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Abstract Driver support and infotainment systems can be

adapted to the specific needs of individual drivers by

assessing driver skill and state. In this paper, we present a

machine learning approach to classifying the skill at

maneuvering by drivers using both longitudinal and lateral

controls in a vehicle. Conceptually, a model of drivers is

constructed on the basis of sensor data related to the

driving environment, the drivers’ behaviors, and the vehi-

cles’ responses to the environment and behavior together.

Once the model is built, the driving skills of an unknown

driver can be classified automatically from the driving data.

In this paper, we demonstrate the feasibility of using the

proposed method to assess driving skill from the results of

a driving simulator. We experiment with curve driving

scenes, using both full curve and segmented curve sce-

narios. Six curves with different radii and angular changes

were set up for the experiment. In the full curve driving

scene, principal component analysis and a support vector

machine-based method accurately classified drivers in

95.7 % of cases when using driving data about high- and

low/average-skilled driver groups. In the cases with seg-

mented curves, classification accuracy was 89 %.

Keywords Driving behavior � Driving skill � Driving
simulator

1 Introduction

Driving support and infotainment systems inside vehicles are

expected to improve the safety of driving and the comfort of

those in the vehicle. As the data communication infrastruc-

ture matures, high-bandwidth communication is increas-

ingly available between vehicles and the outside world. The

functionality of some in-vehicle systems can be realized at

data centers, with data exchanged between the vehicles and

the data center at high speed. In Japan, some services of this

type are already being offered, such as Toyota Motor Cor-

poration’s G-Book [1], Honda Motor Corporations’ Inter-

navi [2], and Nissan Motor Corporation’s CARWINGS [3].

Not only conventional vehicle data buses but also various

sensors, such as Global Positioning System (GPS) sensors,

radar, and cameras are now equipped in vehicles, mainly as

safety equipment. New services can be provided by

uploading data from these sensors over a data communica-

tion network. As examples, G-Book can locate a stolen

vehicle by providing its position and can detect unlocked

doors or windows in a vehicle and then send an alert to a user.

Along with more recent advances in the field of active

vehicle control, many other driver assist systems exist,

such as anti-lock braking systems, vehicle stability control,

adaptive cruise control, and lane keeping assist. These

improve the safety of driving. It is expected that novel

services to provide driving support and infotainment will

be implemented in the future.

Our overall aim is to create a framework for providing

drivers with the right information, at the right time, in the

right way tomake driving safer, more comfortable, andmore

enjoyable. Toward realizing this goal, a conceptual sche-

matic drawing of a data center-based cyber-physical infor-

mation processing system is shown in Fig. 1 [4]. Vehicle-

and driver-related sensor data are uploaded to the data center
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and stored in structured databases. Data related to the outside

world, such as data about the social networks of the driver

andWeb data, are also uploaded to the data center. Inside the

data center, the main data-processing steps can be summa-

rized as acquisition and accumulating the data, analyzing the

data, making predictions, and then filtering the output

according to driver needs and preferences. Optimal human–

machine interfaces are expected to provide the right infor-

mation to each driver at the right time, and the drivers’

feedback data are to be uploaded to the data center for further

processing.

Classification of driving skills and driver state is a basic

issue in building systems for driver support and infotain-

ment that can be adapted to the individual needs of specific

drivers. In this paper, we present a machine learning

approach to this problem. Conceptually, in this approach, a

driver model is trained from sensor data related to the

driving environment, vehicle response, and driving behavior

for driver. Once the model is trained, the driving skill of

drivers can be classified automatically for novel situations.

The results of this system can be used in building user

interfaces and interactive vehicular applications.

2 Related work

To understand the driving skill of a given driver, her

continuous process, which is characterized as the Percep-

tion–Decision–Action cycle, has to be taken into account.

A wide variety of research on driver modeling has been

reported [5–18]. However, very few studies have been

explicitly characterized driving skill in terms of driving

action [14–20] and applied this using machine learning

methods.

Table 1 shows a detailed comparison of machine

learning methods used in prior studies of classification of

driving maneuver skill. Tang et al. [17] and Zhang et al.

[16] have dealt with analyzing driving data in the lateral

direction (steering angle only) by setting the speed of the

driving simulator to a constant. In contrast, Chandrasiri

et al. [15, 18] have dealt with a more natural case:

motions in both longitudinal and lateral directions of the

driving simulator/real vehicle are considered with multi-

ple attributes (specifically, speed is not fixed, and the

driver can control the vehicle in both longitudinal and

lateral directions). In making this possible, a novel

approach has been used, converting time-indexed data

into distance-indexed data. The details of this are dis-

cussed in Sect. 3.1.

