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Abstract Gap acceptance theory is broadly used for

evaluating unsignalized intersections in developed coun-

tries. Intersections with no specific priority to any move-

ment, known as uncontrolled intersections, are common in

India. Limited priority is observed at a few intersections,

where priorities are perceived by drivers based on geom-

etry, traffic volume, and speed on the approaches of

intersection. Analyzing such intersections is complex

because the overall traffic behavior is the result of drivers,

vehicles, and traffic flow characteristics. Fuzzy theory has

been widely used to analyze similar situations. This paper

describes the application of adaptive neuro-fuzzy interface

system (ANFIS) to the modeling of gap acceptance

behavior of right-turning vehicles at limited priority

T-intersections (in India, vehicles are driven on the left side

of a road). Field data are collected using video cameras at

four T-intersections having limited priority. The data

extracted include gap/lag, subject vehicle type, conflicting

vehicle type, and driver’s decision (accepted/rejected).

ANFIS models are developed by using 80 % of the

extracted data (total data observations for major road right-

turning vehicles are 722 and 1,066 for minor road right-

turning vehicles) and remaining are used for model vali-

dation. Four different combinations of input variables are

considered for major and minor road right turnings sepa-

rately. Correct prediction by ANFIS models ranges from

75.17 % to 82.16 % for major road right turning and

87.20 % to 88.62 % for minor road right turning. The

models developed in this paper can be used in the dynamic

estimation of gap acceptance in traffic simulation models.

Keywords Partially controlled intersections � Gap

acceptance � Adaptive neuro-fuzzy interface system

(ANFIS) � Membership function � Receiver operator

characteristic (ROC) curves � Precision-recall (PR) curves

1 Introduction

Unsignalized intersections are the most common form of

intersections in a road network. Unsignalized intersections

include ‘‘priority unsignalized intersections’’ where priority

is indicated by signs and ‘‘uncontrolled intersections’’

where no explicit priorities exist. Most of the studies on

unsignalized intersections have been carried out assuming

that the law of priority is fully respected. The traffic flow

situations in India are considerably different from those in

developed countries. There exist a mix of various types of

vehicles with wide variations in their sizes and operating

conditions. Priority rules are not respected and vehicles do

not follow the lane movement. However, at a few inter-

sections, where a minor road is joining a major road, the

vehicles on the minor road will perceive higher priority for

the major road vehicle, not because of signs but due to the

existing traffic and geometric characteristics. This will

result in observing partial priority by vehicles even in the

absence of stop and yield signs. These cases of uncon-

trolled and partially controlled intersections are not well

studied in the literature. Unlike highway capacity manual

(HCM) 2010, there is no standard procedure available to

evaluate the intersections in India. One of the main reasons

for relatively less work on unsignalized intersection in

India is the complex vehicle interactions resulting from
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heterogeneous traffic, aggressive drivers’ behavior, and

inefficient enforcement of traffic rules. Fuzzy theory—

widely used to model human behavior at situations

involving uncertainty and imprecision—can be a good tool

to evaluate and model driver’s behavior at uncontrolled or

partially controlled intersections.

Gap acceptance is an important objective characteristic

of the behavior of drivers and it has influence on capacities,

delays, and road safety at unsignalized intersections. The

HCM uses gap acceptance concept for determining the

capacity of unsignalized (sign controlled) intersections.

Gap acceptance behavior is a choice by a driver to accept

or reject a gap of particular size, and it is the result of a

decision process of human brain. The choice usually

depends on the driver’s characteristics in addition to vari-

ous external factors related to vehicles, traffic, and envi-

ronment. The assessment of these factors is subject to

uncertainty and imprecision. Fuzzy logic has been widely

used to model human decisions in an environment of

uncertainty and imprecision. Adaptive neuro-fuzzy inter-

face system (ANFIS) combines the abilities of fuzzy set

theory and neural network and provides an optimization

scheme to find the parameters in the fuzzy system that best

fit the data.

