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Abstract Dynamic load imposed on the bridge by mov-

ing vehicle depends on several bridge–vehicle parameters

with various uncertainties. In the present paper, particle

filter technique based on conditional probability has been

used to identify vehicle mass, suspension stiffness, and

damping including tyre parameters from simulated bridge

accelerations at different locations. A closed-form expres-

sion is derived to generate independent response samples

for the idealized bridge–vehicle coupled system consider-

ing spatially non-homogeneous pavement unevenness.

Thereafter, it is interfaced with the iterative process of

particle filtering algorithm. The generated response sam-

ples are contaminated by adding artificial noise in order to

reflect field condition. The mean acceleration time history

is utilized in particle filtering technique. The vehicle-

imposed dynamic load is reconstructed with the identified

parameters and compared with the simulated results. The

present identification technique is examined in the presence

of different levels of artificial noise with bridge response

simulated at different locations. The effect of vehicle

velocity, bridge surface roughness, and choice of prior

probability density parameters on the efficiency of the

method is discussed.

Keywords Dynamic load � Particle filter � Forward

solution � Spatially non-homogeneous � Conditional

probability

1 Introduction

Every bridge has certain restriction for the vehicle load and

length. When the limit exceeds, permit has to be sought

from the competent authority to pass the vehicle through

the bridge. Weigh bridges are installed at important sec-

tions of highways to restrict the overloaded vehicles to

enter the bridge. Presently, weigh-in-motion system in use

can estimate the axle loads. But it incurs high cost of

installation and maintenance. Accuracy is also affected by

the speed of vehicle and unevenness of the pavement. It is

to be mentioned that vehicle and bridge are integral parts of

transportation system. The performance of one is affected

by the performance of other and vice versa. Their behavior

is coupled due to forces at contact points. For given

structural configuration, construction materials, and road

surface condition, the physical parameters of vehicle also

play a significant role in bridge dynamic behavior. Tradi-

tionally, the bridge design load is calculated by magnifying

static live load with impact factor. Days are not far when

complete moving load time history would be necessary to

check the design of long-span bridges. Recognizing the

practical significance of the research on moving load

identification, efforts have been made to estimate vehicle

load from the bridge dynamic response using various

techniques to improve the accuracy.

For the determination of axle load, weigh-in-motion

system using instrumented bridge was developed by Moses

[1]. Clayton and Peter [2] investigated truck weights from

the perspective of regulatory limits. Accurate knowledge of

dynamic forces acting on the built-up bridges is important

to know the remaining service life. The interaction of

moving vehicles with bridge has attracted the attention of

many researchers for predicting their behavior by analyti-

cal and numerical techniques. However, it is difficult to

R. Lalthlamuana � S. Talukdar (&)

Department of Civil Engineering, Indian Institute of Technology

Guwahati, Guwahati 781039, India

e-mail: staluk@iitg.ernet.in

123

J. Mod. Transport. (2015) 23(1):50–66

DOI 10.1007/s40534-014-0065-8



measure the interaction force directly as their dynamics are

coupled with both temporal and spatial variation. Theo-

retical model of bridge–vehicle interaction was developed

by Green and Cebon [3] and Yang and Yau [4] within the

limitations of linear dynamics. The determination of

vehicle parameters from bridge response measurement

requires a development of forward and an inverse scheme.

The inverse solution is usually iterative in nature, whereas

forward scheme may adopt an analytical or numerical

approach depending on the bridge–vehicle model and

degree of complexity involved. Yu and Chan [5] reviewed

the recent works on moving load identification on bridges.

Connor and Chan [6] employed least square method to

estimate equivalent static load and their dynamic variation

with time based on bridge response measurement. Vehicle–

bridge interaction was ignored in the system model. An

interpretive method was developed by Law et al. [7] where

bridge has been modeled as an assembly of lumped masses,

and Chan et al. [8] improved the model using Euler

Bernouli continuous system. He also conducted laboratory

experiments for the identification of moving mass from

measured strain [9]. Later on, Law and Fang [10] proposed

a theoretical optimal state estimation with the use of

dynamic programming, by which moving load could be

identified, overcoming the difficulties of ill conditioning of

state matrix in time and frequency domain approach

mentioned in Refs [11, 12]. Moving load identification in

multi-span beams was also reported in Refs. [13, 14],

where the effect of noise, number of vibration modes, and

effect of support flexibility for non-rigid bearings were

considered. Recently, Wu and Law [15] adopted stochastic

finite-element-based method for moving load identification

and further, they presented a new approach of vehicle axle

load identification using Karhunen–Loeve expansion of

stochastic process with irregular road surface [16]. In the

last two decades, system identification using various

numerical and experimental techniques has been tried in

the field of structural engineering. Ghanem and Shinozuka

[17] reviewed different identification algorithms and stud-

ied their applications to structures subjected to earthquake

excitation. Shinozuka and Ghanem [18] verified different

identification algorithms based on data obtained during

controlled experiments on physical model. Deng and Cai

[19] used genetic algorithm to identify parameters of

vehicles moving on bridges. Development of Bayesian

state estimation methodologies has added a new dimension

in system identification involving various uncertainties

[20]. Most important Bayesian estimation is Kalman fil-

tering which is applicable to linear models and Gaussian

type of uncertainties, and can be regarded as the stepping

stone for the development of particle filtering method. In

the last decade, the particle filter method based on condi-

tional probability theory has attracted many researchers in

the field of communication engineering, robotics, image

processing, and ecology to estimate state of the system and

hidden parameters from noisy signals/data [21–23]. Weerts

et al. [24] applied particle filtering for state updating in

rainfall–runoff models in hydrological applications. Schon

et al. [25] reported on the computational complexity that

increases with state dimension and suggested a marginali-

zation technique to improve particle filtering which was

then successfully used to an integrated navigation system

of Swedish aircraft. Chatzi and Smyth [26] considered

sensor heterogeneity for system identification of three

degree of freedom system using unscented Kalman filter

and particle filter technique. Narsella and Manohar [27]

employed finite-element-based particle filter method for

system identification with multiple sensor data for struc-

tural health monitoring purpose. Use of particle filter

technique to estimate damage in vibrating beams without

prior information of undamaged state has been documented

by Pokale and Gupta [28]. Ching et al. [29] and Nasrella

and Manohar [30] applied a particle filter method for state

as well as system parameter estimation of dynamic systems

implementing finite-element model in forward scheme with

deterministic excitation. It was concluded that particle filter

method can provide consistent result for non-linear models

also.

Literatures available on the identification of moving

load parameters on bridges using particle filter technique

are scanty. Further researches are necessary to establish the

popularity of the particle filter technique in vehicle–bridge

coupled dynamics in the presence of stochasticity of con-

tact forces. It was realized by researchers that particle fil-

tering technique is computationally expensive, as a large

number of response samples are required to obtain con-

verged results. Although particle filter technique may take

care of model inaccuracies, forward solution of mathe-

matical model of the dynamic system with iterative or

numerical schemes consumes lot of time to detect hidden

parameters in the signal. In view of this fact, it would be

advantageous if an idealized but quite accurate physical

model is evolved which enables closed-form solutions to

be interfaced with the iterative process of the particle fil-

tering technique. In the present paper, a forward solution of

the bridge–vehicle coupled system for non-homogeneous

pavement input has been obtained in closed form to enable

rapid generation of samples, required in the iterative

algorithm to overcome the demerits of the existing particle

filter method. Since accelerometers are the most practically

used sensors, the simulated acceleration time history has

been used to illustrate the approach with idealized model of

bridge and vehicle. It may be noted that most of the authors

limited their study to the estimation of gross vehicle weight

from the bridge dynamic response. The effect of vehicle

suspensions on the bridge dynamic response has been
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recognized by Green et al. [31], where they observed that

use of soft and well-damped suspension produces smaller

dynamic wheel loads on the bridge pavement. Moreover,

estimation of vehicle suspension and tyre parameters, in

indirect way, is also helpful to vehicle owners since a

suitable maintenance policy may be worked out from the

knowledge of current status. The present study formulates

a coupled bridge–vehicle system using continuum

approach, where parameters of bridge and vehicle in

combined way influence the system output and, therefore,

governs the moving force time history on the bridge.

