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Abstract This study is an attempt to establish a suit-

able speed–density functional relationship for heteroge-

neous traffic on urban arterials. The model must reproduce

the traffic behaviour on traffic stream and satisfy all static and

dynamic properties of speed–flow–density relationships. As

a first attempt for Indian traffic condition, two behavioural

parameters, namely the kinematic wave speed at jam (Cj) and

a proposed saturation flow (k), are estimated using empirical

observations. The parameter Cj is estimated by developing a

relationship between driver reaction time and vehicle posi-

tion in the queue at the signalised intersection. Functional

parameters are estimated using Levenberg–Marquardt

algorithm implemented in the R statistical software.

Numerical measures such as root mean squared error, aver-

age relative error and cumulative residual plots are used for

assessing models fitness. We set out several static and

dynamic properties of the flow–speed–density relationships

to evaluate the models, and these properties equally hold

good for both homogenous and heterogeneous traffic states.

From the numerical analysis, it is found that very few models

replicate empirical speed–density data traffic behaviour.

However, none of the existing functional forms satisfy all the

properties. To overcome the shortcomings, we proposed two

new speed–density functional forms. The uniqueness of

these models is that they satisfy both numerical accuracy and

the properties of fundamental diagram. These new forms

would certainly improve the modelling accuracy, especially

in dynamic traffic studies when coupling with dynamic speed

equations.

Keywords Heterogeneous traffic � Speed–density model �
Kinematic wave speed � Traffic flow � CURE plots

1 Introduction

Speed–density (v–k) relationship is straightforward and

easy to explain when compared to other fundamental

relationships. It is a one-to-one relationship between the

driver behaviour and the number of vehicles present on the

road. Speed–density relationship is also a part of traffic

dynamics studies [1–3] to explore traffic flow patterns such

as shock waves and queue lengths on highways and urban

arterials. Selection of a suitable speed–density relationship

influences the performance of macroscopic traffic flow

models. A functional relationship is said to be accurate

when it suitably represents the empirical data and satisfies

all the properties of flow–speed–density relationships. This

study is an attempt to analyse the existing speed–density

functional forms for their numerical accuracy and proper-

ties. Further, new models have been proposed to overcome

the limitations of the existing models.

Heterogeneous traffic mixes are the common sight of

appearance in all the developing economies including

India. The behaviour of heterogeneous traffic mix on urban

arterials is described in various studies [4–6]. In brief, the

traffic streams comprise small and highly manoeuvrable

vehicles such as motorised two wheelers (MTW) and

motorised three-wheelers (MThW). They continuously

search for the gaps in the stream to move downstream even

in the congested condition, which is described as creeping
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behaviour. Highway capacity is greatly affected by widely

varying physical and dynamical characteristics of vehicles

in addition to the absence of lane discipline. There is a

significant difference between the behaviour of homoge-

nous and heterogeneous traffic streams. Thus, it is inter-

esting to study the relationship between traffic stream

variables under heterogeneous traffic flow conditions and

the functional forms that represent it.

The main objective of this paper is to evaluate the

various functional forms using statistical techniques and

the properties of flow–speed–density (q–v–k) relationships.

Based on the results, new mathematical speed–density

functional forms are proposed to improve the accuracy.

This study considers only the single-regime-based models

(continuously differentiable functions for the entire density

range).

2 Literature review

2.1 Traffic stream models

Significant contributions have been made in developing

single-regime stream models since its inception in 1935

[7]. The models are categorised into linear, logarithmic,

exponential and logistic functional forms (Table 1). To

start with, linear models are the simplest of all the func-

tional forms and they are developed based on the

assumption that stream speed decreases linearly with den-

sity. May and Keller’s [8] model is the general form of all

the linear models, and it contains boundary parameters

such as free flow speed (vf), jam density (kj) and shape

parameters m and n (here m[ 0, n[ 0). Other models

such as those by Greenshields et al. [7], Drew [9] and Pipes

[10] can be retrieved from the general form by substituting

m = 1 and/or n = 1. The shape parameters m and n are

Table 1 Speed–density functional relations

Author Functional form Parameters

Linear

Greenshields et al. [7] v ¼ vf 1 � k
kj

� �
vf ; kj

Drew [9] v ¼ vf 1 � k
kj

� �mh i
vf ; kj, m

Pipes [10] v ¼ vf 1 � k
kj

� �n vf ; kj; n

May and Keller [8] v ¼ vf 1 � k
kj

� �mh in vf ; kj;m; n

Logarithmic

Greenberg [12] v ¼ vm ln
kj

k
vm; kj

Exponential

Underwood [13] v ¼ vfexp �k=kmð Þ vf ; km

Drake et al. [14]
v ¼ vfexp � 1

2
k
km

� �2
� �

vf ; km

Papageorgiou et al. [2] v ¼ vfexp � 1
a

k
km

� �ah i
vf ; km; a

Complex

Newell [15] v ¼ vf 1 � exp �k
vf

1
k � 1

kj

� �h in o
vf ; kj; k

Del Castillo and Benitez [16] Exponential curve

v ¼ vf 1 � exp
Cjj j
vf

1 � kj

k

� �� �� � vf ; kj;Cj

Maximum sensitivity curve

v ¼ vf 1 � exp 1 � exp
Cjj j
vf

kj

k � 1
� �� 	� �� �

Lee et al. [17]

v ¼
vf 1� k

kj

� �

1þE k
kj

� �h

vf ; kj;E; h

Wang et al. [18] v k; hð Þ ¼ vb þ vf�vb

1þexp
k�kt
h1

� �h ih2
vf ; kt; vb; h1; h2
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deduced from the car following theories, and they represent

environment and type of the facility [11].

Logarithmic form of traffic stream model is introduced

by Greenberg [12], which is derived using hydrodynamic

principles. The parameters involved in this model are

optimum speed (vm) and kj, and both are difficult to observe

from the field data. Besides this, the model produces infi-

nite speed at free flow conditions. In comparison, expo-

nential forms in the literature such as [2, 13, 14] are robust

in terms of representing empirical data and satisfying the

properties of flow–speed–density relationships. Newell’s

[15] model is derived from the nonlinear car following

theories, and it uses proportionality factor k in modelling

traffic flow. The parameter k is a function of the relative

speed, the intervehicle distance which is estimated by

drawing the tangent to speed vs spacing curve at v(t) = 0.