Gap acceptance at intersection is the process in which a

vehicle in the secondary access accepts gaps available in the

primary traffic stream. Thus, a vehicle at intersection

intending to take right turn requires choosing between two

alternative actions: to accept or reject an available gap. This

decision is affected by driver characteristics and also by

characteristics of the gap and the choice situation. The driver

characteristics that affect the gap acceptance decision may

include gender, age, driving skill, etc. [1–3]. Gap and choice

situation factors may include gap size, speed of vehicles,

type of subject and conflicting vehicle types, waiting time,

type of sign control, etc. [1–6]. Many researchers dealt with

gap acceptance at unsignalized intersections with the

assumption that priority is fully respected, such as Hawkes

[7], Ashworth [8, 9], Ashton [10], Miller [11], Polus et al.

[12], Davis and Swenson [13], Xu and Tian [14].

Fuzzy logic and ANFIS have been successfully used in

many engineering areas, for example, pedestrian behavior

[15], capacity estimation [16], driving situation recognition

[17], collision avoidance support system [18], traffic signal

control at isolated intersection [19], rainfall prediction,

signal co-ordination, and highway accident analysis [20].

Work related to application of fuzzy set theory for gap

acceptance at priority intersection has been done by Rossi

et al. [21], Rossi and Meneguzzer [22], and Rossi et al.

[23]. Rossi and Meneguzzer [22] modeled the gap accep-

tance behavior at priority intersections using neuro-fuzzy

system. In their work, the input variables considered are

(i) if driver is facing gap or lag (binary variable), (ii) gap/

lag size in seconds, and (iii) type of maneuver; the output

variable is driver’s decision to accept or reject the gap/lag.

Further Rossi et al. [23] used data from driving simulator to

develop gap acceptance fuzzy model. In another study,

Rossi et al. [21] analyzed and compared random utility

models and fuzzy logic models for representing gap

acceptance behavior using data from driving simulator

experiments. However, other parameters which affect the

divers’ decision such as vehicle type, geometry, and

composition of vehicle type were not considered in these

studies.

Most of the above studies are based on the assumption

that the law of priority is fully respected. Limited work has

been done for gap acceptance at unsignalized intersections

with no priority or limited priority, which are prevalent in

India. A few studies conducted for such conditions include

Ashalatha and Chandra [24], Rao and Rengaraju [25, 26],

etc. However, these studies do not focus on gap acceptance

behavior at intersection. Kanagaraj et al. [27] developed

probit-based gap acceptance models merging vehicles.

Four different types of merging has been considered,

namely, normal merging, forced merging, group merging,

and vehicle cover merging for left-turning vehicles at

uncontrolled T-intersection. The gap acceptance behavior

of right-turning vehicles which involve crossing of major

road through vehicles is not considered.

The literature discussed above shows that more studies

are required for proper understanding of gap acceptance

behavior at uncontrolled intersections. The traffic flow

characteristics at intersection are the result of complex

interactions between drivers, vehicles, transport facilities,

and the environment, which are not easy to model. Con-

sidering the capabilities of ANFIS and some of its applica-

tions to traffic flow modeling, we adopted the ANFIS

proposed by Jang [28] to model the gap acceptance behavior

of right-turning vehicles at partially controlled T-intersec-

tions in this study. Vehicles are driven on the left side in

India, thus right turns are critical. Here, we are considering

gap acceptance of two right turning movements at T-inter-

section, one from major to minor approach and the other

from minor to major approach. When a vehicle is taking

right turn, it conflicts with the through vehicles on the major

approach. Note that there is a possibility of conflicts between

right-turning vehicles of major and minor approaches.