Particle filtering technique along with semi-analytical

scheme has been used to estimate not only vehicle body

mass but also tyre mass, suspension stiffness, suspension

damping, tyre stiffness, and tyre damping. The identified

vehicle parameters have been used to reconstruct inter-

action force time history and compared with the true

value. The algorithm used in the present study along with

semi-analytical method of sample generation has been

tested by comparing the results with theoretical and

experimental results available in published literatures. The

identification technique used in the paper has also been

examined in the presence of noise with response samples

at different locations, vehicle velocity, and bridge surface

roughness. The effect of range of the parameters to con-

struct prior probability density function on the efficiency

of the method is also discussed.

2 Bridge–vehicle dynamic interaction

2.1 Bridge–vehicle system equations

In particle filtering technique, it is necessary that forward

problem of the bridge–vehicle model can be solved by

adopting suitable scheme. The choice of model depends on

the purpose of analysis, computational cost, and desired

accuracy. Usually, transverse dimension of bridge deck is

small compared to its span, and therefore a simplified beam

model is a suitable option to establish a clear connection

between bridge response and other influencing parameters

[32], especially in case of implementing a computationally

intensive method for the estimation of system parameters

using large number of response samples in stochastic

dynamics. The simpler model when tuned to fundamental

natural frequency of the real bridge is expected to predict

dynamic behavior similar to real structure. In the present

study, a single-span bridge has been idealized as Euler–

Bernoulli beam of uniform cross section and damping

properties. Vehicle has been modeled as a lumped sprung

mass mv, and the mass of wheel, tyre, and part of the

suspension is referred to as the unsprung mass mw. The

characteristics of the vehicle suspension system have been

assumed to be linear. The bridge–vehicle model is shown

in Fig. 1.

All translatory motions are assumed to be positive in

upward direction. The sprung mass mv is subjected to

heave motion z1 in vertical direction, and the vertical dis-

placement of unsprung mass mw is subjected to z2. The

vehicle body and the unsprung mass are connected by

suspension system comprising spring element of stiffness

kv and dashpot with damping constant cv, respectively.

Tyre stiffness and damping are kt and ct, respectively. It

may be noted that the vertical degrees of freedom z1, z2 and

bridge deflection y(x,t) are measured with reference to their

respective static equilibrium position at any time instant

t. The equation of motion for the vehicle is coupled with

the bridge equation of motion through the interaction force

existing at the contact point of the two systems.

The governing differential equations of motion of the

two lumped masses can be written as

mv
€Z1ðtÞ þ cv

_Z1ðtÞ � _Z2ðtÞ
� �

þ kv Z1ðtÞ � Z2ðtÞf g ¼ 0;

ð1Þ

mw
€Z2ðtÞ þ kt Z2ðtÞ � yðxc; tÞ � hðxcÞf g
þ kv Z2ðtÞ � Z1ðtÞf g þ cv

_Z2ðtÞ � _Z1ðtÞ
� �

þ ct
_Z2ðtÞ � _yðxc; tÞ þ _hðxcÞ

� �� �

¼ 0; ð2Þ

where h(x) is the pavement roughness at a distance x from

the reference station and xc denotes the location of wheel

contact form the same reference station. The governing

equation of transverse motion of the beam can be written as

EI
o4yðx; tÞ

ox4
þ mb

o2yðx; tÞ
ot2

þ cb

oyðx; tÞ
ot

¼ fcðx; tÞ; ð3Þ

where mb, EI, and cb represent the mass per unit length,

flexural rigidity of bridge, and viscous damping per unit

length of bridge, respectively. Assuming tyre remains in

contact with the bridge at all times, interaction force

(fc C 0) in space and time variable can be expressed as

z1

z2

mv
V

kv cv

y(x,t)
mw

X
Xc

L

kt ct h(x)

Fig. 1 Bridge-vehicle Model
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fcðx; tÞ ¼ � kt z2ðtÞ � yðx; tÞ � hðxÞf g½
þct _z2ðtÞ � _yðx; tÞ � _hðxÞ
� ��

dðx� xcÞ
� fmw þ mvggdðx� xcÞ;

ð4Þ

where d is the Dirac delta function having the following

property

Z1

�1

f ðxÞ dðx� xcÞdx ¼ f ðxcÞ: ð5Þ

2.2 Bridge deck roughness

In the present study, we introduce a roughness, which is

non-homogeneous in space even though vehicle velocity is

constant, by adopting the following equation:

hðxÞ ¼ hmðxÞ þ
XN

s¼1

1s cosð2p Xsxþ hsÞ; ð6Þ

where h(x) is the deck surface unevenness which includes

two parts. The first part hm(x) is a deterministic mean

which may represent construction defects, pot holes,

approach slab settlement, expansion joints, development

of corrugation, etc. The second part of Eq. (6) is a Gaussian

process [33] with a random phase angle hs uniformly

distributed from 0 to 2p. N is the number of terms used to

build up the road surface roughness,1s is the amplitude of

cosine wave, Xs is the spatial frequency (rad/m) within the

interval [XL, XU] where XL, XU are lower and upper cut-

off frequencies of spatial unevenness, respectively. The

parameters 1s and Xs are computed as

1s ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2SðXs

p
ÞDX ; Xs ¼ XL þ s� 1

2

� �
DX; DX

¼ ðXU � XLÞ
N

: ð7Þ

In Eq. (7), S(.) is the power spectral density function

(m3/rad) at spatial frequency Xs of road surface roughness.

The index ‘s’ refers to a discrete point inside the frequency

range XL to XU, where power spectral density of road

roughness is to be known. In the present study, power

spectral density function has been expressed as [34]

SðXsÞ ¼ SðX0Þ �
Xs

X0

� ��2

; ð8Þ

where X0 is referred as discontinuity frequency and is

taken as 1/2p (rad/m).

On examination of Eq. (8), it is revealed that at very low

spatial frequency (Xs ? 0), the power spectral density

becomes unbounded, i.e., S(Xs) ? ?. In view of this, Yin

et al. [35] suggested an improved equation as follows:

SðXsÞ ¼ SðX0Þ �
X2

0

X2
s þ X2

L

: ð9Þ

The PSD function given by Eq. (9) has been adopted in

the present study.

2.3 Discretization of bridge equations of motion

Using mode superposition technique, the bridge deflection

in flexure has been shown by Meriovitch [36] as

yðx; tÞ ¼
X1

k¼1

ukðxÞqkðtÞ; ð10Þ

where /k xð Þ is the flexural mode of the beam for simply

supported boundary condition and qk(t) is the generalized

co-ordinates in the kth mode. The natural frequencies of

simply supported bridge can be obtained as [36]

xk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI

mb

ðkp
L
Þ4

r

; ð11Þ

where xk is the bridge natural frequency in the kth mode,

and EI, mb, and L represent flexural rigidity, mass per unit

length, and span of the bridge, respectively.

