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Abstract With the increasing railway vehicle speed,

pantograph–catenary (PAC) system has become an

important part as its incidents still stand among the prin-

cipal causes of railway traffic interruption. Indeed, when a

rail vehicle moves, the pantograph should constantly press

against the underside of the catenary. Nonetheless, it is

difficult to get around the complexity of the physical

interaction between the pantograph and the contact wire,

which could deteriorate the quality of the electricity

transfer. Thus, PAC system performances could dramati-

cally be reduced because of bad current collection.

Therefore, in this paper, we present an output feedback

solution in order to design an active control of PAC system.

The proposed solution is based on the backstepping control

and an adaptive observer that estimates both the (unknown)

catenary parameters and the system state. All synthesis

steps are given and the closed-loop analysis shows

asymptotic tracking behavior regardless of the time-vary-

ing catenary stiffness. Furthermore, a numerical example

shows that the PAC contact can be regulated with desired

effect.

Keywords Transportation systems � Periodic systems

analysis � Control of oscillations

1 Introduction

In high-speed rail vehicle systems, the main problem is

related to the interaction between the train pantograph and

the catenary. Indeed, when the train runs, the pantograph

deforms the catenary and oscillatory motions are induced.

Moreover, when the train speed increases, these oscilla-

tions may become larger and the loss of contact between

the pantograph head and the collector wire could occur.

Thus, when the pantograph moves along the catenary, it is

fluctuated due to propagation and reflection of the wave on

the catenary, which leads to a modification in its dynamics

depending on the position [1].

Actually, both the pantograph and the catenary could be

damaged if the contact force is too large as this could cause

a contact wire breaking and stop the current collection. On

the other hand, the pantograph and the catenary could lose

their contact if the contact force is too small, which could

cause an electric arc and accelerate the degradation of the

contact wire. Therefore, considering at least these effects,

many researchers have tried to design active controllers in

order to ensure that the contact force remains as constant as

possible [2]. Thus, to deal with this problem, the catenary

device was first modeled with a constant stiffness. Then,

optimal control strategies have been proposed [3]. This

solution was sufficiently effective to reject external dis-

turbances, but finding the optimal control gains while sat-

isfying simultaneous objectives and hard constraints was

beyond the adopted strategy. Thereafter, in order to

improve the active control system performances, approxi-

mate models of the pantograph–catenary (PAC) system
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were considered [4, 5]. Accordingly, many researchers

assumed that the complex dynamics of the catenary might

be well approximated by a linear mechanical system with

space-varying lumped parameters. In this sense, the cate-

nary parameters could be considered time-varying with a

rate determined by the train speed [6]. Then, as uncer-

tainties are present in almost all designed models, use of

robust control techniques was proposed [7], while some-

times the problem was solved by tuning standard PID

controllers [6]. More recently, a second-order sliding

mode-based control scheme [8, 9] that estimates the con-

tact force using the measured displacements of the upper

and lower pantograph frames was formally presented using

the algebraic observability theory [10]. Nonetheless, this

approach turns out to require more knowledge, as it

requires the value of the control force applied to the upper

frame, the velocity and the acceleration of the upper and

lower frames, which could render the control system

complex and expensive. Alternately, in other works, to

perform output feedback, the contact force is evaluated by

means of load cells whose measurements are compensated

by accelerometers [11], which could also be very expensive

mainly for their quick deterioration during the runs of the

train.

In this work, our aim is to attenuate the time-varying

stiffness fluctuation between the pantograph head and the

contact wire. To this aim, the pantograph frames are

modelled in terms of lumped masses, springs and dampers

[4]. Without loss of generality, the mechanical parameters

of the pantograph mechanism model (Fig. 1) are usually

supposed to be constant and known. Then, to tackle this

design task, we begin by constructing an adaptive observer

that allows estimating both the system state and the

unknown catenary equivalent stiffness. Thereafter, taking

benefit of the asymptotic behavior of an adaptive observer,

we synthesize a backstepping controller to ensure the

output tracking of a nominal reference trajectory. In this

sense, the proposed control strategy is peculiar as it joins

control action with parameter estimation. Finally, analyz-

ing the control system, we show that the proposed solution

is appropriate to deal with the considered problem. Indeed,

first rudiments of this work have been presented in [12]

with a simplifying hypothesis that the catenary stiffness is

known, which not the case is the present work.

The organization of the paper is as follows: Sect. 2

presents the PAC system modelling and the problem

statement. Section 3 describes the adaptive observer. Then,

Sect. 4 presents the controller synthesis, Sect. 5 gives the

main results of the paper, and Sect. 6 presents a numerical

example. Finally, Sect. 7 outlines some concluding

remarks. To lighten the paper reading, all proofs are

appended.