However, in this study, we did not observe many such

instances. Moreover, we did not select such data for ana-

lyzing gap acceptance behavior. Gap is defined as the time

interval between passing of the rear bumper of a leading

vehicle and front bumper of the immediate following vehicle

at a point. Lag is defined as the time elapsed after a right turn

intended vehicle reaches the stop line until a major approach

conflicting vehicle reaches the conflict point. Details of gap/

lag measurement at intersections can be referred to in [29].
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2 Data collection

Four T-intersection sites were selected for this study: three in

Aurangabad city (intersection 1, 2, 4) and one in Thane city

(intersection 3). Both cities are in Maharashtra state; Thane

city is in Mumbai region, where two-wheelers composition is

less compared to other cities in India. Intersections are

selected such that at each site a nearby building is available to

place a camera. Other points considered were plain terrain,

adequate sight distance at intersection, no parking, no bus

bays, and sufficient distance from adjacent intersections.

Geometry of intersection is as shown in Fig. 1. Geometry of

all intersections is similar except intersection 2, where minor

road is two-lane divided. However, since the major roads to

be crossed by the right turning movements are 4-lane divided

at all intersections, the gap acceptance behavior is expected

to be similar. Data were collected during morning hours

(approximately between 10:00 to 11:00 am) of typical

weekdays. Video recording was done for about 60 min at

each intersection covering all three approaches. Data was

extracted in laboratory by playing the video on computer

screen. Data extracted include gap/lag in seconds, subject

vehicle type (vehicle intending to take right turn) and con-

flicting vehicle type. The vehicles are divided into 4 cate-

gories: two-wheeler, auto-rickshaw, car, and bus/truck.

Extracted data include observations of 384 and 530 vehicles

for major and minor road right turning movements, respec-

tively. The total lags/gaps (both accepted and rejected) are

722 for major road right turning movements (WS movement

in Fig. 1). For minor road right turning (SE movement), the

total lags/gaps (both accepted and rejected) are 1,066.

3 Preliminary data analysis

Table 1 shows the traffic composition at all intersections as

well as the mode-wise share (in %). It can be observed that

the proportion of two-wheelers at all intersections is much

higher than other modes. This proportion is significantly

high at the three intersections in Aurangabad city (74.47 %,

69.93 %, and 78.76 %, respectively, at intersections 1, 2,

and 4). At the intersection in Thane city (intersection 3), the

proportions of auto-rickshaws and cars are nearly close to

two-wheelers proportion. Thane city is within the Mumbai

Metropolitan Region (MMR) where public transport is

heavily used, thus has relatively less proportion of two-

wheelers compared to other three intersections.

Figure 2 through Fig. 4 shows the cumulative percentage

of gap accepted and rejected by right turning two-wheelers,

auto-rickshaws, and cars (called as subject vehicle type) with

other conflicting vehicle types (the major road through

vehicle type which may conflict with right-turning vehicles).

Buses and trucks constitute a very small fraction of the total

traffic as subject vehicle type and are not included in the

vehicle type to vehicle type interaction analysis. Note that in

the cumulative accepted gap graphs, the curves do not reach

100 % on y-axis. This is because the gaps more than 8 s are

not plotted on x-axis. It is clear from these graphs that the

conflicting vehicle types affect the gap acceptance behavior.

As seen in Fig. 2, for a gap of 3 s, about 22 % of two-

wheelers are accepting the gaps if the conflicting vehicles

are two-wheelers, but the percentage drops to about 10 % if

the conflicting vehicles are cars. An interesting revelation

from this analysis is that less percentage of cars or three-

wheelers accepts a given gap if the conflicting vehicle is a

two-wheeler compared to when conflicting vehicles are cars

or three-wheelers. For example, in Fig. 3, about 30 % of

three-wheelers accept a gap of 3 s when the conflicting

vehicles are cars; but the acceptance rate is only about 10 %

when the conflicting vehicles are two-wheelers. Similarly,

as seen in Fig. 4, about 35 % of cars accept gaps of 3 s when

the conflicting vehicles are three-wheelers, but the per-

centage reduces to about 18 % acceptance when two-

wheelers are conflicting. This behavior of three-wheelers

and cars when the conflicting vehicle is a two-wheeler may

be because of the general perception that two-wheelers

require less time to clear the intersection, they are aggres-

sive, and their actions are unpredictable. Another reason for

the pessimistic behavior from cars and three-wheelers

toward two-wheelers is that in case of collision, often, bigger

vehicles are held responsible.