Del Castillo and Benı́tez [16] believed that the traffic flow

behaviour is strongly characterised by kinematic wave

speed of vehicles at jam density (Cj). From the literature, it

is observed that for various traffic facilities the Cj value is

ranging from - 25 to - 15 km/h. They introduced two

functional forms similar to Newell’s: one is the exponential

curve (single exponential form) and the other one is a

generalised sensitive curve (double exponential form). The

estimation procedure for Cj and k is discussed in Sect. 3.2.

Some recent developments are Lee et al.’s [17] rational

model and Wang et al.’s [18] logistic model. Lee et al.’s

[17] model is made up of the following four parameters vf,

kj, E and h; and the model is developed to capture the

dynamic behaviour of the traffic flow occurring at the

highway ramps. For the given facility, estimated values for

the shape parameters E and h are 100 and 4, respectively.

Wang et al.’s [18] model is a 5 parameter logistic speed–

density relationship which is developed using 100 stations

data on GA 400 expressway in Atlanta. The data used in

this modelling look asymptotic to the axis at upper and

lower limbs. In the given formula, vf and vb are the upper

and lower asymptotes of the curve. Here vb is the average

travel speed at saturation region (stop and go). In the given

model, kt is the inflection point where the curve turns from

free flow to congested flow, h1 is a scale parameter and h2

is a lop-sidedness of the curve.

From the literature survey, it is believed that research on

the development of suitable speed–density functional rela-

tionship for Indian traffic condition is limited. Recently,

Thankappan and Vanajakshi [19] tried to evaluate different

combinations of single and two-regime models for hetero-

geneous traffic data collected on urban roads. The study

suggested that two-regime models are better in representing

the speed–density data. However, the study has only con-

sidered simple linear and exponential models for evaluation

purpose and the models are not evaluated for the properties of

flow–speed–density relationships.

2.2 Properties of the speed–density and flow–density

functional relationships

To model traffic flow precisely, every stream model must

satisfy the properties of flow–speed–density (q–v–k) rela-

tionships. Mathematical properties are categorised into

static and dynamic one. Static properties assume traffic

flow as a stationary phenomenon and dynamic properties

are important while studying the continuity of traffic flow.

The static properties can be stated as follows:

(i) v kð Þk!0¼ vf .

(ii) v0 0ð Þ ¼ 0; i.e., vehicles move at free flow speed when

interaction between vehicles is negligible.

(iii) v kð Þk!kj
¼ 0; i.e., vehicles stop at jam density.

(iv) 0\k� kj; i.e., density varies from zero to maximum

density.

(v) 0� v� vf ; i.e., speed varies between zero and max-

imum flow possible.

(vi) Speed decreases with density, i.e. v0 kð Þ\0.

The first dynamic property is that the kinematic wave

speed ðCjÞ of the traffic at jam condition must be a negative

constant ðq0
kð Þk!kj

is a negative constantÞ. This is intro-

duced by Del Castillo and Benı́tez [16], to represent shock

propagation in saturation flow region. The second essential

dynamic property is that flow–density (q–k) relation must

be convex when traffic is approaching the jam density,

which is necessary for producing stable shock waves at

congested conditions. This is explained below. In Hey-

decker and Addison [20] terms, if the flow–density rela-

tionship is concave throughout its domain (i.e. when

q00 kð Þ\0), then stable shock waves can only occur as

transitions from low to high density. However, if the fun-

damental relationship has a subdomain within which it has

a positive curvature (i.e. where q00 kð Þ[ 0), then stable start

waves can arise when traffic accelerates from a region with

density in this subdomain to a region of lower density.

3 Data collection and parameter estimation

One of the objectives of this study is to fit and evaluate

speed–density functional forms for heterogeneous traffic

data. Empirical data are the basis for development and

validation of traffic flow models. The section describes

traffic data collection and variable estimation procedure

under non-lane based heterogeneous traffic environment.

This section also presents vehicle composition and their

physical dimensions and further parameter estimation from

empirical data.
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3.1 Empirical speed–flow data

Traffic data used in the present analysis were collected on

two urban arterial sections: Panchsheel Marg

(28�32035.500N, 77�12045.800E) and Ho-Chi-Minh Marg

(28�32037.300N, 77�14039.900E) located in Delhi, India

(Fig. 1). In these sections, road width is 10.5 m (effective

width is 10 m) in each direction and the gradients are

negligible. Day-long class-specific speed–flow data were

obtained using video cameras. Approximately 12 h of data

(7:30 a.m. to 6:30 a.m. at Panchsheel Marg and 4:30 p.m.

to 6:00 p.m. at Ho-Chi-Minh Marg) were collected on 3

March 2016 and 9 March 2016.

Due to the absence of lane discipline and presence of

multiple classes of vehicles, extracting heterogeneous

traffic data, especially speed profile of each vehicle over

section, is cumbersome. In the present study, TRAZER�

[21], a video image processing software, was used to

extract individual vehicular speeds and classified volume

counts. The entire width of the road is considered as a

single lane, and all the vehicles have similar right of way.

Vehicles are categorised into four groups based on their

physical and dynamic characteristics: Cars, MTW, MThW

and heavy vehicles (HV). Typical composition of vehicles

and their physical and speed characteristics are provided in

Fig. 2 and Table 2, respectively. Traffic stream

characteristics are mainly influenced by the presence of

cars and two wheelers. Stream space mean speeds and

flows were obtained for each 1-min intervals using

appropriate methods. Here, flow is the number of vehicles

observed per minute and flow rate is the number of vehicles

per hour. Speed is the weighted average speed of all classes

of vehicles observed in 1 min, and the density is the

number of vehicles per kilometre estimated using funda-

mental relationship. The maximum flow rate observed was

11,760 veh/h, and the maximum speed observed in free

flow condition was 67 km/h. The equations used for esti-

mating stream variables are given in Eqs. (1) to (5). The

response of the traffic stream, i.e. space mean speed of

vehicles, needs to be studied with respect to the number of

vehicles present on the road. This is to ensure the true

behaviour of the vehicles on the traffic stream. Therefore,

flow and density are measured in veh/h and veh/km instead

of PCU/h and PCU/km, respectively.