The mass normalized mode shape is given by [36]

ukðxÞ ¼
ffiffiffiffiffiffiffiffiffi

2

mbL

r

sin
kpx

L
: ð12Þ

Now, substituting Eq. (10) in Eq. (3) and multiplying

both sides of the equation by /j xð Þ and then integrating

with respect to x from 0 to L with the use of orthogonality

conditions, the equation of motion can be discretized in

normal co-ordinates as

€qkðtÞ þ 2nkxk _qkðtÞ þ x2
kqkðtÞ ¼ QkðtÞ; k ¼ 1; 2; 3. . .ð Þ;

ð13Þ

where nk is the modal damping ratio in the kth mode. In

practical application, the number of modes is to be limited

to a finite size.

The generalized force (Qk) of bridge in flexure [36] is

given as

QkðtÞ ¼
1

Mk

ZL

0

fcðx; tÞukðxÞdx; ð14Þ

where the term Mk is generalized mass in the kth mode [36]

given by

Mk ¼
ZL

0

mbu
2
kðxÞdx: ð15Þ
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Substituting Eq. (4) in Eq. (14) and using property of

Dirac delta function, the generalized force in the kth of

mode of bridge transverse vibration has been worked out as

QkðtÞ ¼ �
1

Mk

kt z2ðtÞ �
Xnb

k¼1

ukðxcÞqkðtÞ � hðxcÞ
( )

ukðxcÞ
"

þ ct _z2ðtÞ �
Xnb

k¼1

ukðxcÞ _qkðtÞ � Vh0ðxcÞ
( )

ukðxcÞ

� fmw þ mvggukðxcÞ;
ð16Þ

in which g denotes acceleration due to gravity and (0)
represents space derivative.

2.4 Solution of forward problem

The system Eqs. (1), (2), and (13) are coupled second-

order ordinary differential equations. Theoretically, there is

infinite number of modes in continuous system. However,

for practical purpose, the number of modes has to be

truncated to a finite size. Considering first ‘nb’ flexural

modes of the beam, the number of coupled equations then

becomes n = 2 ? nb. The system equations can be

expressed in matrix notation as

½M�frðtÞg þ ½CðtÞ�f _rðtÞg þ ½KðtÞ�frðtÞg ¼ fFðtÞg; ð17Þ

where {r(t)} = {z1(t), z2(t) q1(t), q2(t)…, qn(t)}T is the

response vector, {F(t)} is the generalized stochastic force

vector. [M], [C(t)], and [K(t)] are the system mass,

damping, and stiffness matrix, respectively, of size

(2 ? nb) 9 (2 ? nb). It may be noted that due to

coupling of bridge–vehicle equations, the stiffness and

damping matrix becomes time dependent due to change of

wheel contact position on the bridge with time. The ‘n’

system equations are now recast into a 2n-dimensional

first-order state-space form [37] as given below:

f _PðtÞg þ ½AðtÞ�fpðtÞg ¼ fPðtÞg; ð18Þ

where

fpðtÞg ¼ _rðtÞ
rðtÞ

	 

; ½AðtÞ� ¼ ½M��1½CðtÞ�

�½I�
½M��1½KðtÞ�
½0�

n o
;

fPðtÞg ¼ ½M��1fFðtÞg
f0g

( )

;

ð19Þ

Here, {p(t)} is the state vector, [A(t)] is the state matrix,

[I] is an identity matrix, {P(t)} is the augmented excitation

vector, and [0] is a null vector or matrix. This form is

suitable for bridge–vehicle interaction problems, since

suspension damping is not small and diagonalization of

damping matrix as in case of Rayleigh’s damping may not

be fully convincing. Let the eigenvalues of the state matrix

[A(t)] be a1, a2, a3…a2n and the corresponding complex

conjugate eigenvectors be {u}1, {u}2, {u}3…{u}2n

Defining modal matrix [U(t)] and using linear

transformation {p(t)} = [U(t)]{v(t)} in Eq. (19), along

with orthogonality condition of the complex eigen

vectors, the decoupled first-order system is given below:

_vjðtÞ þ ajvjðtÞ ¼ RjðtÞ; j ¼ 1; 2; 3. . .2n; ð20Þ

where

Rj ¼
Xn

s¼1

u0js
Xn

k¼1

m0skFkðtÞ; ð21Þ

where u0js denotes the elements in the inverse of the matrix

[U(t)] and m0sk denotes the elements in the inverse of matrix

[M]. Using Fourier–Stieltjes transform [37], Eq. (21) can

be written in frequency domain as

RjðxÞ ¼
Xn

s¼1

u0js
Xn

k¼1

m0sk

Z1

�1

expð�ixtÞ d½FkðxÞ�: ð22Þ

The general solution of Eq. (20) may now be expressed

as

vjðtÞ ¼ X0j expð�ajtÞ þ
Z1

�1

Hjðx; tÞRjðxÞdx; ð23Þ

where X0j are constants of integration to be determined

from the initial conditions. Hj(x,t) is the transient

frequency response function given by [37]

Hjðx; tÞ ¼
1

�ixþ aj

expð�ixtÞ: ð24Þ

Using Eqs. (22), (24) in Eq. (23) and then utilizing

linear transformation of generalized coordinate to physical

coordinate, the original response vector {r(t)} may be

expressed as

rmðtÞ ¼
X2n

j¼1

umþn;jX0j expð�ajtÞ þ
X2n

j¼1

umþn;j

Xn

s¼1

u0js
Xn

k¼1

m0sk

Z 1

�1
FkðsÞ

1

2p

Z1

�1

exp½ixðs� tÞ�
�ixþ aj

dx

2

4

3

5 ds;

m ¼ 1; 2; 3. . .. . .n: ð25Þ

The first term of Eq. (25) represents homogeneous

solution of the system equation due to initial condition, and

the second term of the equation represents particular

solution due to imposed dynamic force.

Using Cauchy’s residue theorem [38], the general

solution of Eq. (25) now can be expressed in compact form
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rmðtÞ ¼
X2n

j¼1

umþn;jX0j expð�ajtÞ

þ
X2n

j¼1

umþn;j

Xn

s¼1

u0js
Xn

k¼1

m0skIjk; ð26Þ

where

Ijk ¼
Z t

0

exp½ajðs� tÞ�FkðsÞds; ð27Þ

in which t is the bridge loading time defined as t = x/V,

x being the distance traversed by the vehicle at instant t and

V being the constant speed of the vehicle. When the vehicle

is at the point of exit, then t = L/V where L is the span of

the bridge.

Closed-form expressions for the components of the

above integral which generates each of the response sam-

ples have been developed and given in Appendix-1. The

response samples thus form complete ensemble of the

process. Averaging across the ensemble at each time step

yields mean lY tkð Þ and standard deviation rY (tk) of

response process Y.

3 Identification of vehicle parameters

This paper presents the applicability of particle filter to

identify the unknown vehicle parameters and provides an

estimate of time-dependent moving load on the bridge. The

main idea of this method is to estimate the unknown

vehicles parameters from the available bridge response

measurements. Since both the unknown parameters and the

observation data are contaminated by noise, complete

information of the parameters is possible if we can con-

struct the probability density function of unknown param-

eters conditioned on the available bridge response

measurement, called posterior probability density function.