Most of the target driving scenes involve curves or

double lane changes, although one includes a narrow

straight lane [15]. Each scene is intended to elicit a display

of maneuvering skill. Another novel aspect of our research

is that it presents scenes with curves of different radiuses

and angular changes. Analysis of results from these scenes

can determine which require more maneuvering skill.

In using machine learning to characterize driving

behavior, there are two main steps.

Fig. 1 Cyber-physical system for vehicle application
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1. Identify attributes and features that can elicit displays

of driving skill.

2. Design a classifier that outputs driving skill level when

provided the features extracted during the prior step as

input.

Various features and classifiers have been used. Tang

et al. used wavelet transforms (WTs) and WTs with a

discrete Fourier transform (WT ? DFT), applying this to

the steering angle and using a neural network and support

vector machine (SVM) for learning. Zhang et al. have

applied DFT to the steering angle and used a neural net-

work, SVM, and decision trees for learning [14, 16].

Chandrasiri et al. have used DFT with probabilistic neural

networks and SVM in their work [15].

In our work, we have experimented with a combination

of multiple features that cover both lateral and longitudinal

controls as discriminative features. For dealing with mul-

tivariate time-series data, we first apply the well-known

principal component analysis (PCA) to reduce the dimen-

sionality of the data. In doing so, we also aim to overcome

the problem of data sparseness.

In this work, we use the k-nearest neighbor (k-NN)

classifier, which is simple to implement, and SVM, which

is known to be powerful. The driving scenarios and data

segmentation methods that are used in our experiment

distinguish this study from Refs. [16, 17]. In those studies,

a full set of data from single runs in driving simulator

scenes involving a double lane change and a lane change in

a curve (a single curve of common radius and angular

change is used for all trials) is used for learning and pre-

diction. In our work, we simulate typical curves to elicit

typical driving maneuvers. Specifically, we use full curve

Table 1 Comparison of machine learning methods for classifying driving maneuver skill

Research Data source Driver’s vehicle

control

Target driving

scene

Data Features

extraction

Classifier Classification

accuracy (%)a

This work Driving simulator Both longitudinal

and lateral

directions

Curving section 16 drivers, Total of

160 runs for each

curve

PCA SVM 96

k-NN 88

Curving section

with

segmentation

16 drivers,

Total of 160 runs for

each segment

SVM 89

k-NN 82

Chandrasiri

et al. [18]

Driving simulator Both longitudinal

and lateral

directions

Curving section 16 drivers,

Total of 160 runs for

each curve

PCA SVM 94

k-NN 86

Curving section

with

segmentation

16 drivers,

Total of 160 runs for

each segment

SVM 87

k-NN 82

Chandrasiri

et al. [15]

Real vehicle with

sensor

equipment

Both longitudinal

and lateral

directions

Narrow straight

lane

4 drivers,

Total of 72 runs

DFT PNN 57

(None) PNN 75

SVM 53

Double lane

change

2 drivers,

Total 72 runs

DFT PNN 88

SVM 94

(None) PNN 50

SVM 94

Zhang et al.

[16]

Driving simulator Lateral direction

only

Double lane

change

12 drivers,

Total 551 runs

DFT FFNN 88

Decision

tree

87

Lane change on

the curve

12 drivers,

Total 514 runs SVM 88

Tang [17] Driving simulator Lateral direction

only

Double lane

change

12 drivers,

Total of 403 runs

WT FFNN 85

RBFN 90

SVM 91

WT

?

DFT

FFNN 83

RBFN 88

SVM 88

PCA principal components analysis, DFT discrete Fourier transform, WT wavelet transform, k-NN k-nearest neighbor, SVM support vector

machine, PNN Probabilistic neural network, FFNN feed forward neural network, RBFN radial basis function networks
a The Classification accuracy is shown based on the best case in the original paper
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data from six different curves of distinct radii and angular

changes. By choosing driving scenes in this way, we can

analyze differences in driving skill that are demonstrated in

response to the difficulty of the driving scene, which can

vary according to the radius and angular change of the

curve. We also analyzed driving data after dividing the

curves into small segments. This is a challenging task

because the data from a small segment of a curve must be

applied to analyzing the skill level of the driver. Despite

the difficulty in finding it, knowing the driving skill dis-

played from a small driving segment would benefit driver

support and infotainment applications.