4 Development of ANFIS models

The gap acceptance of the right turning movement from

major to minor approach (WS) and the right turning

movement from minor to major approach (SE) movements

are the focus in this study (see Fig. 1). The conflicting

movement for both WS and SE is the through traffic from
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east to west on the major road (EW). Based on the pre-

liminary analysis, we identified three input variables: size

of gap (s), subject vehicle type, and conflict vehicle type for

developing ANFIS. The output variable is driver’s deci-

sion—a binary variable indicating acceptance or rejection

of the gap. The Fuzzy Logic toolbox available in MAT-

LAB is used for developing the model. The variable size of

gap is a fuzzy variable, and is divided into three linguistic

variables: small gap, medium gap, and large gap. In fuzzy

logic, a fuzzy variable is the variable which takes a

quantity that can take on linguistic rather than precise

numerical values. Initially, a membership function of input

variables is supplied exogenously. This membership func-

tion will get tuned or adjusted during backward learning

process of ANFIS to minimize the training error. Tuned

membership function for gap, which defines the range of

linguistic terms, is as shown in Fig. 5. The remaining two

input variables, subject vehicle type and conflicting vehicle

type, are considered as crisp variables. Variables that are

measured precisely are called crisp variables. These crisp

variables require the same treatment as a fuzzy variable to

introduce them in neuro-fuzzy system. For these variables,

two-wheeler is coded as 1, auto-rickshaw as 2, and car as 3.

Observations for heavy vehicles (bus/truck) as subject

vehicle type are very less and are not considered. However,

a few observations are available for heavy vehicles as

conflicting vehicle type; this category is considered for

conflicting vehicle type and coded as 4.

ANFIS usually consists of a six-layer feedforward

neural network structure. Figure 6 shows the ANFIS

Table 1 Traffic composition and mode-wise share at all intersections

Intersection no. Mode

movement

Two-wheeler Auto-rickshaw Car Bus/truck Sub-total Total

Intersection 1 EW 886 126 109 72 1,193 3,549

ES 127 28 43 14 212

WE 780 99 98 63 1,040

WS 242 25 45 5 317

SW 375 32 49 13 469

SE 233 18 57 10 318

Total 2,643 328 401 177 3,549

Mode Share (%) 74.47 9.24 11.30 4.99

Intersection 2 EW 489 94 78 58 719 2,138

ES 8 2 23 0 33

WE 457 98 85 49 689

WS 232 13 28 2 275

SW 214 62 28 1 305

SE 95 2 20 0 117

Total 1,495 271 262 110 2,138

Mode share (%) 69.93 12.68 12.25 5.14

Intersection 3 EW 173 156 203 55 587 3,258

ES 316 185 197 29 727

WE 169 128 147 52 496

WS 83 96 98 3 280

SW 91 86 155 5 337

SE 365 167 238 61 831

Total 1,197 818 1,038 205 3,258

Mode share (%) 36.74 25.11 31.86 6.29

Intersection 4 EW 519 130 49 5 703 3,075

ES 578 44 46 2 670

WE 395 98 49 7 549

WS 179 31 36 0 246

SW 212 32 37 1 282

SE 539 43 41 2 625

Total 2,422 378 258 17 3,075

Mode share (%) 78.76 12.29 8.39 0.55
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architecture for a model with two inputs: gap size (GAP or

x1) and subject vehicle type (SVT or x2), and one output:

possibility of accepting gap (y) (for detailed structure of

ANFIS see Jang et al. [20] ). Brief explanation of each

layer is as discussed below:

Layer 1 is called the input layer. In this layer, neurons

pass the input signals (also known as crisp) to next layer.