Vehicle parameters to be identified include sprung mass,

unsprung mass, suspension stiffness, suspension damping,

tyre stiffness, and tyre damping. Bridge parameters and the

vehicle forward velocity are taken to be known.

The basic principle of particle filter method is to rep-

resent the required posterior density function of unknown

vehicle parameters by a set of random samples (particles)

with associated weights, and to compute the estimates

based on these samples and weights. As the number of

samples becomes very large, this Monte Carlo character-

ization becomes an equivalent representation of the pos-

terior probability function, and the solution approaches the

optimal Bayesian estimate [39]. The system states rl are

assumed to propagate according to the system equation

rlþ1 ¼ gl ðrl; Ul ; glÞ; l ¼ 0; 1; 2; 3. . .:Nt; ð28Þ

where l represents the discretized time dimension and Nt is

the number of time instants considered. Ul

”

Rd is a d-

dimensional vehicle parameters vector which is considered

as constant, rl

”

Rn is a n-dimensional vector denoting the

state of the system, and a model noise gl

”

Rm is the dis-

cretized m-dimensional vector of a sequence of indepen-

dent and identically distributed random variables. The

noise is assumed to be independent of past and current state

with known probability density function. gl(.) is a system

transition function.

When the system measurements become available, the

system states are related to these measurements via the

observation equation given below:

Zl ¼ flðrl; Ul ; flÞ ; l ¼ 0; 1; 2; 3. . .:Nt; ð29Þ

where Zl

”

Rp is a p-dimensional bridge response mea-

surement vector, a measurement noise fl

”

Rs is a s-

dimensional vector of a sequence of independent and

identically distributed random variables, and fl(.) is a non-

linear function that relates the measurements to the system

state.

Since, state of the system is dependent on system

parameters {U}, observation equation can be rewritten as

Zl ¼ fl ðUl ; fl Þ; l ¼ 0; 1; 2; 3. . . Nt: ð30Þ

Vehicle parameters identification problem can now be

considered as being equivalent to the determination of the

posterior probability density function p(Ul|Zl). According

to Bayesian theorem, p(Ul|Zl) can be written as [39]

pðUljZlÞ ¼
pðZljUlÞpðUlÞR

pðZljUlÞpðUlÞdUl

; ð31Þ

where pðUljZlÞ is the posterior PDF, pðZljUlÞ is the like-

lihood of individual parameters, pðUÞ is the prior proba-

bility density function, and
R

pðZljUlÞpðUlÞdUl the

normalizing parameter, respectively.

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

 1/4 Span
 1/2 Span
 3/4 Span

dy
 (

10
 -5
 m

)

Time (s)
0.0 0.5 1.0 1.5 2.0

μ
×

Fig. 2 Mean displacement of bridge at different locations
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Thus knowing posterior PDF p(Ul |Zl) first few moments

of the vehicle parameters Ul, conditioned on bridge

response measurement Zl, at each time step can be deter-

mined. The particle filtering algorithm for identifying

vehicle parameters has been implemented by the following

principal operations [39]:

(i) Prediction: Draw Np random samples of vehicle

parameters fU0jgNl

l¼1 from the assumed PDF fpðU0lÞgNl

l¼1.

(ii) Forward Solution: Determine bridge response using

present closed-form expressions at time step l. If Nl is

sufficiently large, these estimates are approximately dis-

tributed as fpðfl ½U0l�jZlÞgNl

l¼1 .

(iii) Updating: Once the measurements are available for

different measurement locations (i = 1,2,3….Nm) at time l,

evaluate the likelihood corresponding to all the samples.

This implies that one needs to evaluate

fpðZljfl ½U0l�ÞgNl

l¼1:

For the lth measurement, calculate the weighting func-

tion as

wl ¼
pðZljU�ilÞPNp

j¼1 pðZljU�ilÞ
: ð32Þ

The discrete mass probability function for the next

iteration is defined as

PðUlj ¼ fl ½U0j�Þ ¼ wj: ð33Þ
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(iv) Resampling: From the discrete mass distribution

function, a new set of Np samples of Ulj is generated. This

constitutes the posterior estimates of Ulj. The mean of

estimates is obtained by averaging across the ensemble.

Set l = l?1 and if l \ Nt, then go to the step (ii) and

repeat other steps, otherwise stop. In this way, the filtering

is carried out for the entire available time history of

measurements.

4 Results and discussions

In this study, particular attention is given to examine the

applicability of particle filter method in identifying

vehicle parameters (sprung mass, unsprung mass, sus-

pension stiffness, suspension damping, tyre stiffness, and

tyre damping) on measured bridge dynamic response.

Since no physical experiments have been undertaken, the

measured response samples have been synthetically

generated using the present analytical expression with

artificial noise added to it to mimic field data. The ends

of the bridge are simply supported. The following data

for bridge and vehicle have been assumed to simulate

measured response:

Bridge span (L) = 20 m; mass (mb) = 11.15 9

10 kg/m; flexural rigidity (EI) = 1.695 9 1010 N-m2;

Speed range in which vehicle movement is considered is

40–80 km/h; Vehicle mass (mv) = 18,000 kg; wheel mass

(mw) = 1,500 kg; suspension stiffness (kv) = 3.6 9

107 N/m; Suspension damping (cv) = 7.2 9 104 N-sec/m;

tyre stiffness (kt) = 0.9 9 107 N/m; and tyre damping

(ct) = 0.7 9 104 N-sec/m. For modeling deck surface

roughness, the values of spectral roughness coefficient (1)

have been taken as 2 9 10-6–18 9 10-6 m2/(m/cycle)

according to International Organization for Standardization

(ISO-8608) specifications for the class of different road

conditions [40]. The lower and upper limits of the spatial

frequencies of the road profile are taken as xL = 0.01 cycle/

m and xU = 3 cycle/m. The cut-off spatial frequencies are

chosen in view of the practical size of tyre. The forward

problem has been solved using closed-form solution given in

Sect. 2.4, and above data have been employed to generate

bridge dynamic responses.

With the assumed parameters as above, time histories of

response (displacement, velocity, and acceleration) at three

different locations (at L/4, L/2, and 3L/4) have been

obtained, and the response time series are made corrupted

by addition of artificial noise. In generating response

samples to mimic measured data, vehicle parameters,

bridge roughness profile and vehicle speed, have been

taken as known quantities. The focus is on demonstrating

whether the simulated (measured) data used as input to the

particle filter be able to estimate the values of the vehicle

parameters and to what precision. With identified vehicle

parameters and known bridge sectional and material

properties, state has been estimated and used to reconstruct

dynamic tyre force imposed on the bridge during move-

ment of the vehicle.

4.1 Response statistics of bridge

Response statistics have been found by a semi-analytical

solution of forward problem which is intended to assist

particle filtering algorithm to identify vehicle parameters.