As an example application, information overload could

be prevented by taking instantaneous driver skill into

account. Even for a highly skilled driver, real-time fluctu-

ation in the classification of driving skill can be expected

for reasons such as fatigue and driving conditions.

3 Driving simulator experiment

We collected data on driving in curve-containing scenes

using the driving simulator shown in Fig. 2. The collected

data include steering angle, speed, longitudinal accelera-

tion, lateral acceleration, yaw rate, accelerator control,

brake control, lateral displacement, longitudinal displace-

ment, accelerator control speed, and brake control speed.

These data were sampled at 60 Hz. Sixteen adult partici-

pants (men and women 20–40 years of age) took part in the

experiment. As shown in Fig. 3, the driving course con-

sisted of 6 curves (radius = 50, 100, or 200 m; angular

change = 45� or 90�). In the simulator, each driver ran up

to 12 trials in an urban scene with 2 trials per scene. In

total, 960 (16 9 10 9 6) runs of driving data from curves

were used for the analysis. Traffic signs indicating a speed

limit of 60 km/h are set at 100 m and 50 m before the

starting point of each curve (Fig. 4). This controls the

speed at which drivers enter the curves. We asked drivers

to drive in the left lane and not to cross the yellow center

line.

3.1 Data conversion

The data were coded by time when acquired from the

driving simulator. However, we want to compare these data

across different test runs and different drivers for a given

location of the driving course. To allow this, we converted

the time-indexed data into distance-indexed1 data. Figure 5

Fig. 2 Driving simulator

100 m

100 m

100 m

R=200 m
IA=45

100 m

100 m

100 m100 m

START
END

R=100 m
IA=90

R=50 m
IA=45

R=100 m
IA=45

R=100 m
IA=90

R=200 m
IA=90

Fig. 3 Driving course

Fig. 4 Experimental scenario

1 In real vehicles, it will soon be possible to extract centimeter-level

accuracy of the driving location using high-precision GPS sensors.
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shows an example of data before and after the conversion.

From the time-indexed sensor data, we convert to distance-

indexed sensor data by linear interpolation.

3.2 Driving skill tagging

This section explains how the simulation runs of drivers are

categorized into different skill classes. The results of

analysis of a single run for each driver by an expert on

driving skill were used to divide the group of sixteen dri-

vers who took part in the driving simulator experiment into

two skill classes. Five drivers were classed as high-skilled

drivers, and the other 11 as low/average-skilled drivers.

Fluctuations in driving skill between different runs of a

driver are not considered in this experiment. Tagging the

driving skill on that basis of an individual run instead of all

runs together of a driver may cause the final output results

to be more accurate. However, there is a tradeoff between

the tagging cost and the final outcome.

After tagging, there were 300 runs of curve driving data

for high-skilled drivers and 660 for low/average-skilled

drivers. With curve segmentation, this was increased to

1500 and 3300 data, respectively.

4 Data analysis methods

The flow of data analysis in this paper is depicted in Fig. 6.

We used driving data acquired by a driving simulator as

explained in Sect. 3. Ten driving data attributes analyzed

here are those previously mentioned (steering angle, speed,

longitudinal acceleration, lateral acceleration, yaw rate,

accelerator control, brake control, lateral displacement,

accelerator control speed, and brake control speed), which

covers both longitudinal and lateral control of the vehicle.

In the pre-processing step, the collected driving data are

converted from time-index data into distance-indexed data.

This enables comparison among different runs of drivers at

the same point on a curve (see Sect. 3.1 for details). The

segmentation method is depicted in Fig. 7. As shown in

figure, segments 1 and 5 are included in the data analysis

along with the curve Sects. 2–4. In those end segments, the

vehicle enters and leaves the curve. Therefore, in the full

curve case, analysis of driving skill via machine learning

considers transition effects from straight segments to

curves and vice versa. In our future experiments, the design

of the road could be smoother, such as using clothoids.

