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Abstract Discrete choice model acts as one of the most

important tools for studies involving mode split in the

context of transport demand forecast. As different types of

discrete choice models display their merits and restrictions

diversely, how to properly select the specific type among

discrete choice models for realistic application still remains

to be a tough problem. In this article, five typical discrete

choice models for transport mode split are, respectively,

discussed, which includes multinomial logit model, nested

logit model (NL), heteroscedastic extreme value model,

multinominal probit model and mixed multinomial logit

model (MMNL). The theoretical basis and application

attributes of these five models are especially analysed with

great attention, and they are also applied to a realistic

intercity case of mode split forecast, which results indi-

cating that NL model does well in accommodating simi-

larity and heterogeneity across alternatives, while MMNL

model serves as the most effective method for mode choice

prediction since it shows the highest reliability with the

least significant prediction errors and even outperforms

the other four models in solving the heterogeneity and

similarity problems. This study indicates that conclusions

derived from a single discrete choice model are not reli-

able, and it is better to choose the proper model based on its

characteristics.

Keywords Discrete choice model � Mode split � NL �
MMNL � HEV � MNP

1 Introduction

A good understanding on the travellers’ mode choice

behaviours serves as one of the prerequisites for passenger

transport policy-making. Being important tools of travel-

lers’ mode choice behaviour studies, discrete choice

models are widely used both in theory and practice within

transportation planning field.

In the context of transportation, travellers tend to choose

the transport mode which fits them best, and in the

meanwhile, transportation means tend to ‘choose’ the most

capable travellers as well. As a result, the decision making

process of travellers’ mode choice is influenced by the

attributes of transportation means as well as the internal

factors (individual attributes) of the travellers themselves,

such as economic capability, personal preference, etc.

Since several factors affect the description and the pre-

diction accuracy of the mode choice behaviours, selecting a

suitable discrete choice model with good interpretation

ability appears to be very critical.

The discrete choice model used in early times is the

multinomial logit model (MNL). The rigid assumption that

the utility random terms of alternative parts satisfy inde-

pendent identical distribution (IID) conditions makes MNL

simple in calculation as well as provides MNL with inde-

pendence of irrelevant alternatives (IIA) property, which
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weakens its ability of recurring the actual choice behav-

iours [1].

The IIA property of MNL model stems from the rigid

assumption that the utility random terms of alternatives

parts have totally independent structures. To relax the

MNL model’s IIA property, and in the meanwhile, keep its

calculation convenience, the researchers gradually relax

the restrictions on the assumption of utility random terms

structures and successively explore and develop several

MNL-based models, which are more capable of recurring

decision-makers’ choice behaviours, such as nested logit

model (NL) [2], generalised extreme value model [3, 4],

heteroscedastic extreme value model (HEV) [5], mixed

multinomial logit model (MMNL) [6], etc. Many scholars

[7–10] have analysed the travel mode of urban commuters.

Schmidt and Strauss [11] and Boskin [12] analysed occu-

pational choice among multiple alternatives. Rossi and

Allenby [13] studied consumer brand choices in a repeated

choice (panel data) model. Train [14] studied the choice

of electricity supplier by a sample of California electri-

city customers. Hensher et al. [15] analysed choices of

automobile models by a sample of consumers that offered

a hypothetical menu of features. In each of these cases,

there is a single decision among two or more alternatives.

Faced with so many discrete choice models, how to choose

an appropriate one to simulate travel behavior is still a

rather difficult problem. In this article, we focused on

transport mode choice behaviour modelling and made a

comparison between five typical discrete choice models

and discussed the rules for choosing the optimal discrete

choice model.

2 MNL model and its application restrictions

Stemming from psychology and economics, discrete choice

theory has become a mainstream since 1980s. Most dis-

crete choice theory studies are grounded on the utility

functions, which are expressed as

Unj ¼ Vnj þ enj ¼ c
0

nZnj þ enj ¼ b0
nxnj þ a0nynj þ enj; ð1Þ

where Unj denotes the utility that the decision-maker n

associates with alternative j; Vnj denotes measurable util-

ity; enj is the error term (immeasurable utility), c
0
n is the

parameter vector of decision-maker n; Znj, is the observed

variable; xnj is the individual attributes vector of decision-

maker n, ynj is attributes vector of alternative j; n 2 N, N

denotes the amount of decision-makers; j 2 J; J denotes

the amount of alternatives.