We first present the mean displacement, velocity, and

acceleration of the bridge at one-fourth, half, and three-

Table 1 Comparison of the estimate of gross vehicle weight with published results [41]

Vehicle speed (m/s) Percentage error in estimation of gross vehicle weight (%)

Class B (good condition) Class C (average condition) Class D (poor condition)

Law et al. [41] Present study Law et al. [41] Present study Law et al. [41] Present study

10 11.57 3.18 13.71 5.82 23.49 8.95

15 11.55 4.13 15.35 7.38 25.46 11.51

20 12.46 4.96 16.73 8.94 27.79 13.03

25 13.45 8.55 19.47 13.33 30.01 16.22
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Fig. 8 Comparison of reconstructed dynamic axle load with

published result in Ref. [41]
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fourth of span (Figs. 2, 3, and 4). Corresponding standard

deviations are shown in Figs. 5, 6, and 7, respectively.

Vehicle velocity is taken as 60 km/h (16.67 m/sec). These

results are obtained from the present analytical formula-

tions laid down in Sect. 2. No noise has been added at this

stage. However, measured data will be considered in the

particle filter algorithm by adding different levels of noise

in the simulated response sample using closed-form

expressions.

The mean quantities of mid-span response is larger

compared to other span locations. Due to variation of

roughness in random manner, the response magnitudes at

other points are also different. The frequency of oscillation

for the mean response at different locations shown in

Figs. 2, 3, and 4 are not varying as the vehicle wheel is

excited by same frequency due to uniform velocity con-

sidered in the presentation of the results here. Standard

deviation values shown in Figs. 5 and 7 do not show any

definite pattern of variation.

4.2 Comparison of vehicle load estimation

with published results

Main focus of the present study is to estimate vehicle

parameters from bridge dynamic response using particle

filtering technique. Before conducting a parametric study

for the vehicle parameters to be identified, a comparative

study of the results obtained by particle filtering approach

with published results obtained by different identification

techniques has been carried out.

different locations 
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4.2.1 Comparison with the results of numerical study

First, we present a comparative study with the method

proposed by Law et al. [41] based on simulated data to

judge the efficiency of particle filter approach for moving

load identification. The loading on the bridge pavement

used by them was a deterministic harmonic function

composed of two different frequencies as given below:

f ðtÞ ¼ 121 ½1� 0:1 sinð10qptÞ þ 0:05 sinð50ptÞ�kN:

ð34Þ

The result of Ref. [41] was based on interpretive

method. The comparison is shown in Table 1. It may be

noted that percentage error increases with the vehicle

speed. Besides, it has been observed that poor surface

condition of the bridge produces more error in the
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Table 2 Effect of response measurement location on indentified vehicle parameters

Vehicle parameters % Error Vehicle parameters % Error

Mid span Quarter span Mid span Quarter span

mv 5.07 8.53 kt 4.33 9.35

mw 2.20 9.29 cv 5.30 7.69

kv 4.72 7.17 ct 6.24 8.78
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estimation. The same patterns have been found even in the

present method. However, particle filter method gives

improved estimate of the gross axle load in all cases as

compared to the interpretive method. Further, gross axle

force time history has been reconstructed from the

estimated vehicle parameters by considering same bridge

surface condition and vehicle speed as assumed by Law

et al. [41]. Comparison of reconstructed force time history

with the assumed time varying axle load is shown in Fig. 8.

It may be seen that high fluctuation of moving force about

the reference loading has been produced at the end of time

history in the results obtained by Law et al. [41]. This

might be due to the fact that high-frequency component of

random unevenness could not be properly filtered out with

the sampling frequency considered in the earlier study.

However, the high-frequency component could not disturb

the estimation of moving load when particle filter

technique has been used in the present study. This

resulted higher accuracy in parameter estimation.

4.2.2 Comparison with the results of experimental study

The second comparative study has been done with the

experimental data from Law et al. [7]. They conducted a

laboratory experiment with a model car having a total mass

(Mc) 7.1 kg being pulled at a speed of 3.102 m/s over a

simply supported beam of span 3.376 m. The model bridge

was a flat bar having cross-sectional dimension of

100 mm 9 25 mm. The mass and flexural rigidity of the

beam were 24.12 kg/m and 63.4 kNm2, respectively. Other

details of experiments can be found in Ref [7]. Acceler-

ometers were mounted on the beam at 1/4, 1/2, and 3/4

span. Sampling frequency was 256 Hz. Acceleration record

at 3/4th of the span experimentally obtained in Ref. [7] was

Table 3 Effect of different noise levels on the estimated vehicle

parameters

Vehicle

parameters

5 % noise 10 % noise

No. of

iteration

Error

(%)

No. of

iteration

Error

(%)

mw 31 5.07 54 8.75

mv 42 2.20 38 6.04

kv 28 4.72 53 6.92

kt 36 4.33 56 9.35

ct 25 5.31 31 7.74

cv 63 6.24 39 9.63
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Fig. 16 Comparison of a mean and b standard deviation of identified and true dynamic interaction force using acceleration data at different

locations

Table 4 Range of mass of vehicle and wheel mass to construct prior

PDF

Range Vehicle mass (mv) kg Wheel mass (mw) kg

Case 1 Case 2 Case 1 Case 2

UL 0.4 9 104 1.7 9 104 0.3 9 103 1.4 9 103

UU 3.6 9 104 1.9 9 104 3.5 9 103 1.6 9 103

Table 5 Range of suspension stiffness and tyre stiffness to construct

prior PDF

Range Vehicle suspension

stiffness (kv) N/m

Wheel stiffness

(kt) N/m

Case 1 Case 2 Case 1 Case 2

UL 0.3 9 107 2.8 9 107 5.2 9 106 0.6 9 107

UU 8.5 9 107 4.0 9 107 8.5 9 107 1.1 9 108
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taken as measured data in particle filter method for esti-

mating the mass of the model car. The progress of iteration

with updated estimation as obtained in the present study is

shown in Fig. 9. The result shows that the filtering process

converges at the 57th of iteration to a mass value of

7.26 kg. The error has been estimated as 2.25 %. This

demonstrates successful application of particle filter

method for the estimation of moving mass when experi-

mentally acquired data are utilized in the algorithm.

4.3 Influence of various factors on vehicle parameter

identification

The particle filter method is now applied to estimate the

unknown vehicle parameters which include sprung mass,

unsprung mass, suspension stiffness, suspension damping,

tyre mass, stiffness, and damping. Only acceleration

response of the bridge has been used as in most of the

practical situation, accelerometers are common type of

sensors. The analytically computed time history has been

contaminated by the addition of artificial noise to mimic

field data. The mean and standard deviation values of the

vehicle parameters are calculated at each stage of iteration

at each time step of the synthetically generated time his-

tory. The progress of iteration and its convergence are

presented in the subsequent sub-sections taking various

factors into considerations.

4.3.1 Effect of bridge response measurement location

The bridge acceleration measurement at different locations

along the span has been used as input to the particle filter

algorithm. Vehicle parameters as well as dynamic inter-

action force are estimated. In both the cases, standard

deviation approaches very low value at a certain number of

iteration which implies that the algorithm has achieved

convergence. The progress of estimation of mean and

standard deviation has been displayed in the form of

graphical plot of estimated parameters versus correspond-

ing number of iterations (Figs. 10, 11, 12, 13, 14, 15).

Result shows that measurement taken other than the mid

span takes a longer iteration to achieve convergence. Per-

centage error has been calculated for different measure-

ment inputs as shown in Table 2. The results are obtained

when response samples from analytical model are con-

taminated by 5 % noise. The effect of noise level on the

algorithm has been tested by adding 10 % noise also.

