07 1.08 1.08 1.08 1.07

Rank 2 1 6 5 4 3 7

Morning peak (7–9 a.m.) PTI 1.09 1.14 1.07 1.07 1.06 1.08 1.07

Rank 2 1 5 4 7 3 6

Afternoon peak (4–7 p.m.) PTI 1.07 1.07 1.07 1.07 1.07 1.06 1.06

Rank 2 1 5 3 4 6 7
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Fig. 6 TTR variability pattern of each segment under different weather conditions
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in traffic forecasting for decades. The ETS model is an

intuitive forecasting method that weights the observed time

series unequally [38]. Recent observations are weighted

more heavily than remote observations. The ETS equation

[39] is shown as follows:

St ¼ axt þ 1� að ÞSt�1;

where St is the output of the exponential smoothing algo-

rithm; a is smoothing factor, 0 B a B 1; xt is the raw data

sequence.

Based on the historical travel time data, the PTIs from

Monday to Sunday in each year and the PTIs of each month

can be calculated. Those values can be used as the input to

the exponential smoothing model. The ETS model is uti-

lized in this study to predict the PTIs from Monday to

Sunday and the PTIs in each month in the year 2015. Note

that the TTRs under different weather conditions are not

predicted due to its limited sample size in a single year.

The PTIs from Monday to Sunday and the PTIs in each

month from 2011 to 2014 are used as the raw input in the

model to predict the PTIs in 2015. In order to select the

best smoothing factor a, the grid search method is adopted

in this study (with an accuracy level of 0.1). The com-

parison results indicate that a with the value of 1 can

provide the best prediction result. Therefore, the smoothing

factor a with the value of 1 is utilized in this study to

minimum prediction error.

The mean absolute percentage error (MAPE) is used in

this study to evaluate the prediction results. The MAPE

equation is shown as follows:

M ¼ 100%

n

Xn

t

At � Ft

At

����

����;

where M is the absolute percentage error; n is the number

of predicted points; At is the actual TTR value; Ft is the

predicted TTR value.

4.2 TTR prediction results

4.2.1 TTR prediction results considering DOW

Table 7 shows the MAPE of prediction results fromMonday

to Sunday. The result shows that for the segments showing

PM peak characteristics, the prediction model can provide

reliable prediction results for each DOW with the MAPEs

being 8.42% and 8.18%, respectively. The prediction model

can provide most reliable prediction results on Monday with

the MAPEs being 6.54% and 5.72%, respectively. For the

segments showing AM peak characteristics, the prediction

model can provide reliable prediction results for each DOW

with the MAPEs being 9.38% and 7.91%, respectively. The

prediction model can provide most reliable prediction results

on Monday with the MAPEs being 8.07% and 7.55%,

respectively. For the segments showing double peak char-

acteristics, the prediction model can provide prediction

results for each DOW with the MAPEs being 17.33% and

21.21%, respectively. The prediction model can provide

most reliable prediction results on Monday with the MAPEs

being 11.52% and 18.06%, respectively. For the segments

showing no peak characteristics, the prediction model can

provide prediction results for each DOW with the MAPEs

being 2.83% and 2.73%, respectively. The prediction model

can provide most reliable prediction results on Sunday with

the MAPEs being 2.20% and 2.24%, respectively.

4.2.2 TTR prediction results considering MOY

Table 8 shows the average prediction error from January to

December. The result shows that for the segments showing

PM peak characteristics, the prediction model can provide

reliable prediction results with the MAPEs being 7.68% and

8.83%, respectively. The prediction model can provide most

reliable prediction results on April with the MAPEs being

3.90% and 7.03%, respectively. For the segments showing

AM peak characteristics, the prediction model can provide

reliable prediction results with the MAPEs being 8.07% and

Table 7 Percentage prediction errors (Monday to Sunday)

Segment Study case Average percentage error (%)