2 PAC system model and problem statement

2.1 PAC model

The pantograph and the catenary form a dynamically

coupled vibrating system interacting through the contact

force. Roughly, when the pantograph runs along the cate-

nary, the variation of the catenary stiffness produces a

periodic excitation that causes the pantograph vibration and

leads to contact force fluctuation. As a result, the contact

force is composed of a lift force that is static, and a

dynamic force that depends on the vibration of the pan-

tograph–catenary system and the vehicle speed.

Historically, a variety of catenary models are proposed

in the literature from simpler models that consider only

static variation of stiffness along a span to a complete finite

element model (FEM) which describes the nonlinear

dynamic interaction between the pantograph and the cate-

nary system [13]. Especially, high accuracy models are

required in the high-speed range, as the wave reflection

becomes a major cause of contact loss [14]. Moreover,

sometimes, the effect of other elements such as brackets,

registration arms, and droppers is also taken into consid-

eration. Nonetheless, without loss of generality, the sim-

plified models with lumped and possibly time-varying

parameters have been shown to be sufficiently accurate for

control analysis and design purposes [6]. Thus, it turns out

that a time-varying linear system can approximate the PAC

dynamics with sufficient accuracy around a working con-

figuration profile [4, 7]. For this reason, to present the main

idea of this paper, we consider a 2-DOF representation of

the PAC system where, on one hand, the pantograph is

modelled in terms of lumped masses, springs and dampers

and, on the other hand, the catenary is modeled by a time-

varying equivalent stiffness kðtÞ [15]. Indeed, a simplified
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Fig. 1 Schema of 2-DOF pantograph
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railway overhead contact line model, which neglects the

wave propagation effects, may consider only the stiffness

variation along a span. In this sense, if kmax and kmin are

respectively the largest and smallest stiffness values in a

span, the catenary average stiffness k0 and the stiffness

variation coefficient a may be approximated by

k0 ¼ ðkmax þ kminÞ=2 and a ¼ ðkmax � kminÞ=ðkmax þ kminÞ:
ð1Þ

Then, if we omit the stiffness variation between the

vertical droppers, it is commonly assumed that the catenary

equivalent stiffness can be written as

kðtÞ ¼ k0 1 þ a cos wt � bð Þð Þ and w ¼ 2pk=L; ð2Þ

where k0 is the average stiffness, a is the stiffness variation

coefficient in a span, k is the vehicle speed, and L is the

span length. In addition, in this paper, we denote by b a

possible phase shift at time t = 0, in the time-varying

expression of the stiffness kðtÞ.

On the other hand, although the pantographs present

several differences between each other, the two degrees of

freedom (2-DOF) lumped-parameters (Figs. 1 and 2) may

be considered as a reference model.

Roughly speaking, when the railway vehicle is running,

this vibration system is in contact and its dynamics could

be described by the following mathematical equations:

m2€z2 þ b2 _z2 þ b1( _z2 � _z1Þ þ k1ðz2 � z1Þ ¼ u ;

m1€z1 þ b1ð _z1 � _z2Þ þ k1ðz1 � z2Þ ¼ �F;

kz1 ¼ F;

8
><

>:
ð3Þ

where the subscript i = 1, 2 stand for the upper and the

lower frame respectively, zi is the vertical coordinate of the

pantograph frames, _zi and €zi denote the first and the second

derivative of displacement zi, mi is the mass, ki is the frame

stiffness, bi is the damping coefficient, k is the time-varying

catenary stiffness, F is the contact force applied by the pan-

head on the catenary lower wire, and u is the external

actuator control action applied on the PAC system.

Now, considering the displacements (z1; z2) and their

respective derivatives ( _z1; _z2) as the state system, it follows

that:

z ¼ z1 z2 _z1 _z2½ �T ¼ z1 z2 z3 z4½ �T: ð4Þ

Using this choice, it follows that the pantograph–

catenary system could be described by the following

linear time-varying representation [1]:

F ¼ kz1; ð6Þ

where the time-variable t is here omitted in order to

alleviate the text. Then, k has the approximated form

mentioned in Eq. (2) and recalled here for clarity:

k ¼ k0½1 þ a cos wt � bð Þ�; ð7Þ

with w ¼ 2pk=L:
Now, using Eq. (7), the (unknown) parameters of the

stiffness k can be extracted by writing it as follows:

k :¼ vTh; ð8Þ

where

vT :¼ 1 cos(wtÞ sin(wtÞ½ � ;
h :¼ k0 k0a cosðbÞ k0asin(bÞ½ �T :¼ h1 h2 h3½ �T:

�

ð9Þ

2.2 Problem statement

In this paper, our main objective is to regulate the output

contact force F around its nominal reference Fr despite the

_z1 ¼ z3 ;
_z2 ¼ z4 ;
_z3 ¼ �½ðk1 þ kÞ=m1�z1 þ ðk1=m1Þz2 � ðb1=m1Þz3 þ ðb1=m1Þz4 ;
_z4 ¼ ðk1=m2Þz1 � ðk1=m2Þz2 þ ðb1=m2Þz3 � ½ðb1 þ b2Þ=m2�z4 þ u=m2 ;

8
>><

>>:

ð5Þ
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Fig. 2 PAC system 2-DOF lumped-parameters model
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time-varying catenary parameters. Then, as the catenary

stiffness k, the output contact force F, and the state z are

assumed to be unknown, our strategy is based on an output

feedback control. Thus, assuming that only the frame posi-

tions (namely, z1 and z2) are measurable, it becomes neces-

sary to recover all the unavailable variables and parameters

using an adaptive observer. Thus, in the next Section, the aim

is to compute an estimate of the state z, the catenary equiv-

alent stiffness k, and the actual contact force F.

3 Observer synthesis

In this section, we propose to design an observer that

estimates both the system state z and the stiffness k. First,

let us define the measured output vector:

y :¼ z1 z2½ �T: ð10Þ

Now, using Eqs. (5) and (9), one can easily verify that

the considered PAC system can be described by the

following state-affine representation:

_z ¼ Azþ uðuÞ þ wðyÞh;
y ¼ Cz;

�

ð11Þ

where A is a constant matrix; the components of the vector

u uð Þ and the matrix w yð Þ are known, uniformly bounded,

continuous functions that depend on the input u (that is

here assumed to be bounded) and the measured output y;

z denotes the unknown system state vector and h is the

unknown catenary parameters vector.

Comparing Eq. (5) with Eq. (12), it follows that:

A ¼

0 0 1 0

0 0 0 1

�k1=m1 k1=m1 �b1=m1 b1=m1

k1=m2 �k1=m2 b1=m2 �ðb1 þ b2Þ=m2

2

6
6
4

3

7
7
5 ;

ð12Þ

C ¼ 1 0 0 0

0 1 0 0

� �

¼ I2 02½ � ; ð13Þ

uðuÞ
T

¼ 0 0 0 u=m2½ � ; ð14Þ

wðyÞ ¼

0 0 0

0 0 0

� z1

m1

� z1

m1

cosðwtÞ � z1

m1

sinðwtÞ
0 0 0

2

6
6
4

3

7
7
5; ð15Þ

where In and 0n are respectively the ðn; nÞ identity and null

matrices.

As mentioned above, the representation Eq. (11) shows

that we are considering a state affine system, where the state

z and the parameters vector h are both involved in affine

relationships. Moreover, let us notice that the matrix w yð Þ
and the vector u uð Þ depend on measured signals u; yð Þ.

Remark 1 Actually, it can easily be checked that the pair

(A, C) is observable. Then, there exists a bounded K such

that A-KC is Hurwitz, which means that any system

_xðtÞ ¼ ðA� KCÞxðtÞf g is exponentially stable. Conse-

quently, in order to estimate both z and h, we propose to

use an adaptive observer whose estimation state error does

vanish asymptotically.

Assumption 1 The solution KðtÞ of
_KðtÞ ¼ A� KC½ �KðtÞ þ wðtÞ

� �
is persistently exciting in

the sense that, for some t� t0 and some bounded positive

definite matrix R, there exist a1, b1 and T1 such that:

a1I �
ZtþT1

t

KðsÞTCTRðsÞCðsÞKðsÞds � b1I; 8t � t0:

ð16Þ

Then, as candidate observer for system Eq. (11), we

propose to use the following one [16]:

_̂z ¼ Aẑþ uðuÞ þ wðyÞĥþ KS�1
h KTCT þ S�1

z CT
� �

Rðy� CẑÞ;
_̂
h ¼ S�1

h KTCTRðy� CẑÞ;
_K ¼ A� S�1

z CTRC
� �

Kþ wðyÞ;
_Sz ¼ �qzSz � ATSz � SzAþ CTRC;

_Sh ¼ �qhSh þ KTCTRCK; Szð0Þ[ 0; Shð0Þ[ 0;

8
>>>>>>><

>>>>>>>:

ð17Þ

where qz and qh are sufficiently large positive constants,

and R is a bounded positive definite matrix,

ẑ ¼ ẑ1 ẑ2 ẑ3 ẑ4½ �T 2 R4; ð18Þ

where R is the vector of real numbers.