Total number of vehicles per minute:

qmin ¼
XN
i¼1

qi; 8i ¼ 1; 2; 3; 4; ð1Þ

where i indicates the vehicle type and j the number of

vehicles in each vehicle class.

Flow rate (veh/h):

Fig. 1 Study location details
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qhour ¼ qmin � 60: ð2Þ

Class specific harmonic mean speed (km/h):

vi ¼
1PM
j¼1

1
vj

; 8i ¼ 1; 2; 3; 4 and 8j ¼ 1; 2; 3; . . .;M:

ð3Þ

Weighted average speed for the stream (km/h):

�v ¼
PN

i¼1 Ni � ViPN
i¼1 Ni

; 8i ¼ 1; 2; 3; 4: ð4Þ

Vehicle density (veh/km):

k ¼ qhour

�v
: ð5Þ

The relationship between traffic stream variables is

depicted in Fig. 3. The scatter plot shows that the

relationship is nonlinear and the speed–density relation

showing some asymptotic behaviour at the free flow and

congested region. This behaviour can be attributed to the

independent behaviour of vehicles at low- and high-density

regions.

3.2 Parameters from empirical observations

For fitting and evaluating the traffic stream models,

parameters observed from the field data are required. The

empirical observations are also used as initial parameters in

optimisation tool. Since the behaviour of heterogeneous

traffic is different to that of the homogenous traffic, esti-

mating some of the parameters mentioned in Table 1 is

difficult. For instance, jam density (kj) is a function of

vehicle headway maintenance, traffic composition and road

width. Likewise, kinematic wave speed (Cj) is a function of

vehicle length plus safety distance and driver reaction time.

There will be a wide variation in the above-mentioned

parametric values due to the following reasons. Vehicles

are positioned close to each other in the same lane, and the

gaps between large vehicles will be filled by the smaller

ones. In addition, urban traffic composition in India shows

that there are at least ten classes of vehicles observed on

the roads where vehicle lengths vary from 1.8 m (MTW) to

10.3 m (Bus) and the safety distances maintained by these

vehicles are very small. Therefore, jam density is not

constant (suitable value will be considered for the typical

composition) for a given road section. Moreover, the esti-

mation of Cj will also be challenging. Now the parameter

estimation procedure will be discussed under this section. It

is believed that the macroscopic relationship of traffic flow

is strongly characterised by some of the important param-

eters such as kinematic wave speed at jam density (Cj) and

saturation flow parameter kð Þ. In microscopic scale,

parameter k is a function of relative speed and intervehicle

distance. However, in macrolevel, it is a function of

kinematic wave speed and jam density of vehicular flow.

The parameter Cj is a disturbance propagation speed of the

vehicles when density is approaching the jam density and it

is a function of vehicle length plus safety distance and

driver reaction time. It is a first attempt to estimate these

parameters for Indian traffic condition. The detailed esti-

mation procedure is given below.

3.2.1 Kinematic wave speed (Cj) estimation

It is well known that Cj value can be estimated by studying

vehicle dynamics at the signalised intersection [16]. Stop-

ping and starting waves can be observed at signals during

the green and red time, and it resembles the vehicular

(a) (b)

Car
42%

TW
44%

ThW
12%

HV
2%

Car
48%

TW
31%

ThW
12%

HV
9%

Fig. 2 Vehicle composition in terms of percentage: a Panchsheel

Marg. b Ho-Chi-Minh Marg

Table 2 Vehicle classes, physical dimensions and speed characteristics

Vehicle class Vehicles included Vehicle average dimensions (m) Speed characteristics (km/h)

vfree vcong vmean vr

Car Small car, SUV, van 5.0 9 2.0 73.4 4.7 47 14.8

Motorised two wheeler Scooter, moped 1.8 9 0.6 65.2 7.4 46.5 12.8

Motorised three wheeler Auto, LCV 2.6 9 1.4 55.5 4.5 31 8.2

Heavy vehicles Bus, truck 10.3 9 2.5 52.3 3.5 29 9.0

SUV sports utility vehicle, LCV light commercial vehicle, vfree maximum free flow speed, vcong minimum congested speed, vmean mean speed, vr
standard deviation of speeds

Speed–density functional relationship for heterogeneous traffic data: a statistical and… 65
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behaviour at congestion region. Therefore, data regarding

reaction time (ts) of the different driver classes are obtained

at Sri Aurobindo Marg signalised intersection

(28�32040.200N 77�12004.500E) located in Delhi, India. Here

the reaction time is an elapsed time between the start of the

green time and start of the vehicle in a queue.

A linear relationship [Eq. (6)] was found between the

reaction time ðtsÞ and the vehicle position (n) in a queue

with proportionality variance 0.8021. Average reaction

time was found to be 1.45 s from this equation. The rela-

tionship between reaction time and vehicle position is

shown in Fig. 4.

ts ¼ 1:4517n�0:4441: ð6Þ

For a value of 5 m as average vehicle length (with

respect to composition) plus safety distance maintained, Cj

is equivalent to - 12.42 km/h as shown in Eq. (7). This

value is used in assessing various functional forms.

Cj ¼ � 5 m

1:45 s
¼ �12:42 km=h: ð7Þ

3.2.2 Estimation of k and other parameters

We derived the parameter by comparing Newell’s [15] and

Del Castillo’s [16] exponential equations. Newell’s model

can be rewritten as shown in Eq. (8).

v ¼ vf 1 � exp
�k
vfkj

kj

k
� 1

� 	� �� �
: ð8Þ

Here �k

kj

represents the Cj, i.e. the kinematic wave speed

in Del Castillo and Benı́tez [16] model; therefore, k ¼ Cjkj

and the values depend on the kinematic wave speed and the

jam density. As per the empirical data, it starts from

approximately 9000 and the value is equivalent to the

traffic flow value in the saturation region. Therefore, it is

defined as a saturation flow parameter.