Monday Tuesday Wednesday Thursday Friday Saturday Sunday Average

125-04779 1 6.54 11.67 10.61 6.95 9.89 7.13 6.18 8.42

125N04780 1 5.72 11.57 10.41 6.31 8.26 7.68 7.33 8.18

125N04788 2 8.07 8.54 8.36 9.21 8.22 11.75 11.48 9.38

125-04788 2 7.55 7.69 8.38 8.83 8.15 7.95 6.83 7.91

125N04784 3 11.52 14.68 16.46 14.64 16.37 22.59 25.05 17.33

125N04785 3 18.06 18.53 20.46 18.53 18.49 25.52 28.86 21.21

125-04790 4 2.77 4.40 3.29 2.56 2.26 2.32 2.20 2.83

125N04791 4 2.84 3.30 2.88 3.08 2.40 2.39 2.24 2.73
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7.29%, respectively. The prediction model can provide most

reliable prediction results on June with the MAPEs 5.67%

and 4.99%, respectively. For the segments showing double

peak characteristics, the prediction model can provide pre-

diction results with the MAPEs being 16.10% and 17.94%,

respectively. The prediction model can provide most reliable

prediction results on May with the MAPEs being 13.03%

and 13.44%, respectively. For the segments showing no

peak characteristics, the prediction model can provide reli-

able prediction results with the MAPEs being 2.77% and

3.15%, respectively. The prediction model can provide most

reliable prediction results on March with the MAPEs being

1.85% and 2.15%, respectively.

5 Conclusion

With the analysis of the TTR of eight typical segments on

the I-77 southbound corridor in Charlotte, NC, the TTR

variability patterns could be identified under different

conditions. Based on the historical TTR data (2011–2014),

the TTR for specific DOW and the TTR of each month in

the year 2015 are also predicted. The information gathered

out of this study can be concluded as follows.

In general, the TTR variability patterns of different

segments along the corridor are different. Different cases

including PM peak only, AM peak only, double peak and

no peak are analyzed separately since they demonstrate

different results. The TTR prediction result also indicates

that the TTR of a year could be predicted accurately based

on the long-term historical TTR data.

With respect to DOW, the TTR analysis results show that

for the segments with noticeable peak hour trend, the TTRs

on weekends are much lower than those on weekdays. The

TTR prediction results also show that the prediction errors

on weekends are lower than those on weekdays. For the

segments with no peak hour, the TTRs on weekends are

similar to those on weekdays. The TTR prediction results

show that the prediction errors on weekends are a little

higher than those on weekdays. In particular, for the seg-

ments under cases 1 and 3 (PM peak only and double peak,

respectively), the TTR on Friday is the highest. For the

segments under case 2 (AM peak only), the TTR on Tuesday

is the highest. For the segments under case 4 (no peak hour),

the TTR on each DOW does not significantly change.

With respect to weather conditions, the TTR analysis

results show that the PTIs under rain condition have

obviously higher values than those under normal condition

throughout the day. The PTIs under snow/ice/fog condi-

tions are also higher than those under normal condition

throughout the day with unique variability patterns.

In most cases, TTR data are analyzed at the segment level

in the short term, which may not be able to account for the

TTR variability characteristics for the whole section in the

long term. This study aims to develop a systematic approach

to analyzing TTR of roadway segments with different

variability patterns along a corridor in the long term.

However, with the limited amount of data, the impacts of

accidents and roadworks on TTR are not discussed in this

study. In the future, the impacts of these variables will be

studied when the data can be made available. Spatial rela-

tionships between segments along the corridor and their

impacts on the TTR will also be investigated. Furthermore,

the TTR analysis will be conducted at a network level and

relevant characteristics will be examined in detail.
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Table 8 Percentage prediction errors (January to December)

Segment Study case Average percentage error (%)

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Average (%)

125-04779 1 6.87 10.67 8.15 3.90 7.28 7.31 5.61 6.07 8.49 6.06 7.53 14.23 7.68

125N04780 1 8.19 9.67 8.73 7.03 9.03 8.54 7.96 8.24 8.90 7.14 7.16 15.37 8.83

125N04788 2 7.69 11.04 6.25 8.00 7.10 5.67 9.16 7.76 6.83 8.36 11.28 7.64 8.07

125-04788 2 6.41 9.93 6.20 6.47 6.38 4.99 6.30 7.22 7.40 6.92 11.42 7.81 7.29

125N04784 3 17.92 16.72 15.86 14.09 13.03 17.84 12.56 19.04 15.90 16.49 12.11 21.66 16.10

125N04785 3 14.08 14.57 14.69 12.84 13.44 24.64 16.19 25.41 16.02 17.87 20.27 25.21 17.94

125-04790 4 1.79 5.64 1.85 2.15 2.65 1.70 2.01 1.82 4.54 2.37 3.88 2.84 2.77

125N04791 4 2.68 5.81 2.15 2.48 2.16 2.36 2.49 2.31 4.56 3.42 3.77 3.63 3.15
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