Now, let us consider the state and the parameters

estimation errors, which are defined by

ez :¼ z� ẑ;
eh :¼ h� ĥ:

�

ð19Þ

Then, if Assumption 1 holds, the above system Eq. (17)

is an asymptotic observer for system Eq. (11), in the sense

that for any set of initial conditions z(0) and hð0Þ, both ez
and eh do exponentially decay to zero. Specifically, the

analysis of this observer dynamics, described by Eq. (17),

states the following lemma [16].

Lemma 1 Consider the system described by Eq. (11),

where the parameters h and the state z are both estimated

using the observer dynamics Eq. (17). Then, 9q[ 0;

8ẑð0Þ 2 R4; 8ĥð0Þ 2 R3, the state estimation error ez
and the parameters vector estimation error eh, exponen-

tially go to zero with a rate driven by q ¼ minðqz;qhÞ,
where the estimation errors ez and eh, defined in Eq. (19),

involve any trajectory ẑ and any parameters vector ĥ as-

sociated to the input u and the measured output vector y h

Output feedback control of pantograph–catenary system with adaptive estimation of catenary… 255
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For sake of clarity, the proof of Lemma 1 is placed in

Appendix 1.

Remark 2

(i) The above global convergence result is obtained

thanks to the fact that wðyÞ is globally Lipchitz in y,

and u uð Þ is locally Lipchitz in u. This property is a

direct consequence of the fact that u uð Þ is linear in

z and the signal k is bounded.

(ii) Using Eqs. (11), (17) and (19), we can easily verify

that::

KS�1
h KTCT þ S�1

x CT
� �

Rðy� CẑÞ
¼ KS�1

h KTCTRþ S�1
x CTR

� �
Cez

:¼

g11 g12

g21 g22

g31 g32

g41 g42

2

6
6
6
4

3

7
7
7
5

~z1

~z2

� �

:

ð20Þ

In this sense, bearing in mind Eq. (20), the observer

dynamics Eq. (17) can be rewritten as follows:

_̂z1 ¼ ẑ3 þ g11~z1 þ g12~z2;

_̂z2 ¼ ẑ4 þ g21~z1 þ g22~z2;

_̂z3 ¼ f1ðẑ1; ẑ2; ẑ3Þþ b1ẑ4=m1 �ðz1=m1ÞvTĥþ g31~z1 þ g32~z2;

_̂z4 ¼ f2ðẑÞþ ð1=m2Þu þ g41~z1 þ g42~z2;

8
>>>><

>>>>:

ð21Þ

where

f1ðẑ1; ẑ2; ẑ3Þ ¼ �ðk1=m1Þẑ1 þ ðk1=m1Þẑ2 � ðb1=m1Þẑ3;

f2ðẑÞ ¼ ðk1=m2Þẑ1 � ðk1=m2Þẑ2 þ ðb1=m2Þẑ3 � ½ðb1 þ b2Þ=m2�ẑ4 :

�

ð22Þ

4 Controller synthesis

Recall that our aim is to ensure the output regulation of the

PAC system. Namely, we wish to ensure that the contact

force FðtÞ remains constant, despite the fluctuation of the

catenary equivalent stiffness kðtÞ. Thereafter, as we are

dealing with a linear time-varying system, we use back-

stepping techniques [17] since this control tool could

ensure a robust regulation.

Hence, as FðtÞ ¼ kðtÞz1ðtÞ (where kðtÞ[ 0), aiming to

force the contact force FðtÞ to track constant reference

FrðtÞ turns out to make z1ðtÞ track the following reference

signal:

z1rðtÞ :¼ �FrðtÞ=kðtÞ : ð23Þ

Now, getting benefit of the fact that the state estimation

error ~zðtÞ vanishes exponentially, the proposed regulator

may be performed based on Eq. (21). To this end, let us

assume that the output reference FrðtÞ and the catenary

equivalent stiffness kðtÞ are differentiable as many times as

necessary. Roughly, this is possible as FrðtÞ could be made

continuous using an appropriate low-pass filter. In addition,

the stiffness kðtÞ is continuous as it is a physical signal.

Then, using the backstepping approach, it follows from

the representation Eq. (17) that the control design will

include three steps.