In the modelling process of individual choice models,

assume that the consumers are rational choosers; therefore,

the probability that individual n selects programme i is

Pni ¼PðVni þ eni [ Vnj þ enj; 8jÞ; i; j 2 J;

¼Pðenj\eni þ Vni � Vnj; 8j 6¼ iÞ:
ð2Þ

Equation (2) assumes that the error term enj satisfies

independent and identically distributed (IID) assumption

and subjects to type I extreme value distribution:

f ðenjÞ ¼ ke�kðenj�gnjÞ exp �e�kðenj�gnjÞ
h i

; ð3Þ

where gnj and k denote the location parameter and

dispersion parameter, respectively. The variance of this

distribution is p2=6k2. Let k = l and gnj = 0, the MNL

choice probability model takes the form of

Pni ¼
eVni

PJ

j¼1

eVnj

: ð4Þ

In terms of measurable utility, it is usually defined as

linear-in-parameter specification, i.e. Vni ¼ bnxni þ ayni:

Thus, the probability that individual n chooses alternative i

can be expressed as:

Pni ¼
ebnxniþayni

PJ

j¼1

ebnxnjþaynj

: ð5Þ

The following equation is produced by a simple

derivation from Eq. (5) and shows the IIA property of

multinomial logit model:

Pni

Pnj

¼ expðbnxni þ ayniÞ
expðbnxnj þ aynjÞ

; i 6¼ j; i; j 2 J: ð6Þ

Equation (6) means that among all the alternative sets,

the ratio of choice probabilities of any two of the decision-

maker’s alternatives only associates with the utilities of

these two alternatives but has nothing to do with the

utilities of any other alternatives.

On the other hand, if we assume that the decision

individual n makes is affected by his personal attributes xni,

then MNL model in Eq. (5) can be rewritten as:

Pni ¼
eayni

PJ

j¼1

eaynj

: ð7Þ

Equation (7) is the conditional logit model. The feature

of this model lies in that all the decisions are merely

dependent on the attributes of the chosen alternatives yj

� �
but irrelevant to decision-makers’ attributes Xnð Þ. No

matter how many sets of alternatives exist, only one group

of parameters needs to be estimated because of the

assumption that the influences on individual utility of

every choice set are identical. If there are many

alternatives, then the conditional logit model can be
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served as a better choice for modelling and is also simpler

to be compared with other models.

In practice, multinominal logit model (MNL) has to satisfy

IIA property, which means that, all the alternatives are inde-

pendent with each other and the ratio of choice probabilities

only associates with the utilities of the given alternatives and is

irrelevant to the utilities of any other alternatives. IIA property

is generated from IID assumption of error term (The error term

satisfies independent and identical type I extreme value dis-

tribution). IID constrains cannot be guaranteed if heteroge-

neity and similarity problems remain, which may result in the

wrong statistic inference.

Except for IIA property restrictions, MNL model has two

shortcomings in application. One is its incapability of han-

dling with random preference discrepancies, the other is its

incapability of finding out the correlative factors with panel

data. Two merits of MNL are that it has a close-formed

structure, and its parameters can be easily estimated.

Some scholars hold that IIA property is totally reason-

able in terms of model theory. McFadden and Domencich

[16] found that although the IIA restrictions result in a

value loss of those studies on MNL, the deviations caused

by IIA are owning to study objects, not the theory itself.

They believed that IIA property is tenable in homogeneous

populations. Ben-Akiva and Lerman [17] further pointed

out that although IIA does not fit the whole populations, it

does exist in homogeneous populations, such that the

reliability of IIA property relies on whether the populations

significantly show their heterogeneity. MNL model has the

best performance to explain discrete choice behavior if the

populations’ heterogeneity is not significant.

3 Improvement and development of discrete choice

models

Heterogeneity and similarity problems are directly related

to the assumption of error terms in model. Observed

samples and alternatives will cause the error terms.

Therefore, we can consider heterogeneity and similarity

problems from the perspective of these two factors.

Viewing the heterogeneity issues from the perspective of

samples means that the decision-maker holds different

viewpoints towards specific transport modes in his mode

choice behaviour, which can be called divergent tastes in

individuals, or individual heterogeneity. Individual heter-

ogeneity mainly comes from preference heterogeneity and

response heterogeneity. The former includes the observed

and unobserved effects that individual socioeconomic

characteristics put on transport mode choice, and the latter

refers to individual evaluation discrepancy on level of

service across transport modes, which brings observed and

unobserved effects as well.

Similarity across alternatives refers to the situation that

similarity issues arise because of spatial or time autocor-

relation during the survey process of samples (e.g.

repeatedly investigations on the same respondent or sam-

ples across sampling objects are self-correlated because of

adjacent zone effects, etc.) [5]. Heterogeneity and simi-

larity are prone to biassed parameter evaluation or even

overestimation on the effects of some specific factors.