Fig. 3 Empirical relationships between a speed–density, b flow–density and c speed–flow data
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Jam density (kj) is estimated through multiple snapshots

taken during the evening congestion, and the values are

ranging from 700 to 800 veh/km. Further, the shape

parameters from different models such as m, n, E, h and a,

the scale parameter h1, and the lop-sidedness parameter h2

are unknown and they will be estimated using optimisation

algorithm. Parameter values such as vb and kt are assumed

based on the definitions given in the literature [18].

Parameters identified from the empirical data are tabulated

below (Table 3).

4 Fitting and evaluation of traffic stream models

4.1 Model fitting and statistical evaluation

Model parameters are estimated using Levenberg–Mar-

quardt (LM) algorithm [22] implemented in the R statisti-

cal software. The LM algorithm switches between Gauss–

Newton algorithm (GNA) and the gradient descent (GD)

method, and it is more robust compared to GNA and GD in

finding optimal solutions. Sum of square residuals is used

as an optimisation function, and the model parameter val-

ues are calibrated by minimising this function. Geometric

fitting of the different speed–density models is shown in

Figs. 5 and 6. Statistical measures such as the root mean

squared error (RMSE) and the average relative error (ARE)

as defined in Eqs. (9) and (10) are used for assessing the

model’s fitness. The RMSE gives you a sense of how close

the observed data points are to the model’s predicted val-

ues. As the square root of variance, RMSE can be inter-

preted as the standard deviation of the unexplained

variance, and it is relatively easy to understand and com-

municate since reported values are in the same units as the

dependent variable being modelled. This is useful in a

variety of applications where the accuracy and precision of

your model’s predictions are important. Similarly, ARE is

also used for comparing model accuracy in predicting

observed data. Lower values of RMSE and ARE indicate a

better fit. Parameter values and the model performance

calculated using different statistical measure are presented

in Table 4.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

vo kð Þ � ve kð Þð Þ2

vuut ; ð9Þ

ARE ¼ 1

N

XN
i¼1

vo kð Þ � ve kð Þj j
ve kð Þj j ; ð10Þ

where vo kð Þ represents the empirically observed data, ve kð Þ
represents the model estimated value specific to particular

density and N represents the total number of data sets.

From the graphical and statistical measures (RMSE and

ARE), it is observed that Wang et al.’s model is outper-

forming all the other models and the parameters also close

to the empirical observations. It is followed by models of

Papageorgiou et al., Lee et al. and May and Keller. How-

ever, barring Greenberg et al.’s model with the highest

RMSE value and Drew’s model with the highest ARE

value, it is somewhat difficult to choose the model on the

basis of these statistics that can outperform other models.

In this regard, cumulative residual (CURE) plots [23] have

been used in assessing the models’ performance.

4.2 Cumulative residual plots

CURE plots help in assessing the model performance

across the different spectrums of density regions. Long

increasing and decreasing runs in CURE plots represent the

underestimation and overestimation of data values,

respectively. A perfect representative model gives a line

ts = 1.4517n - 0.4441
R² = 0.8021

0

2

4

6
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14

16

0 2 4 6 8

R
ea

ct
io

n 
tim

e 
t s

(s
)

Vehicle position in the queue n

Fig. 4 Relation between driver reaction and vehicle position in the

queue

Table 3 Parameter values from empirical data

Parameter Free flow

speed (vf)

(km/h)

Optimum

speed (vm)

(km/h)

Kinematic wave

speed (Cj)

(km/h)

Average travel speed at

saturation region (vb)

(km/h)

Jam

density

(kj)

(veh/km)

Optimum

density (km)

(veh/km)

Inflection

point (kt)

k

Value 65–70 25–30 - 12.42 5–10 700–800 280–300 150–200 9000
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which is meandering around the horizontal axis and their

total cumulative bias must be the minimum. CURE plots in

Fig. 7b, d show that Wang et al.’s and Papageorgiou et al.’s

models are robust in speed predictions; their cumulative

absolute bias values can be estimated [23] to be 556 and

693, respectively, which are lower than those of other

functions (for example Del Castillo 2191 and Underwood

1400). Functional forms such as Lee et al.’s and Drake

et al.’s are also reliable ones. The CURE plots in Fig. 7c

show that the models of Greenberg et al., Newell and Del

Castillo are equally good at the density greater than

200 veh/km. Linear models are showing a good trend in the

density range of 180–300 veh/km, as shown in Fig. 7a.

Statistical analysis and graphical presentation revealed

that models involving a large number of parameters such as

Wang et al.’s and Lee et al.’s are sound descriptors of

empirical data. It is obvious that they resemble any kind of

traffic phenomenon with some adjustments in boundary

and shape parameter values. However, in Sect. 5 we will

show that Lee et al.’s model accuracy can be improved

further by introducing additional parameters. It is clear

from the analysis that linear models of Greenshields et al.,

Drew and Pipes are poor in representing the data. While

models of Greenbergs et al., Newell and Del Castillo can

be part of multi-regime speed–density models due to their

good estimation accuracy at high-density regions.

4.3 Theoretical investigation

On the basis of the statistical evaluation, we can converge

on some models as the best candidates to represent the

empirical data. This may, however, not be sufficient to

ensure that these models are good in representing the

behaviour of traffic flow. In this section, models will be

evaluated for their static and dynamic traffic properties.

Static properties of the model are derived from the fact that

traffic flow is stationary and is always at equilibrium.

However, properties such as the kinematic wave speed (Cj)

and stable shock wave are related to the dynamic behaviour

of the traffic flow and they are obtained from continuum

theory of traffic flow. These properties equally hold good

for both homogenous and heterogeneous traffic states.

Interpretation of static and dynamic properties of the

models is discussed below.

4.3.1 Static properties of the model

Free flow speed (v kð Þk!0¼ vf ) and jam speed (v kð Þk!kj
¼ 0)

are the local properties of the traffic flow relationship since

they define the behaviour of speed–density curve at
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Fig. 5 Geometric fitness of the simple a linear and b exponential traffic stream models
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extremities. Therefore, the speed values must be ranging

between vf and 0. Another local property observed from the

empirical data is that as traffic density approaches zero, the

dependence of speed on density disappears, i.e.

v0 kð Þk!0¼ 0. The length of this region depends on the

number of lanes, type of facility and composition of the

vehicles. The length of the section observed in heteroge-

neous traffic condition is very small as shown in Fig. 3a. It

is also clear from the observation that speed decreases with

density, i.e. v0 kð Þ\0. Table 5 shows that except Drew,

May, Newell and Delcastillo’s models, none of other

models satisfies all the static properties. Models of

Greenshields et al., Pipes, Greenberg, Underwood and Lee

et al. are violating the independent property of the model,

therefore undermining their suitability in representing

traffic behaviour at free flow. Further, it is also noted that

models of Underwood, Drake et al., Papageorgiou et al.

and Wang et al. are producing infinite speed values as

density approaching jam density. It is not realistic in terms

of traffic flow.