Step 1 Introducing the output tracking error:

e1 ¼ ẑ1 � z1r: ð24Þ

Using (21), it follows that

_e1 ¼ ẑ3 þ g11~z1 þ g12~z2 � _z1r ; ð25Þ

where ẑ3 stands for a virtual control. Let the corresponding

stabilizing function be denoted by a1. Then, to stabilize

Eq. (25) around e1 ¼ 0, let us consider the Lyapunov

function:

V1 ¼ e2
1

�
2 : ð26Þ

Then, using Eq. (25), deriving V1 with respect to time

yields

_V1 ¼ e1 _e1 ¼ e1 ẑ3 þ g11~z1 þ g12~z2 � _z1rð Þ : ð27Þ

This suggests that the virtual control ẑ3 is chosen equal to

a1, with

a1 ¼ _z1r � c1e1 ; ð28Þ

where c1 is positive real.

As ẑ3 is not the actual control action, it cannot be forced

to ẑ3 ¼ a1. Then, let us retain the expression of a1 and

introduce the following error:

e2 ¼ ẑ3 � a1 : ð29Þ

Now, from Eqs. (25), (27) and (29), _e1 and _V1 can be

rewritten as follows:

_e1 ¼ e2 � c1e1 þ g11~z1 þ g12~z21 ; ð30Þ
_V1 ¼ e1e2 � c1e

2
1 þ e1 g11~z1 þ g12~z2ð Þ : ð31Þ

Step 2 Let us notice that, as a1 depends on measurable

signals, it follows that _a1 does exist. Then, using

Eqs. (21) and (29), _e2 can be computed as

_e2 ¼ f1 ẑ1; ẑ2; ẑ3ð Þ þ b1

m1

ẑ4 �
z1

m1

vTĥ þ g31~z1 þ g32~z2 � _a1 ;

ð32Þ

where ẑ4 stands for a virtual control. Let the corresponding

stabilizing function be denoted by a2. To stabilize Eq. (32)

around e2 ¼ 0, let us consider the Lyapunov function:

V2 ¼ V1 þ e2
2

�
2 : ð33Þ

Now, using Eqs. (31) and (32), deriving V2 with respect

to time yields

256 E. Chater et al.
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_V2 ¼ e1e2 � c1e
2
1 þ e1ðg11~z1 þ g12~z2Þ

þ e2 f1 ẑ1; ẑ2; ẑ3ð Þ þ b1=m1Þẑ4 � ðz1=m1ð ÞvTĥ
�

þ g31~z1 þ g32~z2 � _a1Þ :

ð34Þ

Equation (34) suggests that ẑ4 should be chosen equal to a2

with

a2 ¼ ðm1=b1Þ �c2e2 � e1 � f1 ẑ1; ẑ2; ẑ3Þ þ ðz1=m1ð ÞvTĥþ _a1

� 	
;

ð35Þ

where c2 is positive real constant number. However, as ẑ4 is

not the actual control action, it cannot be forced to ẑ4 ¼ a2.

Then, let us retain the expression of a2 and introduce the

following error

e3 ¼ ẑ4 � a2 : ð36Þ

Afterwards, from Eqs. (32), (34) and (36), _e2 and _V2 can

be rewritten in terms of e1,e2 and e3 as follows:

_e2 ¼ �e1 � c2e2 þ ðb1=m1Þe3 þ g31~z1 þ g32~z2 ; ð37Þ
_V2 ¼ �c1e

2
1 � c2e

2
2 þ ðb1=m1Þe2e3 þ e1 g11~z1 þ g12~z2ð Þ

þ e2 g31~z1 þ g32~z2ð Þ :
ð38Þ

Step 3 From Eqs. (21) and (36), the computation of _e3

yields

_e3 ¼ f2ðẑÞ þ ð1=m2Þu þ g41~z1 þ g42~z2 � _a2: ð39Þ

To stabilize Eq. (39) around e3 ¼ 0, let us consider the

Lyapunov function:

Vc ¼ V2 þ e2
3

�
2 : ð40Þ

Using Eqs. (38) and (39), we can derive Vc with respect

to time as:

_Vc ¼� c1e
2
1 � c2e

2
2 þ e3 ðb1=m1Þe2 þ f2ðẑÞ þ ð1=m2Þ u � _a2½ �

þ e1ðg11~z1 þ g12~z2Þ þ e2ðg31~z1 þ g32~z2Þ þ e3ðg41~z1 þ g42~z2Þ :
ð41Þ

Then, letting

ðb1=m1Þe2 þ f2ðẑÞ þ ð1=m2Þu� _a2 ¼ �c3e3 ; ð42Þ

with c3 [ 0, it follows that:

u ¼ m2ð�c3e3 þ _a2 � f2ðẑÞ � ðb1=m1Þe2Þ : ð43Þ

Now, from Eqs. (39), (41), and (43), _Vc and _e3 can be

rewritten as follows:

_Vc ¼ �c1e
2
1 � c2e

2
2 � c3e

2
3 þ e1 g11~z1 þ g12~z2ð Þ½

þe2 g31~z1 þ g32~z2ð Þ þ e3 g41~z1 þ g42~z2ð Þ� ;
ð44Þ

_e3 ¼ �c3e3 � ðb1=m1Þe2 þ k41~z1 þ k42~z2 : ð45Þ

The output feedback controller established consists of

the observer dynamics Eq. (17) and the control law

Eq. (43). Then, for sake of clarity, before analyzing the

closed loop control system, let us define the following error

vector:

ec ¼ e1 e2 e 3


 �T 2 R3: ð46Þ

From Eqs. (30), (37) and (45), one gets

ec ¼ Hcec þ Gy~y; ð47Þ

where

Hc :¼
�c1 1 0

�1 �c2 b1=m1

0 �b1=m1 �c3

2

4

3

5; ð48Þ

Gy :¼
g11 g12

g31 g32

g41 g42

2

4

3

5 ; ð49Þ

~y :¼ Cez ¼ ~z1 ~z2½ �T: ð50Þ

5 Control system analysis

Based on Eqs. (17) and (43), the performance of the output

feedback controller will now be formally analyzed. First,

let us use the following transformation [18]:

ez :¼ ez � Keh: ð51Þ

Afterwards, the closed loop control system could be

described by the following error vector:

e ¼ eT
c eT

z eT
h


 �
2 R10: ð52Þ

Now, the main result is summarized in the following

theorem:

Theorem 1 Consider the control system consisting of the

PAC system described by Eq. (11) and the output feedback

controller consisting of the state observer dynamics

Eq. (17) with the control law Eq. (43). Then,

(1) The closed-loop control system is described by the

following representation:

_ec ¼ Hcec þ GyC ðez þ KehÞ;
_ez ¼ A� S�1

z CTRC
� �

ez;

_eh ¼ �S�1
h KTCTRCðez þ KehÞ :

8
<

:
ð53Þ

(2) The error vector e ¼ eT
c eT

z e
T

h

h iT

defined by

Eqs. (19), (46) and (51) is globally asymptotically

stable around the origin; i.e. whatever ecð0Þ, ezð0Þ
and ehð0Þ are, one has eT

c ðtÞ, eT
z ðtÞ and eT

h ðtÞ �!t!1
0: h

For sake of clarity, the proof of the Theorem 1 is placed

in Appendix 2.
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6 Numerical example

In order to show the effectiveness of the proposed control

scheme and the derived results, the control system

including the PAC system, the adaptive observer and the

backstepping regulator, have been simulated considering

mechanical parameters with common values (Table 1). Of

course, these parameters are only used in the implemen-

tation of the PAC system model. For controller synthesis,

all the catenary parameters (k0,a, b) are obviously assumed

to be unknown.

The (continuous) contact force reference FrðtÞ is

obtained by filtering a square sequence FcðtÞ switching

between 0 and FN ¼ 100 N (that is a common nominal

value in real context). Afterwards, using a constant low

acceleration, the vehicle velocity is assumed to have

reached its high speed nominal value k ¼ 360 km/h , which

means that the control system operates in steady state.

Then, using a simulation tool, it turns out that good

behaviour of the closed loop system can be ensured with

the following controller and observer parameters:

c1 ¼ 400; c2 ¼ 400; c3 ¼ 50; qz ¼ 40; qh ¼ 20; R
¼ 100Ið4; 4Þ; Szð0Þ ¼ Ið4; 4Þ;

and Shð0Þ ¼ Ið3; 3Þ:

The simulation results are illustrated in Figs. 3, 4 and

5. First, in Fig. 3, we can see that the contact force FðtÞ

is almost confounded with the filtered reference FrðtÞ.
The corresponding closed-loop control action uðt) is

given in Fig. 4 and the approximated catenary equivalent

stiffness is shown in Fig. 5. Therefore, as the contact

force FðtÞ is almost constant (negligible fluctuation), it

turns out that the proposed control strategy could provide

almost good robustness despite the stiffness variation

and good tracking performances even in high speed

context.