To merge the data from different sensors into a single

feature vector, some normalization method should be

employed. For our analysis, we use the standardized score

(z-scores) normalization at the points in the distance-in-

dexed data. Feature extraction using PCA and driving skill

classification using k-NN and SVM are explained in

Sects. 4.1 and 4.2, respectively (Fig. 8).
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Fig. 5 Data before (left) and after (right) conversion

Fig. 6 Data analysis flow
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4.1 Feature extraction

For extracting features to use in analyzing driving skill

with respect to both longitudinal and lateral maneuvers in a

curve, we use multivariate time-series data from the sen-

sors. Because the dataset is high dimensional and the data

points are sparsely distributed, we use PCA to reduce the

dimensionality, as is conventional to do for data with these

characteristics.

We combine these normalized multiple sensor data into

a one-dimensional feature vector, characterizing the ith run

by a vector xi.

The covariance matrix of n data vectors, (x1,x2, …, xn),

can be written as

C ¼ 1

n

Xn

i¼1

ðxi � lÞðxi � lÞT; ð1Þ

where T is the transpose operator and l is the mean of the

data.

By eigenvector decomposition of C, we calculate

m eigenvectors and then sort them in order of decreasingFig. 7 Data segmentation at a curve

1st PC score

Feature space of instances Classification by k-NN

Target to classify

k=3

k=5

Classification by non-linear SVM using kernel trick

Before mapping
Feature space

with higher-dimension

Mapping function Φ Target to classify

Training instance tagged with high-skill

Training instance tagged with low/mid -skill

Instance with unknown class skill

Hyperplane

Fig. 8 k-NN and SVM classifiers
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magnitude of eigenvalue. By projecting the original

observation data onto the eigenspace spanned by the top

d eigenvectors, we can represent them in a lower-dimen-

sional space effectively. In this paper, we selected the

number of principal components d to optimize learning

(choosing 10 %–15 % of the components) in presenting the

original data. Enough principal components to account for

over 90 % of the variance in the data were used for the

analysis in our previous work [18]. Overall accuracy could

be increased by optimizing the number of principal com-

ponents that are used (see Fig. 9).

Depending on how we define xi, there are two main

cases studied in this paper.

1. Full curve analysis: xi is defined for the sensor data

across the entire curve for each curve.

2. Segmented curve analysis: xi is defined for each

segment of the curve and PCA analysis is performed

separately for each segment of each curve.

4.2 Driving skill classifier

One method of classifying skill is to manually set up rules for

classifying driving skills on the basis of extracted features of

the driving sensor data. However, it is widely known that

machine learning/data mining algorithms can effectively for-

mulate these rules automatically using some training dataset.

Tang et al. have surveyed the ten most influential data mining

algorithms in the research community [25]. In this work, we

use k-NN and SVM, which are both in the top ten. The k-NN

algorithm is easy to implement, and the model can be built

easily. In contrast, SVM is more difficult to implement but is

one of the most robust and accurate methods known so far.

In the k-NN algorithm, to classify unlabeled data, the

Euclidean distances between the unknown data and labeled

data are calculated in the feature space, the k-nearest neighbors

are identified, and the class labels of these nearest neighbors

are then used to determine the class label of the unknown data.
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Fig. 9 Grid-search result for optimization of threshold for including principal components in the analysis, k for k-NNs, and the kernel for SVMs
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In a two-class learning task, SVM finds the best hyper-

plane to distinguish between the two classes by maximizing

the margin between the two classes from the training data.

SVM also has one of the best generalization abilities for

correctly classifying future data. We compared different

kernels (radial, linear, polynomial, and sigmoid) in terms of

their classification accuracy and used the radial kernel,

which had the best performance, in this work (Fig. 9).

Details of these two algorithms can be found in [21–25].

In this paper, we use the leave-one-out method for

evaluating the accuracy of the driving skill classification

algorithms. We build classifiers (k-NN and SVM) by

leaving out the data to be classified and using the rest of the

data to build the classifiers for training. In the testing phase,

the left-out data are used to test the classification ability of

the classifier. This process is repeated for all available data.

Driving skill classification accuracy is defined as

follows:

Accuracy ¼ NHH þ NLL

N
: ð2Þ

Here, the following are used:

NHH: Number of correctly classified high-skilled driving

runs.

NLL: Number of correctly classified low/average-skilled

driving runs.

N: Total number of runs.

5 Results and discussions

In this section, we show and discuss some of the results

from the analysis of driving skill that was performed using

the experimental method discussed in Sect. 4. Driving

course contained six curves with different radiuses and

intersection angles as explained in Sect. 3. In this paper, we

report classification accuracy for six full curves and curve-

segmented cases.

