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Abstract This paper addresses the peak factors of wind-

excited responses including alongwind, acrosswind tall

building responses and vortex-induced vibration consider-

ing the bandwidth parameter. The influence of bandwidth

parameter on the peak factor is investigated using advanced

upcrossing theory taking the bandwidth influence into

account. Results show that Davenport’s formula without

consideration of bandwidth parameter servers well in

general. However, the advanced upcrossing theory leads to

a better prediction of the peak factor of wind-induced

response of very lightly damped buildings.

Keywords Peak factors � Wind-excited responses �
Upcrossing theory � Bandwidth

1 Introduction

The closed-form formula introduced by Davenport [1] is

widely used for estimating the mean extreme value and

peak factor of a Gaussian stationary wind-excited structural

response. This formula was developed based on the well-

known ‘‘Poisson approximation’’ that the threshold level

crossing occurs independently according to a Poisson

process. While the Poisson approximation is generally

valid for broad band processes, it may fall short for very

narrow band processes, and lower threshold levels of

practical interest, due to the tendency of crossings to occur

in cluster [2, 3]. Cartwright and Longuet-Higgins [4]

introduced a bandwidth parameter to account for its effect

on the extreme value. Furthermore, Vanmarcke [2] pro-

posed an improved formula with a different bandwidth

parameter, which explicitly described the dependence

between the crossing events and the time that the process

spends above the threshold. Recently, Huang et al. [5] have

presented the peak factors considering the bandwidth

parameters for the non-Gaussian resultant response.

This study presents a comprehensive study concerning the

peak factors of wind-excited responses considering the

influence of bandwidth parameter. The responses considered

include the displacement and acceleration of tall buildings in

both alongwind and acrosswind directions, which are char-

acterized as Gaussian processes, and vortex-induced vibra-

tion which is often described by non-Gaussian process due to

the existence of nonlinear damping. These responses are

calculated in the frequency domain based on the spectral

analysis. The bandwidth parameters of these typical wind-

excited responses are determined from their power spectra.

The peak factors are then quantified considering the band-

width parameters using Vanmarcke’s formulation and com-

pared with Davenport’s formulation where the bandwidth

parameter is neglected. These peak factors are also compared

with those directly determined from time history simulations.

2 Theoretical background

The cumulative distribution function (CDF) of the extreme

value of a stationary Gaussian process X(t) over time

duration T can be expressed as follows
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QmaxðxÞ ¼ exp½�mðxÞT �; ð1Þ

where v(x) is the upcrossing rate at level x. For a zero-mean

stationary Gaussian process, the upcrossing rate can be

estimated based on ‘‘Poisson assumption’’

mðxÞ ¼ m0 exp � x2

2r2
x

� �
; ð2Þ

where m0 ¼ r _x=ð2prxÞ is the upcrossing rate across zero

mean level; rx and r _x are the standard deviations (STDs) of

X(t) and its derivative _XðtÞ. The Poisson approximation is

named based on the fact that if the crossing rate is inde-

pendent of the past history of the process, then the time

lengths between the upcrossings will be independent; this

makes the integer-valued process that counts the number of

upcrossing in a Poisson process [3].

Davenport [1] derived the following closed-form for-

mula for the mean and STD of the extreme value

lxmax ¼ grx ¼ b þ c=bð Þrx; ð3Þ

rxmax ¼ p=ð
ffiffiffi
6

p
bÞrx; ð4Þ

where g is the peak factor and c = 0.5772 is the Euler’s

constant; b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnðm0TÞ

p
. The Poisson approximation

may result in serious errors for very narrow band processes

[3]. In such a situation, the upcrossing of level x at time t is

very likely to be associated with another upcrossing

approximately one period later, due to the slowly varying

amplitude of the process. Such a dependence of the up-

crossing time is inconsistent with the Poisson approxima-

tion that the time between the two upcrossings is

independent [3]. The Poisson approximation is also less

accurate for the lower threshold level of practical interest.