7 Conclusion

In this paper, we deal with the problem of contact force

regulation and tracking control design with respect to the

time-varying catenary parameters in active train pan-

tographs. The proposed control strategy is based on the

backstepping approach and the adaptive observer. The

main result of this work ensures that the contact force

applied on the catenary could be maintained almost

constant despite the time-varying catenary parameters.

Interestingly, a Kalman-like adaptive observer provides

the estimation of the catenary parameters, which means

that the use of a contact force sensor is here avoided. A

numerical example and a formal detailed analysis of the

closed-loop control system show that both output regu-

lation and tracking objectives of step-like contact force

references can be asymptotically guaranteed. Additional

perspectives of this study include the extension to the

case of parameter uncertainties and the consideration of a

more complex model of the PAC system.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits unrestricted

use, distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

Table 1 Typical mechanical parameters of a 2-DOF PAC system

[15]

Phase shift b ¼ p=4 Pantograph head

Span length L = 65 m m1 = 8 kg b1 = 120 Ns/

m

k1 = 10 kN/

m

Catenary Pantograph frame

k0 = 4 kN/

m

a = 0.5 m2 = 12 kg b2 = 30 Ns/m
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Fig. 3 Contact force FðtÞ (dashed) versus the filtered reference FrðtÞ
(solid)
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Appendix 1: Proof of Lemma 1

For the sake of clarity, let us recall the notation of Eq. (19):

ez :¼ z� ẑ and eh :¼ h� ĥ: ð54Þ

So, using Eqs. (11) and (17), it can be readily checked

that

_ez ¼ A� KS�1
h KT � S�1

z

� �
CTRCez þ wðyÞeh; ð55Þ

_eh ¼ �S�1
h KTCTRCez: ð56Þ

Then, recall that, from Eq. (51), we have

ez ¼ ez � Keh: ð57Þ

This means that

_ez ¼ A� KS�1
h KT � S�1

z

� �
CTRCez þ w(y)eh � _Keh

� K _eh:

ð58Þ

Then, from Eq. (17), by replacing the

suitable expressions in the above equation, one gets

_ez ¼ A� S�1
z CTRC

� �
ez;

_eh ¼ �S�1
h KTCTRCðez þ KehÞ: ð59Þ

Therefore, as Sz and Sh are positive definite matrices

[16] under the considered excitation conditions

(Assumption 1), one can choose a lyapunov function as

Vðez; ehÞ ¼ eT
z Sz ez þ eT

hSheh; ð60Þ

whose derivative is given by

_Vðez; ehÞ ¼eT
z A� S�1

z CTRC
� �T

Szez þ eT
z Sz A� S�1

z CTRC
� �

ez

� ðez þ KehÞT S�1
h KTCTRC

� �T
Sheh

� eT
hSh S�1

h KTCTRC
� �

(ez þ KehÞ
þ eT

z
_Szez þ eT

h
_Sheh:

ð61Þ

Then, by substituting the appropriate expressions of _Sz

and _Sh using Eq. (17), we get

_Vðez; ehÞ ¼ eT
z A� S�1

z CTRC
� �T

Szez þ eT
z Sz A� S�1

z CTRC
� �

ez

� ðez þ KehÞT S�1
h KTCTRC

� �T
Sheh

� eT
hSh S�1

h KTCTRC
� �

ðez þ KehÞ
þ eT

z �qzSz � ATSz � SzAþ CTRC
� �

ez

þ eT
h �qhSh þ KTCTRCK
� �

eh ;

which can be simplified to

_Vðez; ehÞ ¼ � qze
T
z Szez � qhe

T
hSheh

� eT
z C

TRCez � eT
z C

TRCKeh

� eT
hK

TCTRCez � eT
hK

TCTRCKeh:

ð62Þ

Afterwards, noticing that

� eT
z C

Tez � eT
z C

TRCKeh � eT
hK

TCTRCez � eT
hK

TCTRCKeh

¼ �ðez þ KehÞTCTRCðez þ KehÞ ;
ð63Þ

we obtain
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Fig. 5 Catenary equivalent stiffness estimate k̂ðtÞ (dashed) versus its actual value k(t)
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_Vðez; ehÞ ¼ �qze
T
z Szez � qhe

T
hSheh

� ðez þ KehÞTCTRCðez þ KehÞ
� � qze

T
z Szez � qhe

T
hSheh:

ð64Þ

Now, by letting q ¼ minðqz; qhÞ, it results that

_Vðez; ehÞ� � qðeT
z Szez þ eT

hShehÞ
� � qVðez; ehÞ :

ð65Þ

Appendix 2: Proof of Theorem 1

First, let us recall that from Eq. (44), we have
_Vc ¼ �c1e

2
1 � c2e

2
2 � c3e

2
3 þ ðe1ðg11~z1 þ g12~z2Þ þ e2ðg31~z1

þ g32~z2Þ þ e3ðg41~z1 þ g42~z2ÞÞ :
ð66Þ

Using the classical relation a2
�

2 þ b2
�

2[ abj j, we obtain

e1gij ~z1

�
�

�
� ¼ e1gij~z1

�
�

�
�� e2

1g
2
ij

.
2 þ ~z2

1

�
2; ð67Þ

for i = 1, 3, 4 and j = 1, 2.