Figure 10 shows how combinations of different attri-

butes from feature extraction and two driving skill classi-

fiers contribute to the accuracy of driving skill

classification. In previous research, except for those using

our proposed methods (this work and [18]), which are

shown in Table 1, only steering angle data were used. We

wanted to compare how combinations of multiple param-

eters work, and this can be seen in Fig. 10. We selected a

combination of parameters that can be easily acquired in a

real driving scenario using currently available sensor data,

such as driver’s control data (steering angle, acceleration

pedal control, and brake pedal control) and basic parame-

ters that account for both longitudinal and lateral move-

ment of the vehicle (steering angle, speed, longitudinal

acceleration, lateral acceleration, and yaw rate). Addition-

ally, we also included lateral displacement, which
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accurately characterizes lateral movement of the vehicle in

a driving simulator scene.

In terms of the classifier, SVM performs better than k-

NN in all cases, which is not surprising. However, since we

have extracted low-dimensional discriminative features via

PCA, k-NN does not offer much worse performance.

In analysis of the full curve data, using all ten attributes

gives the highest accuracy rates among tested cases.

Overall, low/average-skilled and high-skilled drivers were

classified with 95.7 % accuracy using SVM.

In analysis of the segmented curves, an average accu-

racy of 89 % was obtained, using the same classifier. These

results show the feasibility of using only a segment of a

curve for classification, in spite of the small data window.

Figure 11 illustrates how driving skill recognition accuracy

depends on segment number. Using SVM for classification,

the accuracy varies from 85 % to 91 % in different

segments of the curves, with the maximum accuracy of

91 % recorded at the fourth segment. This segment is near

the curve exit, which may require higher use of skill,

particularly if errors had accumulated in earlier segments.

An example of PCA-based projection of the driving data

onto a low number of dimensions (here, 2) is depicted in

Fig. 12 for the segmented curve case. Clustering of drivers

by skill level is visible, even in two dimensions. However,

we cannot directly compare the accuracies of driving skill

through the qualitative analysis of data for each segment in

Fig. 11 because we use several different dimensionalities,

with the components to use determined from the cumula-

tive contribution ratio of the principal components.

Table 1 shows a comparison of machine learning

methods for classifying driving skill at maneuvers. In the

analysis by the proposed method, both lateral and longi-

tudinal control of a vehicle are considered. In contrast, only
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lateral control is taken into account in the works by Zang

et al. [16] and Tang [17].

Our work deals with a simple scenario of driving on a

curve, and a highest accuracy in classifying driving skill

compares favorably with results from prior research.

Driving skill classification results for curves of different

radii and angular change [intersection angle (IA)] are

depicted in Figs. 13 and 14. There is a tendency toward

higher accuracy when the radius is smaller. This could be

because the difficulty of driving increases as the radius

becomes smaller. For curves of the same radius but dif-

ferent angular change, a change by 90� has higher difficulty
than a change by 45� due to the longer distance of the curve
in the first case. The above tendency can be seen explicitly

in the analysis of the segmented curves. With the full

curves, differences between the 50-m and 200-m radii are

marked. From these results, we can select curves with a

smaller radius and a larger angular change to increase the

accuracy of driving skill classification.

In our experiment, all curves were to the left for con-

venience in building the simulator scenario. This may

affect both the potential learning effects and the anticipa-

tion of control input needed. We intend to address these

issues in future research.

However, this work and [18] are attempts to analyze

driving skill on multiple curves and multiple segments and

to compare driving skill in curves of different radii and

angular change (as shown in Figs. 13, 14) using machine

learning methods.

6 Conclusions

In this paper, we analyzed the skills of drivers at longitu-

dinal and lateral maneuvers, using sensor data from a

driving simulator.

We demonstrated the feasibility of classifying driving

skill in both full curve and segmented curve cases by

comparing features composed of different attributes and

classifiers.

As features, principal components of combination of

attributes such as steering angle, speed, longitudinal accel-

eration, lateral acceleration, and yaw rate were used. As

classifiers, k-NN and SVM were used. In classification into

two classes of driving skill with full curve scenes, an overall

accuracy of 95.7 % was obtained using PCA components of

ten attributes and an SVM classifier. The average accuracy

was 89 % for the cases with segmented curves.

Analysis of driving skill in complex traffic environ-

ments, such as scenarios that contain surrounding vehicles

and different road gradients, is left to future work.

In the future, we aim to build driver support and info-

tainment systems that canbe adapted to individual user needs.
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