Layer 2 is known as the fuzzification layer. The fuzzifi-

cation is a process in which the variable is divided into

linguistic variables defined by membership function. Layer

3 is the rule layer. In this layer, each neuron corresponds to

a Sugeno-type fuzzy rule [30]. Rules are defined as

follows:

If GAP is Small and SVT is CAR then possibility of

accepting gap is 0

If GAP is High and SVT is CAR then possibility of

accepting gap is 1

…
and so on.

The layer 3 neurons receive inputs from the layer 2

neurons and calculate the output of the layer known as the

firing strength of the rule. The output of neuron i in Layer 3

is obtained as

y
ð3Þ
i ¼

Yk

j¼1

x
ð3Þ
ji ; ð1Þ

where xji
(3) is the input from neuron j located in layer 2 to

neuron i in layer 3; k is the number of fuzzy set neurons;

and yi
(3) is the output of rule neuron i in layer 3 (i.e., firing

strength). In layer 4, called the normalization layer, each

neuron receives inputs from all neurons in the rule layer,

and calculates the normalized firing strength—the ratio of

the firing strength of a given rule to the sum of firing

strengths of all rules—of a given rule. Layer 5 is the

defuzzification layer. Defuzzification is the process in

which the weighted consequent value is determined for a

given rule. Layer 6 is the output layer having single neuron.

In this layer, overall output y is determined by summing all

the outputs from layer 5. As in neural network, the learning
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algorithm of ANFIS includes a forward pass and a

backward pass. In the forward pass, a set of input

parameters is presented to ANFIS and outputs are

calculated layer by layer. If we have a training set of P

input–output patterns, the output can be represented in

matrix notation as below [28]:

yd ¼ Ak; ð2Þ

where yd is a P 3 1 output vector used for training; A is a

P 9 n(1 ? m) matrix and k is a n(1 ? m) 9 1 vector of

unknown consequent parameters; m is the number of input

variables; and n is the number of neurons in the rule layer.

Generally the elements in yd are much larger than the number

of unknowns, that is P is greater than n(1 ? m). Thus, exact

solutions to Eq. (2) may not exist and a least-square estimate

of k, k*, is obtained that minimizes the squared error (Ak-

yd)2. It is done by using the pseudo-inverse technique [28]:

k� ¼ ðATAÞ�1ATyd; ð3Þ

where AT is the transpose of A and (ATA)-1AT is the

pseudo inverse of A, if (ATA) is non-singular. Once the

consequent parameters are obtained, an actual network

output vector, y, can be computed and the error vector, e, is

determined by

e ¼ yd � y: ð4Þ

The back-propagation algorithm is used for backward

pass and antecedent parameters are updated. All extracted

data are converted to a desired format required for ANFIS;

about 80 % of the data is used for training purpose and the

rest are kept for validation. For a given set of inputs, the

ANFIS gives output in the range of 0–1. The training

prediction is calculated to know how well the model is

trained with given input training data. Different

combinations of input variables are used to develop four

different models for major and minor road right-turning

vehicles. Separate models are developed for major road

right turning and minor road right-turning vehicles (see

Tables 2 and 3). The number of rules created and training

predictions are presented in the Tables. It can be observed

that the prediction accuracy by all models is greater than

70 %.

5 Validation and comparison of models

As mentioned above, about 20 % of the data are randomly

selected and kept for the validation of the various models

Fig. 6 Structure of ANFIS

Table 2 Models for major road right-turning vehicles

Model Input variables considered No. of rules Training prediction (%)

Model A1 Gap (s) 3 81.80

Model A2 Gap (s) and subject vehicle type 9 73.83

Model A3 Gap (s) and conflicting vehicle type 12 73.13

Model A4 Gap (s), subject vehicle type, and conflicting vehicle type 36 73.65
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developed (see Table 4). Provost et al. [31] suggested the

use of receiver operator characteristic (ROC) curves for

binary decision problem, because simply using prediction

by model can be misleading. ROC curve shows how cor-

rect predictions of model vary with incorrect predictions of

model. Precision-recall (PR) curve is an alternative to ROC

curves, and can be used if data are highly skewed. In ROC

curves, data should be present in the upper left-hand cor-

ner, and in PR curves, it should be in the upper right-hand

corner [31]. The output of ANFIS model is the possibility

of accepting the lag/gap and it varies from 0 to 1. If the

possibility of accepting lag/gap is greater than 0.5, then the

particular lag/gap is taken as accepted.