Table 3 shows the percentage error as well as number of

iteration required to converge, when noise level is

increased. Result shows that mid-span response gives the

Table 6 Range of suspension damping and tyre damping to construct prior PDF

Range Vehicle suspension damping (cv) N-s/m Wheel damping (ct) N-s/m

Case 1 Case 2 Case 1 Case 2

UL 1.5 9 104 6.5 9 104 5.2 9 103 0.5 9 104

UU 12.3 9 104 8.3 9 104 6.4 9 104 0.9 9 104
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Fig. 17 Comparison of a mean and b standard deviation of identified and true dynamic interaction force for different ranges of values used to

construct prior PDF p(U0)
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best estimate for the vehicle parameters as well as dynamic

interaction force identification. The reconstructed mean

and standard deviation of dynamic force induced in the

bridge with identified parameters is shown in Fig. 16. The

result reveals that bridge response measurement at mid

span gives around 2%–5 % error, while measurement other

than mid span leads to 4%–10 % error.

4.3.2 Effect of assumption of the prior PDF p(U0)

In the absence of any information about the unknown

parameters, it is assumed that the prior PDF p(U0) is uni-

formly distributed within a range [UL, UU]. Two different

cases have been considered to specify the range within

which random particles are generated assuming uniform

probability density function p(U0).

Case-1: Keeping the lower and the upper limits with

large variation from the true value.

Case-2: When the lower and upper limits are not widely

apart from the actual value.

The ranges of values of the parameters assumed for the

above two cases are mentioned in Tables 4, 5, 6. In these

two cases, the number of particles Np = 1,000 and artificial

noise is taken to be 5 % of the simulated maximum bridge

dynamic response. The mean and standard deviation are

observed at each stage of iteration and stop when standard

deviation becomes less than equal to tolerance. Identified

vehicle–bridge interaction force is shown in Fig. 17

simultaneously comparing with the true value of dynamic

interaction force. It has been found that a wrong choice of

p(U0) does not necessarily lead to wrong estimates by the

particle filter identification method. However, a crude

assumption of the prior probability density is found to

consume longer time to achieve convergence. Assumption

based on the first case of prior density function leads to

3%–5 % error, while the second case assumption gives

2%–4 % error.

4.3.3 Effect of different vehicle velocities

The identification algorithm has been examined from the

measured response for different vehicle speeds over the

bridge. The response samples have been generated at

60 km/h (16.67 m/s) and 80 km/h (22.20 m/s) of vehicle

speed. The sampling time interval in measured response

sample (after adding 5 % artificial noise) has been initially

chosen as 0.02 s. This time interval was not satisfactory in

case of vehicle moving at higher speed. The reason may be

that vehicle leaves the bridge in a shorter time span gen-

erating less number of data points that are available in the

working of a particle filter algorithm. Number of iteration

required to get convergence and percentage error is tabu-

lated in Table 7. It has been found that lower speed gives

better estimate but it requires more number of iteration to

achieve the convergence.

Table 7 Performance of the algorithm at different vehicle speeds

(V)

Vehicle

parameters

V = 60 km/h V = 80 km/h

No. of

iteration

Error

(%)

No. of

iteration

Error

(%)

mw 26 1.21 12 8.15

mv 43 2.20 18 7.04

kv 35 1.72 22 6.63

kt 22 3.12 42 3.45

ct 21 3.72 19 3.93

cv 65 2.31 18 8.63

Table 8 Identification of mass of vehicle and wheel for different

road conditions

Road condition Mass of vehicle (kg) Mass of wheel (kg)

No. of

iteration

Error

(%)

No. of

iteration

Error

(%)

Good 16 3.21 19 2.02

Average 38 3.59 25 3.97

Poor 49 6.06 43 5.95

Table 9 Identification of stiffness and damping of vehicle suspen-

sion for different road conditions

Road

condition

Suspension

stiffness (N/m)

Suspension

damping (Ns/m)

No. of

iteration

Error

(%)

No. of

iteration

Error

(%)

Good 20 2.16 23 3.95

Average 25 2.72 44 4.31

Poor 43 4.02 72 6.14

Table 10 Identification of stiffness and damping of tyre for different

road conditions

Road

condition

Tyre stiffness (N/m) Tyre damping (Ns/m)

No. of

iteration

Error

(%)

No. of

iteration

Error

(%)

Good 36 1.98 19 2.24

Average 41 2.33 44 4.59

Poor 85 8.02 68 10.27
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4.3.4 Effect of different roughness conditions

Bridge deck surface irregularity has been considered in the

identification of vehicle parameters based on ISO specifi-

cation [40] for different conditions—good, average, and

poor. Among the three conditions, results show that good

condition gives the best estimate with less number of

iterations which is given in Tables 8, 9, 10. This may be

attributed to the reason that noise effect in dynamic input

for the case of rougher pavement increases, requiring more

number of iterations for convergence. This is in conformity

with the results obtained when artificial noise level

increased from 5 % to 10 % as stated in Sect. 4.3.1.

4.4 Comparison of CPU processing time for estimation

of vehicle parameters with numerically generated

samples

The efficiency of the proposed analytical approach for the

forward scheme in the identification of vehicle parameters

has been judged by comparing the CPU processing time

when numerically simulated samples are used. For

numerical scheme, Newmark’s method [42] has been

adopted. Three different sampling frequencies 300, 500,

and 700 Hz have been used to compare the convergence

rate. A personal computer with Inte l(R) Core (TM) i3-

2120 CPU 3.3 GHz and 4.0 GB RAM has been employed

for all computations. Vehicle speed 60 km/h (16.67 m/s)

and poor bridge deck surface condition [40] have been

considered for the study. The results are presented in

Table 11. It has been found that sampling frequency affects

the estimation accuracy for both the method of solutions.

Higher sampling frequency leads to lower error in vehicle

parameters estimation as shown in Table 11. Since several

parameters are estimated simultaneously, the CPU pro-

cessing time is also different for each parameter. The

overall time requirement for the parameter estimation has

been found to be decreased by 27 %, while average

accuracy has been increased by 24 % due to the use of

present semi-analytical method in forward scheme of Par-

ticle Filtering approach. This again demonstrates the

superiority of particle filter method when combined with

analytical method for generations of response samples.

5 Conclusions

In the present study, particle filtering combined with a semi-

analytical method has been outlined for the identification of

vehicle parameters as it passes over a simply supported

bridge. The deck surface roughness has been considered as a

non-homogeneous random process in spatial domain.

Comparison of the results obtained by present study using

particle filter method with published results has shown

higher accuracy. The dynamic interaction force time history

has been reconstructed with the identified parameters and

compared with true value. Effect of different measurement

locations along the bridge span and artificially added noise

has been investigated. The accuracy of the proposed method

has been checked by considering two different cases of prior

density function selection. A comparative study of compu-

tational time required in particle filter method using present

semi-analytical scheme and numerical scheme has been

performed. Some of the major findings and recommenda-

tions on the applicability of particle filter technique for

vehicle parameter identification are given below:

(1) Response measurement location has greater influ-

ence on the accuracy and computational time required in

application of particle filtering technique. For simply sup-

ported single-span bridge like the one being presented,

mid-span sensor data may be the better option.

(2) For identification of vehicle parameters with greater

accuracy and within short time, response picked up at

lower vehicle movement would be preferable for the

implementation of particle filtering method.

(3) Rough bridge deck surface would require more time

for the convergence of the result. The same conclusion is

also valid for increased noise level in response data.