4.3.2 Kinematic wave speed property (Cj)

Kinematic wave speed property of models is estimated

using the first-order derivative of flow equation with

respect to density (as k ! kj). It can also be stated as a

Table 5 Validation of static properties

Model Model static properties

Free flow property

v kð Þk!0¼ vf

Independent property

v0 0ð Þ ¼ 0

Jam density property

v kð Þk!kj
¼ 0

Speed range

0� v� vf

Slope property

v0 kð Þ\0

Greenshields et al. H x H H H

Drew H H H H H

Pipes H x H H H

May and Keller H H H H H

Greenberg x x H x H

Underwood H x x x H

Drake et al. H H x x H

Papageorgiou et al. H H x x H

Newell H H H H H

Delcastillo and Benı́tez H H H H H

Lee et al. H x H H H

Wang et al. H H x x H
p

= satisfied, x = not satisfied

Table 4 Model parameters and fitness values

Serial no. Model Fundamental parameters Shape parameters RMSE ARE

vf (km/h) kj (km/h) Others

1 Greenshields et al. 64.57 596 – – 4.687 0.312

2 Drew 68.68 619 – m = 0.85 4.612 0.335

3 Pipes 66.52 650 – n = 1.2 4.580 0.125

4 May and Keller 64.78 757 – m = 1.23, n = 2.0 4.312 0.113

5 Greenberg – 900 vm = 25 km/h – 10.014 0.133

6 Underwood 73.60 – km = 339 veh/km – 4.904 0.101

7 Drake et al. 58.77 – km = 253 veh/km – 4.335 0.129

8 Papageorgiou et al. 61.59 – km = 260 veh/km a = 1.7 4.177 0.100

9 Newell 65.00 750 k = 14,761 5.479 0.148

10 Del Castillo and Benitez 62.00 891 Cj = - 14 km/h – 5.994 0.120

11 Lee et al. 64.63 700 – E = 2.1, h = 2.5 4.266 0.117

12 Wang et al. 65.00 – vb = 9.64 km/h

kt = 200

h1 = 82.3, h2 = 0.776 4.033 0.079
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gradient at jam density and the value must be a negative

constant. As we saw in Sect. 3.2.1, Cj values can be esti-

mated by observing platoon dispersion at the signalised

intersection and these values are fairly constant for given

traffic and road conditions. This property is important in

representing the disturbance propagation speed of vehicles

in the congested condition. The investigation revealed the

following: kinematic wave speed values generated by the

linear models are not realistic. At jam density, the values

are either equivalent to negative free flow speed or tend to

zero. Similarly, Underwood, Drake et al. and Papageorgiou

et al.’s models are approaching negative zero. Therefore,

they do not satisfy the kinematic wave speed property. The

property holds good for Greenberg, Newell, Del Castillo

and Lee et al.’s models where the Cj values are negative

finite. Further, it is found that Wang et al. model is failing

this property by producing negative infinite speed values

when density is approaching jam. The kinematic wave

speed values are set out in Table 6.

4.3.3 Stable shock wave property

This property can be analysed by obtaining the second

order derivative of the flow equation with respect to density

or by using graphical representation; i.e., convexity (posi-

tive sign) must be observed when curve approaching jam

density. From the literature, it is observed that this property

is important in describing some of the nonlinear behaviour

Table 6 Validation of dynamic properties

Model Model dynamic properties

Kinematic wave speed property

q0 kð Þk!kj
is a negative constant

Stable shock wave property

q00 kð Þk!kj
[ 0

Greenshields

et al.
q0 kð Þ ¼ vf 1 � 2k

kj

� �
, q0 kð Þk!kj

¼ �vf
q00 kð Þk!kj

¼ �2vf

kj
\0

Drew q0 kð Þ ¼ vf 1 � mþ1ð Þkm
km

j

h i
, q0 kð Þk!kj

¼ �mvf q00 kð Þk!kj
¼ �m mþ1ð Þvf

kj
; for m[ 0, q00 kð Þk!kj

\0

Pipes
q0 kð Þk!kj

¼ �nvf 1 � k
kj

� �n�1

; for n[ 1; q0 kð Þk!kj
! 0 q00 kð Þ ¼ nvf

kj
1 � k

kj

� �n�2

nþ 1ð Þ k
kj
� 2

h i
, q00 kð Þk!kj

[ 0

when k[ 2
nþ1ð Þ kj

May and Keller
q0 kð Þ ¼ vf 1 � k

kj

� �mh in�1

1 � 1 þ nmð Þ k
kj

� �mh i� �
;

for m[ 1; n[ 1, q0 kð Þk!kj
! 0

q00 kð Þ ¼ mnvf

km
j

1 � k
kj

� �mh in�2

mnþ 1ð Þ k
kj

� �n

� 1 þ mð Þ
h i

,

q00 kð Þk!kj
[ 0 when k[ 1þm

mnþ1

� �n
kj

Greenberg q0 kð Þ ¼ vm ln
kj

k

� �
� 1

h i
, q0 kð Þk!kj

¼ �vm
q00 kð Þk!kj

¼ � vm

kj
\0

Underwood q0 kð Þ ¼ vfexp �k
km

� �h i
1 � k

km

� �
; for k ! 1; q0 kð Þ ¼ �0 q00 kð Þk!kj

¼ vf

km
exp

�kj

km

� �
�2 þ kj

km

h i
, q00 kð Þk!kj

[ 0

Drake et al.
q0 kð Þ ¼ vfexp �1

2
k
km

� �2
� �� �

1 � k
km

� �2
� �

; for k ! 1;