From the validation results, we need to group the

responses into the following categories: (i) true positive (TP)

(response correctly labeled as positives), (ii) false positives

(FP) (response incorrectly labeled as positive), (iii) true

negatives (TN) (negatives correctly labeled as negative),

and (iv) false negatives (FN) (response incorrectly labeled as

negative). For gap acceptance problem, gap accepted is

considered as condition positive and gap rejected is con-

sidered as condition negative. Calculations are done by

considering three cut-off points for gap: (i) less than or equal

to 5 s, (ii) greater than 5 s and less than or equal to 10 s, and

(iii) greater than 10 s and less than or equal to 21 s (see

Table 4). The false positive rate (FPR) is the proportion of

negative responses that are misclassified as positive,

whereas the true positive rate (TPR) is the proportion of

positive responses that are correctly labeled [31]. Recall

used in the PR curves is the same as TPR, and the precision is

the fraction of responses classified as positive that are truly

positive, i.e., positive predictive value.

The ROC and PR curves for major road right turning

model are shown in Fig. 7 and for minor road right turning

in Fig. 8. The ROC curves clearly show that they are

dominating upper-left corner side; it is 1 for minor road

right-turning vehicles. Also PR curves show that all data

points tend toward right upper corner. Comparison of

predictions of ANFIS models with field observations for

Table 3 Models for minor road right-turning vehicles

Model Input variables considered No. of rules Training prediction (%)

Model B1 Gap (s) 3 77.97

Model B2 Gap (s) and subject vehicle type 9 77.85

Model B3 Gap (s) and conflicting vehicle type 12 79.04

Model B4 Gap (s), subject vehicle type, and conflicting vehicle type 36 78.57

Table 4 Data for model validation

Gap (s) Major road Minor road

Accepted Rejected Accepted Rejected

0–5 20 73 16 119

5–10 30 4 49 3

10–21 13 0 24 0
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vehicles. a ROC curve. b PR Curve
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major and minor right-turning vehicles are presented in

Fig. 9 and Fig. 10, respectively. The percentages of correct

predictions by ANFIS range from 75.17 % to 82.16 % for

major road right turning and 87.20 % to 88.62 % for minor

road right turning. For major road, ANFIS model A4 gives

the highest prediction rate. For minor road, ANFIS model

B4 has maximum predicated rate.

6 Summary and conclusions

Unlike in developed countries, the unsignalized intersec-

tions in India are not properly controlled; that is, the pri-

orities of different movements are not fully respected. At a

few intersections, limited priorities are observed where the

right-turning vehicles look for suitable gaps in through

vehicles. The primary focus of this paper is to model the

gap acceptance behavior of vehicles at partially controlled

intersections in India with the application of ANFIS. Gap

acceptance data are collected at four T-intersections with

the help of video camera. From preliminary analysis of

data, it is found that less percentage of cars or three-

wheelers accepts a given gap if the conflicting vehicle is a

two-wheeler compared to when conflicting vehicles are

cars or three-wheelers.

An ANFIS is developed for the extracted data consid-

ering various input variables (gap size, subject vehicle

type, and conflicting vehicle type). Four different combi-

nations of input variables have been considered for major

and minor road right turnings separately. Training predic-

tion accuracy by all models is greater than 70 %. ANFIS

models also predicted well for the 20 % data kept for

validation. Predictions of minor road models are slightly

better than major road models.