When it comes to examining heterogeneity and simi-

larity attributes from the perspective of alternatives, we

need to consider whether alternatives share IIA property. If

the alternatives appear to be dependent or heterogeneous,

there may be similarity and heterogeneity problems among

alternatives, which are called alternatives similarity and

alternatives heterogeneity, respectively.

In the recent three decades, many models were devel-

oped to alleviate the heterogeneity and similarity problems,

including NL model [17], HEV model [5], mixed multi-

nominal logit (MMNL) model [10, 15], and multinominal

probit (MNP) model [6].

3.1 NL model

NL model introduces the concept of nest layers, in which

similar alternatives are put in the same nest layer.

Assuming that, the error terms across alternatives in the

same nest layer are independently and identically type I

extreme value distributed, and the error terms across

alternatives which belong to different nest layers are dif-

ferent. Here, we take two-layer nest structure as an

example. Suppose that, there are M nests in the model and

Jm alternatives in the mth nest layer. Alternative i is one of

the alternatives in the mth nest layer, and thus, Pi
j is the

probability that decision-maker chooses alternative i:

Pi
j ¼ P j

m � Pj ijmð Þ; ð8Þ

where P j
m represents the marginal probability that decision-

maker chooses nest layer m;

P j
m ¼ exp lm � Imð ÞPM

k¼1 exp lk � Ikð Þ
;Pj ijmð Þ;

denotes the conditional probability that alternative i of nest

layer m is chosen,

Pj ijmð Þ ¼ exp Vi=lmð Þ
exp Imð Þ ;

Im is inclusive value, which means comprehensive utility

of nest layer m; Im ¼ ln
P
j2Jm

exp Vj

�
lm

� �
; lm is the param-

eter of inclusive value, which explains the similarity degree

of the alternatives in nests. The estimated inclusive value

parameter must subject to 0� lm � 1; i.e. the principle of
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utility maximisation. When lm ¼ 1; NL model is simpli-

fied as MNL model. The more lm approaches to zero, the

higher the correlation degree among alternatives is.

In order to make all the alternatives independent with

each other, NL model imposes all the correlated alterna-

tives on the same independent nest layer and makes use of

inclusive value to represent the common utility of these

alternatives, and then builds models with other independent

alternatives. The NL model is good at solving the similarity

problems among alternatives. However, its disadvantages

are also evident. First, it has to be assigned a fixed nest

layer structure; Second, it is not able to accommodate the

situation that all the error terms correlate with each other at

the same time; third, decision procedures should be sup-

posed to satisfy the continuity condition; Forth, each

alternative is restricted to appear in only one nest.

3.2 HEV model

HEV model is put forward by Bhat [18]. This model allows

that alternative enj satisfies independent non-uniform type I

extreme value distribution, which means that each alter-

native has its own variance, and the variances may be same

or not, but the covariance of different alternatives is zero.

The probability that individual n chooses alternative i is

Pi ¼
Zw¼þ1

w¼�1

Y
j2C;j 6¼i

W
Vi � Vj þ hiw

hj

� �
w wð Þdw; ð9Þ

where W �ð Þ and w �ð Þ are cumulative distribution function

and probability density function of type I extreme value

distribution, respectively; C is the choice set; var eið Þ ¼
p2 � h2

i

�
6; w ¼ eni=hi; hi represents heterogeneity parameter

of alternatives, and it reflects the degree of uncertain fac-

tors, namely the weight of uncertain factors. Different

alternatives have different effects on the whole utility.

Increasing hi will decrease the unit variation that observed

utility brings to choice probability.

HEV model allows variance discrepancy (the variance

can be identical to each other or not) among error terms

across alternatives by introducing scale factor into the

expression of error terms, and the covariance across dif-

ferent alternatives is zero. HEV model is only able to

handle with the heterogeneity problems among alterna-

tives. During the model application process, large deviation

may happen if similarity problems among alternatives

simultaneously exist.

3.3 MNP model

Daganzo [6] proposed that the MNP model can be derived

if assuming that random error terms follow normal

distribution in Eq. (2). MNP model allows the situation that

not all the random error terms are independent and iden-

tical with each other. It is the most generalised model as it

fully reflects the realistic choice behaviours. The MNP

model can be expressed as:

Pni ¼
Z

Iðenj\eni þ Vni � Vnj; 8j 6¼ iÞ /ðenÞ den; ð10Þ

where I �ð Þ is the index function, I �ð Þ ¼ 1 means that the

decision-maker has the one with max utility chosen, otherwise

is zero; /ðenÞ obeys multivariate normal distribution,

/ðenÞ ¼
exp � 1

2
e0nX

�1en

� �

2pð Þ
J
2 Xj j

1
2

; e0n ¼ en1; en2; � � � ; enJð Þ;

expectation E enð Þ ¼ 0; and X denote covariance matrix.