q0 kð Þ ¼ �0

q00 kð Þk!kj
¼ vfkj

k2
m

exp �1
2

kj

km

� �2
� �� �

�3 þ kj

km

� �2
� �

[ 0

Papageorgiou

et al.
q0 kð Þ ¼ vfexp �1

a
k
km

� �ah in o

� 1 � k
km

� �ah i
; for k ! 1; q0 kð Þ ¼ �0

q00 kð Þk!kj
¼ vfk

a�1
j

k2
m

exp �1
a

kj

km

� �ah in o
� aþ 1ð Þ þ kj

km

� �ah i
;

for kj [ km aþ 1ð Þ
1
a, q00 kð Þk!kj

[ 0

Newell q0 kð Þ ¼ vf 1 � exp �k
vf

� �
1
k � 1

kj

� �h in

� k
vfk

exp �k
vf

1
k � 1

kj

� �� �h i
g; q0 kð Þk!kj

¼ �Cj

q00 kð Þk!kj
¼ �k2

vfk
3
j

exp �k
vf

1
kj
� 1

kj

� �h i
¼ �k2

vfk
3
j

\0

Delcastillo and

Benı́tez
q0 kð Þ ¼ vf 1 � exp

Cj

vf

� �
1 � kj

k

� �h i
1 þ Cjkj

vfk

� �h in o
,

for q0 kð Þk!kj
¼ �Cj

q00 kð Þk!kj
¼ �C2

j

vfkj
exp

Cj

vf
1 � kj

kj

� �h i
¼ �C2

j

vfkj
\0

Lee et al.

q0 kð Þ ¼
vf 1þE k

kj

� �h
� �

1�2k
kj

� �
� Eh

kj
k�k2

kj

� �
k
kj

� �h�1
� �� �

1þE k
kj

� �h
� �2 ;

for q0 kð Þk!kj
¼ �vf

1þE

q00 kð Þk!kj
¼ 2vf

kj 1þEð Þ
Eh

1þE � 1
� �

, for q00 kð Þk!kj
¼ 0:45vf

kj
[ 0

Wang et al.

q0 kð Þ ¼ vb þ vf�vb

1þexp
k�kt
h1

� �h ih2
�

k vf�vbð Þh2exp
k�kt
h1

� �

h1 1þexp
k�kt
h1

� �h ih2þ1 ;

for k ! 1; q0 kð Þ ¼ �1

q00 kð Þk!kj
¼

� vf�vbð Þh2exp
kj�kt

h1

� �

h1 1þexp
kj�kt

h1

� �h ih2þ1 2 þ k
h1

1 � h2þ1

1þexp
kj�kt

h1

� �
2
4

3
5

8<
:

9=
;,

for given values q00 kð Þk!kj
\0
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of traffic flow such as hysteresis, platoon dispersion and

density oscillations observed in the congested condition.

The analysis results are set out in Table 6, where models

satisfying the stable shock wave property are pointed out

with a sign greater than zero and otherwise less than zero.

The analysis shows that the models of Greenshileds

et al., Drew, Greenberg, Newell, Del Castillo and Benitez,

and Wang et al. are strictly concave and hence unable to

satisfy the stable shock wave property. Therefore, it is

difficult to explain some of the important traffic flow

phenomena, for instance, hysteresis originated in the non-

stationary region of the flow–density fundamental diagram.

Further, models of Underwood, Drake et al., Papageorgiou

et al. and Lee et al. have positive curvature in their sub-

domain; therefore, they can produce stable shock waves

when the vehicles accelerate from a region with high

density to a lower density. However, mathematical analysis

(Tables 5, 6) revealed that none of the existing models

satisfies all the properties of the speed–flow–density

relationship.
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Fig. 7 CURE plots for a linear models, b Drake et al. and Papageorgiou et al.’s models, c Newell, Del Castillo and Greenberg’s models, d Lee

et al. and Wang et al.’s models

Table 7 Parameters and estimation accuracy of proposed models

Serial no. Model Fundamental parameters Shape parameters RMSE ARE

vf (km/h) kj (km/h) Others

1 Proposed model 62.9 850 km = 360 veh/h a = 0.60 4.172 0.096

2 Modified Lee et al’s. model 63.5 900 – E = 10.30, h ¼ 2:14, a = 4 4.158 0.082
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5 Proposed speed–density models

The limitation of the existing models in satisfying all the

properties encouraged us to develop a new speed–density

model [Eq. (11)]. The essential requirement for the func-

tional form is that it must satisfy all the properties of the

fundamental diagram with a less numerical error. In addi-

tion to the new model, a modification has been proposed to

the Lee et al.’s model (Eq. (12)) to overcome the

deficiencies.

5.1 The proposed model

Model formulation is based on the following criteria.

1. The empirical speed–density data show some asymp-

totic behaviour at the free flow and jam conditions, and

also data show a smooth decline in speed values after a

critical point. The selection of reciprocal exponential

forms is the better representation of this kind of speed–

density relationship. The functional form must be

continuous and differentiable.

2. The parameter free flow speed (vf) is the property of

freely moving traffic and jam density (kj) is the

property of queueing traffic. Critical density (km) gives

an idea on where the traffic condition is changing from

free flow state to congested state. These parameters (vf,

kj and km) convey some physical meaning.

3. The choice of shape parameters will help in replicating

the shape of the data.

4. Importantly, the model must also satisfy all the

properties of fundamental diagrams: v kð Þk!0¼ vf ,

v kð Þk!kj
¼ 0, v0 0ð Þ ¼ 0, v0 kð Þ\0, q0 kð Þk!kj

¼ �Cj,

q00 kð Þk!kj
[ 0.

The model that comes close to satisfying these criteria

can take the following form:

v ¼ vf

e�
k
km
ð Þ1þa

� e�
kj
km

� 
1þa

1 � e�
kj
km

� 
1þa

2
4

3
5
b

: ð11Þ

Equation (11) gives the general form of the model.

Here, a and b are shape parameters.

For b = 1, the model properties are as follows:

1. At k = 0, v = vf.

2. At k = kj, v = 0.

3. v0 kð Þ ¼ vf

� 1það Þe�
k
kmð Þ1þa

ka

k1þa
m

� �h i

1�e�
kj
km

� 
1þa
� � ; at k = 0, v0 kð Þ ¼

08a[ 0 satisfies the independent property.