Then, from Eq. (66), it follows that

_Vc � � c1e
2
1 � c2e

2
2 � c3e

2
3 þ e2

1g
2
11

�
2 þ ~z2

1

�
2

þ e2
1g

2
12

�
2 þ ~z2

2

�
2 þ e2

2g
2
31

�
2 þ ~z2

1

�
2 þ e2

2g
2
32

�
2

þ ~z2
2

�
2 þ e2

3g
2
41

�
2 þ ~z2

1

�
2 þ e2

3g
2
42

�
2 þ ~z2

2

�
2 ;

� � c1e
2
1 þ e2

1g
2
11

�
2 þ e2

1g
2
12

�
2 � c2e

2
2 þ e2

2g
2
31

�
2

þ e2
2g

2
32

�
2 � c3e

2
3 þ e2

3g
2
41

�
2 þ e2

3g
2
42

�
2

þ 3~z2
1

�
2 þ 3~z2

2

�
2 ;

_Vc � � c1 � g2
11 þ g2

12

 ��
2

 �
e2

1 � c2 � g2
31 þ g2

32

 ��
2

 �
e2

2

� c3 � g2
41 þ g2

42

 ��
2

 �
e2

3 þð3=2Þ ezk k2 :

ð68Þ

Now, let us consider

Vg :¼
1

2
e2

1 þ e2
2 þ e2

3

 �
þ eT

z Szez þ eT
hSheh: ð69Þ

Then, taking into account Eqs. (57), (64) and (68), it

follows that

_Vg � � c1 � g2
11 þ g2

12

 ��
2

 �
e2

1 � c2 � g2
31 þ g2

32

 ��
2

 �
e2

2

� c3 � g2
41 þ g2

42

 ��
2

 �
e2

3 � qze
T
z Szez � qhe

T
hSheh

þ ð
ffiffiffiffiffiffiffiffi
3=2

p
Þ2

ez þKehk k2;

� � c1 � g2
11 þ g2

12

 ��
2

 �
e2

1 � c2 � g2
31 þ g2

32

 ��
2

 �
e2

2

� c3 � g2
41 þ g2

42

 ��
2

 �
e2

3 � qze
T
z Szez � qhe

T
hSheh

þ ð
ffiffiffiffiffiffiffiffi
3=2

p
Þ2

ezk k2þ Kehk k2
� 	

;

� � c1 � g2
11 þ g2

12

 ��
2

 �
e2

1 � c2 � g2
31 þ g2

32

 ��
2

 �
e2

2

� c3 � g2
41 þ g2

42

 ��
2

 �
e2

3 � qze
T
z Szez � qhe

T
hSheh

þ ð
ffiffiffiffiffiffiffiffi
3=2

p
Þ2

eT
z ez þ eT

hK
TKeh

 �
;

and finally, one gets

_Vg � � c1 � g2
11 þg2

12

 ��
2

 �
e2

1 � c2 � g2
31 þg2

32

 ��
2

 �
e2

2

� c3 � g2
41 þg2

42

 ��
2

 �
e2

3 �qze
T
z Sz�ð

ffiffiffiffiffiffiffiffi
3=2

p
Þ2I4

� 	
ez

�qhe
T
h Sh�KTð

ffiffiffiffiffiffiffiffi
3=2

p
Þ2I3K

� 	
eh :

ð70Þ

From Eq. (70), it is obvious that _Vg could be made

negative definite with respect to the system errors e¼
eT
c eT

z eT
h


 �T
by augmenting sufficiently the parameters

ci ði¼ 1; 2; 3Þ. Ultimately, the equilibrium theorem

guarantees that the system errors e¼ eT
c eT

z eT
h


 �T
are

globally and asymptotically stable around the origin. This

means that whatever eð0Þ¼ eT
c ð0Þ eT

z ð0Þ eT
h ð0Þ


 �T
, one

gets: e1ðtÞ, e2ðtÞ, e3ðtÞ, eT
z ð0Þ and eT

h ð0Þ�!t!1
0: h
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