(4) The initial wrong choice of parameters of prior

probability density function does not eventually lead to

Table 11 Comparison of computer processing time for estimation of

vehicle parameters

Parameters Sampling

frequency

(Hz)

Analytically

generated samples

Numerically

generated samples

Processing

time (s)

%

error

Processing

time (s)

%

error

mv 300 20.21 5.98 54.37 8.81

500 21.47 5.07 73.66 6.22

700 26.52 3.82 102.88 5.47

mw 300 13.47 4.09 45.65 6.50

500 19.79 2.20 77.16 4.13

700 22.73 1.66 117.67 3.06

kv 300 16.00 6.21 39.22 8.39

500 20.63 4.72 63.66 5.64

700 23.58 2.99 167.18 3.36

cv 300 22.31 6.54 42.44 5.99

500 25.26 5.30 115.74 5.85

700 32.42 5.29 158.82 5.01

kt 300 20.63 7.51 46.30 9.30

500 23.16 4.33 57.23 6.07

700 25.68 4.02 83.59 5.84

ct 300 11.79 7.25 32.15 10.11

500 12.63 6.24 52.73 7.79

700 13.89 2.89 91.31 5.83
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wrong estimate, except that the convergence time would

increase. This would imply that an idealized bridge model

amenable for a closed-form solution of the response, in

case of linear problem, may save much computational time.

(5) Choice of sampling frequency governs the time of

convergence. Higher sampling frequency leads to the

increased accuracy at the cost of increased CPU processing

time in the estimation of system parameters.

(6) The present semi-analytical method used in genera-

tion of response samples brings rapid convergence and

higher accuracy as compared to existing numerical methods.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.

Appendix-1

Expression of the Integral Ijk for generating response

sample

The deck roughness is given by

hðxÞ ¼ hmðxÞ þ hrðxÞ:

The mean surface profile has been taken as shallow

parabolic (a0 being the rise at the center), the equation of

which with respect to one end of the bridge is given by

hmðxÞ ¼
4a0

L2
xðL� xÞ: ð35Þ

For one trial, a generation of a set of random phase

angles hs s ¼ 1; 2; . . .;Nð Þ is employed to express a

Gaussian process as

hrðxÞ ¼
XN

s¼1

As cosð2p Xsxþ hsÞ: ð36Þ

Further, h0ðxÞ ¼ dh
dx

and _hðxÞ ¼ dh
dt
¼ V dh

dx
where V is

the speed of vehicle.

The vector {F(t)} needed to perform the integration is

given below:

FjðtÞ ¼ 0 for j ¼ 1 ¼ kthðVtÞ þ ct V
dhðxÞ

dx

����
x¼Vt

for j ¼ 2

¼ ktujðVtÞhðVtÞ þ ct ujðVtÞV dhðxÞ
dx

����
x¼Vt

� ðmw þ mvÞgujðxÞ
��
x¼Vt

for j ¼ 3; 4; . . .; nb:

ð37Þ

The components of Ijk are given below for systematic

computation

For k = 1, Ijk = 0.

Let us take As ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SðVXsÞ�2

q
and

Bs ¼ 2p XL þ
ðs� 0:5ÞðXU � XLÞ

N

	 

: ð38Þ

Now we write for k = 2, Ijk ¼ Ij21 þ Ij22.

The components Ij21 and Ij22 are obtained as

Ij 21 ¼ kt

XN

s¼1

As

expð�ajtÞ
a2

j þ ðBsVÞ2
f�aj cosðhsÞ � BsV sinðhsÞ

"

þ expðajtÞ½aj cosðBsVt þ hsÞ þ BsV cosðBsVt þ hsÞ�g

þ 4a0V

a3
j L2
fajLðajt þ expð�ajtÞ � 1Þg

� V

a3
j L2
fajtðajt � 2Þ � 2 expð�ajtÞ þ 2Þg

#

;

ð39Þ

Ij22 ¼ ct

XN

s¼1

VAsBs

expð�ajtÞ
a2

j þ ðBsVÞ2
f�aj sinðhsÞ � BsV cosðhsÞ

"

þ expðajtÞ½aj sinðBsVt þ hsÞ � BsV sinðBsVt þ hsÞ�g

� 4a0V expð�ajtÞ
a3

j L2
f2V½expð�ajtÞðajt � 1Þ þ 1�g

� 1

ajL
fexpðajtÞ � 2g

�
; ð40Þ

For k = 3,4,…, n, the integral is split up into five parts

as follows:

Ijk ¼ Ijk1 þ Ijk2 þ Ijk3 þ Ijk4 þ Ijk5;

Qs ¼ BsV; Rk ¼ ðk � 2ÞpV=L;

Ijk1¼
1

2
kt

XN

s¼1

As

2Rk expð�ajtÞfða2
j �Q2

s þR2
kÞcosðhsÞþ2ajQs sinðhsÞg

fa2
j þðQs�RkÞ2gfa2

j þðQsþRkÞ2g

"

�aj sinfðQs�RkÞtþhsgþðRk�QsÞcosfðQs�RkÞtþhsg
fa2

j þðQs�RkÞ2g

þ aj sinfðQsþRkÞtþhsg�ðRkþQsÞcosfðQsþRkÞtþhsg
fa2

j þðQsþRkÞ2g

#

;

ð41Þ

Ij k2 ¼ kt

2a0V expð�ajtÞ
L2ða2

j þ Q2
s Þ

3

hn
Lða2

j þ Q2
s Þ
h

expðajtÞ sinðQstÞfQ2
s ðajt þ 1Þ þ a2

j ðajt � 1Þ
oi

�Qs expðajtÞ cosðQstÞ½Q2
s t þ ajðajt � 2Þ� � 2ajQsg

þ Vð2Q3
s þ Qs expðajtÞÞ cosðQstÞ

fQ4
s t2 þ 2Q2

s ða2
j t2 � 2ajt � 1Þ þ a2

j ða2
j t2 � 4ajt þ 6Þg

� expðajtÞ sinðQstÞfQ4
s ðajt þ 2Þ þ ajQ

2
s ða2

j t2 � 3Þ

þa3
j ða2

j t2 � 2ajt þ 2Þg � 6a2
j Qs

i
:

ð42Þ

Obtaining vehicle parameters from bridge dynamic response 65

123J. Mod. Transport. (2015) 23(1):50–66



Ij k3 ¼
1

2
ct

XN

s¼1

AsQs

�
2Rk expð�ajtÞfða2

j �Q2
s þ R2

kÞ sinðhsÞ � 2ajQs cosðhsÞg
fa2

j þ ðQs � RÞ2gfa2
j þ ðQs þ RkÞ2g

(

� aj cosfðQs � RkÞtþ hsg þ ðRk �QsÞ sinfðQs � RkÞtþ hsg
fa2

j þ ðQs � RkÞ2g

þ aj cosfðQs þ RkÞtþ hsg þ ðRk þQsÞ sinfðQs þ RkÞtþ hsg
fa2

j þ ðQs þ RkÞ2g

)

:

ð43Þ

Ij k4 ¼ ct

2a0V expð�ajtÞ
L2ða2

j þ V2Þ3
expðajtÞ
�

cosðQstÞ

� ½Q2
s ð2ajtV � ajLþ 2VÞ þ a2

j ð2ajtV � ajL� 2VÞ�
� Qs expðajtÞ sinðQstÞ½Q2

s ðL� VtÞ
þ ajðajL� 2ajtV þ 4VÞ� g: ð44Þ

Ij k5 ¼ �
expð�ajtÞgLðmv þ mwÞ

L2a2
j þ k2p2V2

� RkLþ expð�ajtÞfRkL cosðRktÞ þ Laj sinðRktÞg
� �

:

ð45Þ

References

1. Moses F (1979) Weigh-in-motion system using instrumented

bridges. ASCE Trans Eng J 105:233–249

2. Clayton A, Peter R (1990) Truck weights as a function of regu-

latory limits. Can J Civil Eng 17:45–54

3. Green MF, Cebon D (1997) Dynamic interaction between heavy

vehicle and highway bridges. Comput Struct 62:253–264

4. Yang YB, Yau JD (1997) Vehicle-bridge interaction element for

dynamic analysis. J Struct Eng ASCE 123(11):1512–1518

5. Yu L, Chan THT (2007) Recent research on identification of

moving loads on bridges. J Sound Vib 305:3–21

6. Connor CO, Chan THT (1988) Dynamic wheel loads from bridge

strains. J Struct Eng ASCE 114(8):1703–1723

7. Law SS, Chan THT, Zeng QH (1997) Moving force identifica-

tion: a time domain method. J Sound Vib 201(1):1–22

8. Chan THT, Law SS, Yung TH, Yuan XR (1999) An interpretive

method for moving force identification. J Sound Vib 219(3):503–524

9. Chan TH, Yu TL, Law SS (2000) Comparative studies on moving

force identification from bridge strains in laboratory. J Sound Vib

235(1):87–104

10. Law SS, Fang YL (2001) Moving force identification: optimal

state estimation approach. J Sound Vib 239(2):233–254

11. Law SS, Chan THT, Zeng QH (1997) Moving force identifica-

tion: a time domain method. J Sound Vib 201(1):1–22

12. Law SS, Chan THT, Zeng QH (1999) Moving force identifica-

tion: a frequency and time domain analysis. J Dyn Meas and

Control ASME 12:394–401

13. Chan THT, Law SS, Yung TH, Yuan XR (1999) An interpretive

method for moving force identification. J Sound Vib

219(3):503–524

14. Zhu XQ, Law SS (2000) Study on different beam models in

moving force identification. J Sound Vib 234(4):661–679

15. Wu SQ, Law SS (2010) Moving load identification based on

stochastic finite element model. Eng Struct 32:1016–1027

16. Wu SQ, Law SS (2011) Vehicle axle load identification on bridge

deck with irregular road surface profile. Eng Struct 33:591–601

17. Ghanem R, Shinozuka M (1995) Structural system identification-

I, theory. J Eng Mech ASCE 121(2):255–264

18. Shinozuka M, Ghanem R (1995) Structural system identification-

II, experimental verification. J Eng Mech ASCE 121(2):265–273

19. Deng L, Cai CS (2009) Identification of parameters of vehicles

moving on bridges. Eng Struct 31(2474):2485

20. Kalman RE (1960) A new approach to linear filtering and pre-

diction method. J Basic Eng ASME 191(82D):35–42

21. Ying DH, Bin CAO, Ping YY (2010) Application of particle filter

for target tracking in wireless sensor networks. Int Conf Commun

Mob Comput IEEE 3:504–508

22. Ristic B, Arulampalam S, Gordon N (2004) Beyond the Kalman

Filter: particle filter for tracking application. Artech House Pub-

lishers, London

23. Qian SS, Stow CA, Borsuk ME (2003) On Monte Carlo methods

for Bayesian inference. Ecol Model 159:269–277

24. Weerts AH, Ghada YH, Serafy E (2006) Particle filtering and

ensemble Kalman filtering for state updating with hydrological

conceptual rainfall-runoff models. Water Resour Res 42(9):1–17

25. Schon T, Gustafsson F, Nordlund PJ (2005) Marginalized particle

filters for mixed/nonlinear state space models. IEEE Trans Signal

Process 53(7):2279–2288

26. Chatzi EN, Smyth AW (2009) The unscented Kalman filter and

particle filter and particle filter methods for non linear structural

system identification with non collocated heterogeneous sensing.

Struct Control Health Monit 16(1):99–123

27. Nasrellah HA, Manohar CS (2011) Finite element based Monte

Carlo filters for structural system identification. Probab Eng

Mech 26(2):294–307

28. Pokale B, Gupta S (2014) Damage estimation in vibrating beams

from time domain experimental measurements. Arch Appl Mech.

doi:10.1007/s00419-014-0878-2

29. Ching J, Beck JL, Porter KA (2006) Bayesian state and parameter

estimation of uncertain dynamical systems. Probab Eng Mech

21:81–96

30. Nasrellah HA, Manohar CS (2010) A particle filtering approach

for structural system identification in vehicle–structure interac-

tion problems. J Sound Vib 329:1289–1309

31. Green MF, Cebon D, Cole JD (1995) Effects of vehicle suspen-

sion design on dynamics of highway bridges. J Struct Eng ASCE

121(2):272–282

32. Fryba,L(1996)DynamicsofRailway Bridge.ThomasTelford,London

33. Shinozuka M (1971) Simulation of multivariate and multidi-

mensional random process. J Acoust Soc Am 49:357–367

34. Huang DZ, Wang TL (1992) Impact analysis of cable stayed

bridges. Comp Struct 43(5):897–908

35. Yin X, Fang Z, Cai CS, Deng L (2010) Non-stationary random

vibration of bridges under vehicles with variable speed. Eng

Struct 32(8):2166–2174

36. Meirovitch L (1986) Elements of vibration analysis. Mc. Graw

Hill Book Co., New York

37. Nigam NC, Narayanan S (1994) Introduction to random vibra-

tions. Narosa Publishing House, Delhi

38. Potter MC, Goldberg J (1991) Mathematical methods. Prent Hall

of India, Delhi

39. Arulampalam MS, Maske IS, Gordon N, Clapp T (2002) A

tutorial on particle filters for online nonlinear/non-Gaussian

Bayesian tracking. Trans Signal Process IEEE 50(2):174–188

40. ISO 8606:1995. Mechanical vibration-Road surface profiles-

reporting measured data

41. Law SS, Bu JQ, Zhu XQ, Chan SL (2004) Vehicle axle loads

identification using finite element method. Eng Struct 26:1143–1153

42. Collatz L (1966) The numerical treatment of differential equa-

tions. Springer-Verlag, New York

66 R. Lalthlamuana, S. Talukdar

123 J. Mod. Transport. (2015) 23(1):50–66

http://dx.doi.org/10.1007/s00419-014-0878-2

	Obtaining vehicle parameters from bridge dynamic response: a combined semi-analytical and particle filtering approach
	Abstract
	Introduction
	Bridge--vehicle dynamic interaction
	Bridge--vehicle system equations
	Bridge deck roughness
	Discretization of bridge equations of motion
	Solution of forward problem

	Identification of vehicle parameters
	Results and discussions
	Response statistics of bridge
	Comparison of vehicle load estimation with published results
	Comparison with the results of numerical study
	Comparison with the results of experimental study

	Influence of various factors on vehicle parameter identification
	Effect of bridge response measurement location
	Effect of assumption of the prior PDF p( Phi 0)
	Effect of different vehicle velocities
	Effect of different roughness conditions

	Comparison of CPU processing time for estimation of vehicle parameters with numerically generated samples

	Conclusions
	Open Access
	Appendix-1
	References