4. q0 kð Þ ¼ vf

e
� k

kmð Þ1þa

� 1það Þ k
km
ð Þ1þa

e
� k

kmð Þ1þa

�e
�

kj
km

� 
1þa
� �

1�e�
kj
km

� 
1þa
� � ; at

k ! 1; q0 kð Þ ¼ �vf
e
�

kj
km

� 
1þa

1�e�
kj
km

� 
1þa

" #
produces constant

negative wave speed.
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5.

q00 kð Þ ¼ vf

� 1 þ að Þ ka

k1þa
m

h i
� 1 þ að Þ2 ka

k1þa
m

e�
k
km
ð Þ1þah i

þ 1 þ að Þ2 k
km

� �1þa
ka

k1þa
m

:e�
k
km
ð Þ1þa

� �� �

1 � e�
kj
km

� 
1þa
� � ;

at k = kj,
kj

km

� �1þa

[ aþ2
aþ1

, for a[ 0, and q00 kð Þ[ 0,

produces stable shock waves.

This model satisfies all the properties of flow–speed–

density relationships. The model fitness is also good at

ARE = 0.096 and RMSE = 4.172 except some deviance at

the bottom tail. Kinematic wave speed value for given

parameter values is - 8 km/h.

5.2 Modified Lee et al.’s model

The shape parameters a and b are introduced into the Lee

et al.’s model to overcome the existing deficiencies. The

model form is

v ¼
vf 1 � k

kj

� �ah ib

1 þ E k
kj

� �h
; ð12Þ

where E, h, a and b are shape parameters. In the given

model, a[ 0 and b[ 0 conditions hold. For a[ 0 and

b = 1, the model has the following properties:

1. At k = 0, v = vf.

2. At k = kj, v = 0 for a[ 0.

3. v0 kð Þ ¼

1þE k
kj

� �h
� �

�avf
kj

: k
kj

� �a�1
� �� �

� vf 1� k
kj

� �ah i
Eh
kj

k
kj

� �h�1
� �

1þE k
kj

� �h
� �2 , at

k = 0, v0 kð Þ ¼ 0 which satisfies the independent

property.

4. q0 kð Þ ¼
vf 1� aþ1ð Þ k

kj

� �ah i

1þE k
kj

� �h �
vfEh

kh
j

kh�kaþh

ka
j

� �

1þE k
kj

� �h
� �2; at k = kj,

q0 kð Þ ¼ �avf

1þE is always less than zero for a[ 0,

E[ 0. Therefore, kinematic wave speed is a negative

constant.

5. q00 kð Þk!kj
¼ vf

kj

Eha
1þEð Þ2 þ Eha

1þE � a aþ 1ð Þ
h i

, for E[ 0, h[

0, a[ 0; q00 kð Þk!kj
[ 0 produces stable shock waves.

The modified Lee et al.’s model satisfies all the prop-

erties of the flow–speed–density relationships with the least

error. The RMSE and ARE values for the model are 4.158

and 0.0822, respectively. For given parameter values, the

kinematic wave speed value is - 21.96 km/h.

Parameter values for the proposed models are given in

Table 7. It can be noted that these two proposed models satisfy

the static and dynamic properties besides having a high fitting

accuracy. Model behaviour with empirical data and CURE

plot is shown in Fig. 8. The shape of proposed equilibrium

equations has followed the shape of empirical data. We

noticed that the model’s accuracy could be improved further if

parameter b is also considered in these models.

6 Limitations of this study

The present study mainly focused on evaluating all the

existing single-regime models using two criteria: one is

fitting empirical speed–density data and the second is

properties of speed–flow–density relationships. It is

important to point out that all the analyses and conclusions

of this study are conducted based on data collected for a

short period of time on a single road section. This may

count as a limitation of the study.

7 Conclusions and future scope

The purpose of this study is to identify the suitable speed–

density functional form to represent the heterogeneous

traffic data. Key findings of this study are as follows:

1. Empirical v–k relationship of heterogeneous traffic

observed on urban arterials revealed some interesting

facts: (i) Dependence of speed on density is diminished

as density approaching zero, i.e. v0 kð Þk!0¼ 0; and it is

very small compared to homogeneous traffic sec-

tion. The length of this non-dependency region is

generally a function of number of lanes, type of facility

and composition of vehicles. (ii) Capacity of the

stream is observed to be very high due to the effective

utilisation of the road width (this behaviour is possibly

attributed to non-lane discipline and the presence of

small sized vehicles). (iii) Large variation in highway

capacity values can be seen in q–v and q–k plots.

Capacity value is ranging from 8000 to 11,000 veh/h.

The variation in capacity is observed due to vehicle

composition and their respective selection of speeds.

(iv) Large deviations (nonlinear behaviour) can be

observed in the q–k curve at the congested region. This
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behaviour is attributed to varying vehicle dynamics

and their selection of safety headways.

2. As a first attempt for Indian traffic conditions, some of

the behavioural parameters such as kinematic wave

speed (Cj) and saturation flow parameter (k) are

determined using empirical observations. The typical

value of the parameter Cj is - 12.42 km/h and the

value is less than that of homogenous traffic case [16].

Jam density values for given facilities are difficult to

estimate and they approximately vary between 700 and

800 veh/km. The saturation flow parameter value

depends on kinematic wave speed and jam density,

and the value estimated in the present study is 9000.

3. In addition to RMSE and ARE, we employed CURE

plots to evaluate the overall performance of the models.

They revealed some interesting facts: (i) Models of

Greenberg, Newell, and Del Castillo and Benitez can be

part of multi-regime speed–density models due to their

good estimation accuracy at high-density regions. (ii)

Linear models of Greenshields et al., Drew and Pipes are

poor in representing the data. (iii) Models involving a

large number of parameters, for instance, Wang et al.’s

model, are sound descriptors of empirical data.

4. The study set out several static and dynamic properties

of q–k–v relationships for which the models are

examined and compared. The study concludes that

none of the existing functional forms can fulfil many of

the properties.