Equation (10) has very complex integral components.

When there are more than four alternatives within the

choice set, it is difficult to estimate parameters.

MNP model is free of the MNL model’s three restric-

tions. It is capable of handling with heteroscedasticity

problems, defining error structures of any types as well as

dealing with error terms related to time series by using

panel data. The only limitation of MNP model is that all the

error terms of utility functions must normally distribute. In

most cases, assuming that the random terms satisfy normal

distribution seems to be proper, but in some cases, this

assumption may lead to unconventional prediction results.

The most well-known example is about the price variable

coefficient, the density distribution of which ought to only

appear in the side of distribution greater than zero. Besides,

MNP model appears to be much complicated in finding its

parameters.

3.4 MMNL model

MMNL model based upon the assumption that decision-

makers show different preferences. It assumes that mar-

ginal utility obeys Gumbel distribution, and the probability

of MMNL has to be obtained by integrating the parameters

of MNL model. The probability that decision-maker n

chooses alternative i is:

Pni ¼
Z

LniðcÞgðcÞdc ¼
Z

LniðcÞgðc hj Þdc; ð11Þ

where LniðcÞ is the multinomial logit choice probability

along with specific parameter vectors,

LniðcÞ ¼
exp VniðcÞ½ �

PJ

j¼1

exp VnjðcÞ
� � : ð12Þ

gðcÞ ¼ gðc hj Þ represents probability density function, h

denotes deep parameter vector, which include mean value,
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variance or covariance, etc., and VniðcÞ is measurable

utility. If the utility is linearly combined, i.e. VniðcÞ ¼
c0Zni; then the choice probability of MMNL can be

expressed as below:

Pni ¼
Z

expðc0ZniÞPJ
j¼1 expðc0ZnjÞ

gðcÞdc: ð13Þ

The choice probability of MMNL model relies on the

distribution form of c. g cð Þ is normally distributed or log

normally distributed [19].

In the utility function of MMNL model, except for

observed non-random terms and error terms, unobserved

random terms are also involved. The correlation, hetero-

geneity and individual preference heterogeneity of alter-

natives need to be considered with these random terms.

MMNL is able to deal with heterogeneity and similarity

problems simultaneously. Thus, the assumption of MMNL

model is most practical and performs best in interpreting

preference behaviours.

If the utility of MMNL model is set as linear combi-

nation, then MNL turns out to be the special case of

MMNL model. The merits of MMNL model lie in that

preference discrepancy among individuals is allowed, the

correlation among different trips of the same consumer can

be described, and it can approach to the estimated results of

any other random utility models. The demerit of MMNL

model is its complex computing process.

Note that, the parameter estimation methods of MNL,

NL, HEV, MMNL and MNP models are not totally the

same. Generally, the parameters of MNL, NL and HEV

models can be identified and obtained by the maximum

likelihood estimation method while the unknown parame-

ters of MMNL model and MNP model can only be esti-

mated by the maximum simulated likelihood method.

By analysing discrete choice model on error terms’

assumptions from two dimensions, which are independent

and identical, five introduced models can be classified as

shown in Table 1. Each model has its own merits and

demerits, and in application, desirable results can be

obtained if they are well combined.

4 Illustrations

The source data used for the comparison of these five

discrete choice models were drawn from the questionnaire

survey on transport mode (car, train, bus and air) choice

behaviours from 210 commuters between Sydney and

Melbourne [12]. The main variables include:

TTME Terminal time, The TTME for car is zero (min)

INVT In-vehicle time (min)

GC Generalised cost

HINC Household income

The utility function to be estimated is constructed as

Unj ¼ aairdi;air þ atraindi;train þ abusdi;bus þ cGGCij

þ cT TTMEij þ cHdi;airHINCi þ eij; ð14Þ

where for each j; eij has the same independent, type 1

extreme value distribution,

FeðeijÞ ¼ exp ð�expð�eijÞÞ;

which has standard deviation p2=6: di;m is the binary vari-

able which indicates if individual i made choice m;m ¼
air; train; bus, car: am is an estimate parameter for mode

m.