ANFIS modeling can easily be generalized to various

gap acceptance situations such as four-legged intersections

including variables related to geometry, by changing

if…then rules or form of membership functions. The model

can be a potential supplement to microscopic traffic
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simulators. The results indicate that the ANFIS can be used

to model the gap acceptance behavior at partially con-

trolled intersections. In this study, we have considered only

right turning movement at T-intersection; the study can be

extended to four-legged intersections and more movements

can also be studied. Effect of some other parameters such

as approach speed, geometric characteristics, driver’s

characteristics, etc. will further increase the understanding

of the traffic behavior at uncontrolled intersections.

Acknowledgments This study is partially funded by Department of

Science and Technology (DST), Govt. of India, through project SR/

FTP/ETA-61/2010.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.

References

1. Sheikh Abu MA-MI (1997) Developing behavioral models for

driver gap acceptance at priority intersections. Doctoral Thesis,

King Fahd University of Petroleum and Minerals, Dhahran, Saudi

Arabia

2. Kaysi IA, Abbany AS (2007) Modeling aggressive driver

behaviour at unsignalized intersections. Accid Anal Prev

39:671–678

3. Yan X, Radwan E, Guo D (2007) Effects of major-road vehicle

speed and driver age and gender on left-turn gap acceptance.

Accid Anal Prev 39:843–852

4. Hamed MM, Easa SM, Batayneh RR (1997) Disaggregate gap-

acceptance model for unsignalized T-intersections. J Transp Eng

123(1):36–42

5. Pant P, Balakrishnan P (1994) Neural network for gap acceptance

at stop-controlled intersections. J Transp Eng 120(3):432–446.

doi:10.1061/(ASCE)0733-947X(1994)120:3(432)

6. Moshe AP, Abishai P, Moshe L (2002) A decision model for gap

acceptance and capacity at intersections. Transp Res Part B:

Methodol 36(7):649–663. doi:10.1016/S0191-2615(01)00024-8

7. Hawkes A (1968) Gap-acceptance in road traffic. J Appl Probab

5:84–92

8. Ashworth R (1968) A note on the selection of gap acceptance

criteria for traffic simulation studies. Transp Res 2(2):171–175

9. Ashworth R (1970) The analysis and interpretation of gap

acceptance data. Transp sci 4(3):270–280

10. Ashton WD (1971) Gap-acceptance problems at a traffic inter-

section. Appl Stat 20(2):130–138

11. Miller A (1974) A note on the analysis of gap-acceptance in

traffic. Appl Stat 23(1):66–73

12. Polus A, Lazar SS, Livneh M (2003) Critical gap as a function of

waiting time in determining roundabout capacity. J Transp Eng

129(5):504–509

13. Davis GA, Swenson T (2004) Field study of gap acceptance by

left-turning drivers. Transp Res Rec: J Transp Res Board 1899(1):

71–75

14. Xu F, Tian ZZ (2008) Driver behavior and gap-acceptance

characteristics at roundabouts in California. Transportation

Research Record: Journal of the Transportation Research Board

2071(1):117–124

15. Ottomanelli M, Caggiani L, Iannucci G, Sassanelli D (2010) An

adaptive neuro-fuzzy inference system for simulation of pedes-

trians behaviour at unsignalized roadway crossings. In: soft

computing in industrial applications. Springer, Netherlands,

pp 255–262

16. Adeli H, Jiang X (2003) Neuro-fuzzy logic model for freeway

work zone capacity estimation. J Transp Eng 129(5):484–493

17. Nigro JM, Loriette-Rougegrez S, Rombaut M (2002) Driving situation

recognition with uncertainty management and rule-based systems.

Engineering Applications of Artificial Intelligence 15 (3–4):217-228.

doi:http://dx.doi.org/10.1016/S0952-1976(02)00070-2

18. Valdés-Vela M, Toledo-Moreo R, Terroso-Sáenz F, Zamora-Iz-
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