5. Two new speed–density functional forms are pro-

posed. From the analysis, it can be concluded that both

the proposed models satisfy the numerical accuracy

and the fundamental diagram properties. These new

forms would be able to improve the model predictions,

especially in continuum traffic modelling when in

couple with dynamic speed equations.

6. Further, there is a scope for improving the proposed v-

k relationships by taking model bias and variance into

account. In future, it is planned to collect data on more

arterial sections to check the compatibility of the

proposed models.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a link

to the Creative Commons license, and indicate if changes were made.

References

1. Lighthill MJ, Whitham GB (1955) On kinematic waves. II. A

theory of traffic flow on long crowded roads. Proc R Soc London

A 229(1178):317–345

2. Papageorgiou M, Jean-marc B, Hadj-salem H (1989) Macro-

scopic modelling of traffic flow on the Boulevard Peripherique in

Paris. Transp Res Part B Methodol 236(1):29–47

3. Daganzo CF (1994) The cell transmission model: a dynamic

representation of highway traffic consistent with the hydrody-

namic theory. Transp Res Part B Methodol 28(4):269–287

4. Khan S, Maini P (1999) Modeling heterogeneous traffic flow.

Transp Res Rec 1678(1):234–241

5. Tiwari G, Fazio J, Gaurav S (2007) Traffic planning for non-

homogeneous traffic. Sadhana 32(4):309–328

6. Katz D (2009) Heterogeneous traffic mixes,[term paper]. http://

www.donaldkatz.com/CEE6603-TermPaper-

HeterogeneousTraffic.pdf. Accessed 22 July 2016

7. Greenshields BD, Channing WS, Miller HH (1935) A study of

traffic capacity. In: Highway research board proceedings, 1935.

National Research Council (USA), Highway Research Board

8. May AD Jr, Harmut EMK (1967) Non-integer car-following

models. Highw Res Rec 199:19–32

9. Drew DR (1968) Traffic flow theory and control. McGraw-Hill,

New York

10. La Pipes (1967) Car following models and the fundamental

diagram of road traffic. Transp Res 1(1):21–29

11. May AD (1990) Traffic flow fundamentals, 2nd edn. Prentice

Hall, Englewood Cliffs

12. Greenberg H (1959) An analysis of traffic flow. Oper Res

7(1):79–85

13. Underwood RT (1961) Speed, volume, and density relationships:

quality and theory of traffic flow. yale Bur Highw traffic 141–188

14. Drake JS, Schofer JL, May Jr AD (1967) A statistical analysis of

speed–density hypotheses. In: Vehicular traffic science. Highw

Res Rec (154):112–117

15. Newell GF (1961) Nonlinear effects in the dynamics of car fol-

lowing. Oper Res 9(2):209–229

16. Del Castillo JM, Benitez FG (1995) On the functional form of the

speed–density relationship—I: general theory. Transp Res Part B

Methodol 29(5):373–389

17. Lee HY, Lee HW, Kim D (1998) Origin of synchronized traffic

flow on highways and its dynamic phase transitions. Phys Rev

Lett 81(5):1130–1133. https://doi.org/10.1103/PhysRevLett.81.

1130

18. Wang H, Li J, Chen QY, Ni D (2010) Representing the funda-

mental diagram: the pursuit of mathematical elegance and

empirical accuracy. In: Transport Research Board 89th annual

meeting, Washington, DC, USA

19. Thankappan A, Vanajakshi L (2015) Development and applica-

tion of a traffic stream model under heterogeneous traffic con-

ditions. J Inst Eng Ser A 96:267–275. https://doi.org/10.1007/

s40030-015-0134-y

20. Heydecker BG, Addison JD (2011) Analysis and modelling of

traffic flow under variable speed limits. Transp Res Part C Emerg

Technol 19(2):206–217

21. Mallikarjuna C, Phanindra A, Rao KR (2009) Traffic data col-

lection under mixed traffic conditions using video image pro-

cessing. J Transp Eng 135(4):174–182. https://doi.org/10.1061/

(ASCE)0733-947X(2009)135:4(174)

22. Elzhov TV, Mullen KM, Spiess AN, BolkerB, Mullen MKM

(2012) R interface to the Levenberg–Marquardt nonlinear least-

squares algorithm found in MINPACK, plus support for bounds.

Retrieved from CRAN: http://cran.rproject.org/web/packages/

minpack.lm/minpack.lm.pdf. Accessed 10 July 2016

23. Hauer E (2015) The art of regression modeling in road safety.

Springer, Berlin, p 38

74 H. K. Gaddam, K. R. Rao

123 J. Mod. Transport. (2019) 27(1):61–74

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.donaldkatz.com/CEE6603-TermPaper-HeterogeneousTraffic.pdf
http://www.donaldkatz.com/CEE6603-TermPaper-HeterogeneousTraffic.pdf
http://www.donaldkatz.com/CEE6603-TermPaper-HeterogeneousTraffic.pdf
https://doi.org/10.1103/PhysRevLett.81.1130
https://doi.org/10.1103/PhysRevLett.81.1130
https://doi.org/10.1007/s40030-015-0134-y
https://doi.org/10.1007/s40030-015-0134-y
https://doi.org/10.1061/(ASCE)0733-947X(2009)135:4(174)
https://doi.org/10.1061/(ASCE)0733-947X(2009)135:4(174)
http://cran.rproject.org/web/packages/minpack.lm/minpack.lm.pdf
http://cran.rproject.org/web/packages/minpack.lm/minpack.lm.pdf

	Speed--density functional relationship for heterogeneous traffic data: a statistical and theoretical investigation
	Abstract
	Introduction
	Literature review
	Traffic stream models
	Properties of the speed--density and flow--density functional relationships

	Data collection and parameter estimation
	Empirical speed--flow data
	Parameters from empirical observations
	Kinematic wave speed (Cj) estimation
	Estimation of \lambda and other parameters


	Fitting and evaluation of traffic stream models
	Model fitting and statistical evaluation
	Cumulative residual plots
	Theoretical investigation
	Static properties of the model
	Kinematic wave speed property (Cj)
	Stable shock wave property


	Proposed speed--density models
	The proposed model
	Modified Lee et al.’s model

	Limitations of this study
	Conclusions and future scope
	References