We take the car mode as the basic alternative to con-

struct MNL model and estimate parameters by maximum

likelihood estimation method. The parameter values of

universal set and restricted set are shown in Table 2, where

restricted set means that the set excludes the air mode.

The calculation results show that as Hausman test value

HM = 33.3363 is greater than v2
0:05 ¼ 9:488; which indi-

cates that IIA assumption of the MNL model is not proper,

and there exist heterogeneity and similarity problems. The

train, bus and car modes can all be used as the standard

basic group, except for the air mode that will result in non-

identified parameters,

The tree-like NL model is shown in Fig. 1.

After testing the estimated results of NL model we have

10:945 [ v2
0:05 ¼ 5:99; which rejects IIA assumption. It is

shown that the NL model outperforms the MNL model in

terms of interpreting choice behaviours.

Table 1 Discrete choice models’ classification

Error term assumption Independent Dependent

(Similarity)

Identical MNL NL

Non-identical (Heterogeneity) HEV MMNL, MNP

Table 2 Results for MNL calibration

Estimated parameters Universal set Restricted set

aair 5.207 –

atrain 3.869 4.464

abus 3.163 3.105

cG -0.015 -0.0639

cT -0.096 -0.0699

cH 0.013 –

Log likelihood at c = 0 -291.1218

Log likelihood at convergence -199.1284
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It is possible that heterogeneity exists across alterna-

tives. Here, we try to introduce scale parameters into the

error terms across alternatives to make error terms unequal

and alternatives heterogeneous. At least, one of the alter-

native scale parameter has to be fixed in HEV model. For

the convenience of model comparison, car mode is set to be

the basic alternative, and its scale parameter is assumed to

be 1. The estimated scale parameter values for other three

modes are: aair ¼ 0:2485; atrain ¼ 0:2595; abus ¼ 0:6065:

In Bhat’s empirical study [5], HEV model has better

interpretation ability over NL model and MNL model. The

example below (Table 3) indicates that HEV model does

out-perform MNL model on interpretation of choice

behaviours but this doesn’t mean it is better than NL

model.

The parameter value of car mode is set as zero in the

parameter estimation of MNP model, and the results are

shown in Table 3. The MNP model does not enhance the

interpretation ability of choice behaviours. This is because,

some error terms of utility function do not distribute

normally.

The MMNL model was built on the basis of the MNL

model under the universal set mentioned above. The

parameters estimated by maximum simulated likelihood

estimation method are listed in Table 4 (classified as

independent random parameters and correlated random

parameters). It is shown that the MMNL model has the best

performance in interpretation among all the models.

5 Conclusions

(1) MMNL model can be the first option when the

parameter distribution is available because it per-

forms best in interpretation.

(2) MNP model has its natural defect that all its error

terms of utility functions should be normally distrib-

uted, which leads to a poor interpretation performance

in practical application. Of all the test models, MNP

shows the poorest performance in interpretation.

(3) The prediction accuracy of NL model depends on the

given behaviour structure of decision-makers. If the

decision-making procedures are unknown, then it will

turn out to be very difficult to construct choice

structure, and it has great influences on final model

results if the decision structure is built with consid-

erable mistakes.

(4) Illustration analysis indicates that the HEV model has

a better interpretation ability in behavioral choice

than the MNL model, but worse than NL model.
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Fly Ground

Fig. 1 Nested logit model structure

Table 3 Calibration results for NL, HEV and MNP models

Estimated parameters NL Model HEV

Model

MNP

Model

aair 6.062 7.833 1.358

atrain 4.096 6.866 4.298

abus 5.065 7.172 3.609

cG -0.032 -0.052 -0.035

cT -0.112 -0.197 -0.077

cH 0.015 0.040 0.059

Log likelihood at

convergence

-193.6561 -195.6605 -196.9244

Table 4 Calibration results for the MMNL model

Estimated parameters Independent

random

parameters

Correlated

random

parameters

Estimate t-stat Estimate t-stat

aair 9.41 5.83 10.8 3.8

atrain 9.55 5.75 10.7 3.6

abus 8.59 5.69 9.7 3.7

cG -0.03 -3.35 -4.02 1.9

cT -0.21 -5.96 -13.4 3.9

cH 0.059 2.50 5.5 2.0

Chol(GC, GC) 3.00 1.3

Chol(TTME, TTME) 0.13 3.85 3.86 0.4

Chol(GC, TTME) 7.70 2.0

Log likelihood at convergence-178.810 -176.816

Chol denotes the parameter value derived by Cholesky decomposition

of variance–covariance matrix
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