To avoid the limitation of Poisson approximation, the

Poisson amplitude-crossing model can be used [6]. The

Poisson approximation is more suitable for amplitude of

the process than for the process itself. In addition, better

results for small x values can be made to include the initial

conditions. The modified version of amplitude-crossing

rate, g(x), is estimated as [3]

gðxÞ ¼ mðxÞ 1 � exp � mAðxÞ
mðxÞ

� �� �
1 � mðxÞ

m0x

� ��1

; ð5Þ

where mAðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð1 � a2

1Þ
p

x=rXmðxÞ is the upcrossing

rate of amplitude process A(t); and a1 is bandwidth

parameter and defined as

a1 ¼ m1=ðm0m2Þ1=2; ð6Þ

mi ¼
Z 1

�1
xj jiSXðxÞdx ¼

Z 1

0

ð2pf Þi
SXðf Þdf ; ð7Þ

where mi is the ith spectral moment. As a1 tends to unity,

X(t) becomes a very narrow band process. Vanmarcke [2]

proposed an empirical correction for vA(x) by fitting the

simulation data and accordingly, the upcrossing rate is

given as

gðxÞ ¼ m0 exp � x2

2r2
x

� �
� 1 � expð�

ffiffiffiffiffiffi
2p

p
ð1 � a2

1Þ
0:6 x

rx

Þ
� �

� 1 � exp � x2

2r2
x

� �� ��1

:

ð8Þ

The improved extreme value distribution is then obtained

by replacing v(x) with g(x) in Eq. (1). The mean and STD of

the extreme value can be estimated numerically.

It is noted that Cartwright and Longuet-Higgins [4]

introduced a different bandwidth parameter and derived the

peak factor g as

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � m2

2=ðm0m4Þ
q

; ð9Þ

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln½ð1 � e2Þ1=2mT�

q
þ c=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln½ð1 � e2Þ1=2mT�

q
:

ð10Þ

It is obvious that the above formula reduces to

Davenport’s formulation for e = 0. When e approaches to

the zero, the process becomes a very narrow band one.

Figure 1 shows the ratio g(x)/v(x) as a function of a1.

Figure 2 shows the improved CDFs, probability density

functions (PDFs) from Varmarcke’s formula for different

a1 and those from Poisson assumption under v0T = 103.

The results show that there are considerable differences in

the mean upcrossing rate and corresponding extreme value

distribution, especially at low levels of x, as a1 approaches

to unity, i.e., the process becomes narrower. It is also seen

that these differences are negligible as a1 is\0.9. Figure 3

shows the mean, STD, and their ratio of the extreme value

evaluated by Davenport’s and Vanmarcke’s formulas

under v0T = 102, 103, and 104 for different a1. It can be

seen that the difference between two formulations is dis-

tinctive as the parameter a1 increases to unity. For very

narrow band processes, the improved Vanmarcke’s for-

mula offers a smaller mean and a larger STD of extreme

value.

3 Alongwind building response

Consider an alongwind response of an isolated tall building

with a regular cross section. The PSD of the alongwind

generalized force of the fundamental mode is determined

based on the Architectural Institute of Japan (AIJ) recom-

mendations [7, 8]. This spectrum involves some assump-

tions including a liner fundamental mode shape, negligible
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aerodynamic damping, and a power law profile of the mean

wind speed and turbulence intensity. It is expressed as the

product of aerodynamic admittance function and the wind

fluctuation spectrum as

fSQðf Þ ¼
0:84

ð1 þ 2:1fH=UHÞð1 þ 2:1fB=UHÞ
� 4fLH=UH

½1 þ 71ðfLH=UHÞ2�5=6
; ð11Þ
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where f is the frequency; LH is the turbulence length scale

and given as LH ¼ 100
ffiffiffiffiffiffiffiffiffiffiffi
H=30

p
; H is building height; B is

building width; and UH is the mean wind speed at building

top.

Figure 4 shows the PSD of the generalized force Q(t) with

H = 200 m, B = 0.2H, and UH = 40 m/s. Figure 5 por-

trays the calculated PSDs of the building top displacement

and acceleration, i.e., SX (f) and S€Xðf Þ ¼ ð2pf Þ4
SXðf Þ. The

modal damping ratio and natural frequency are taken as

n = 1 % and f0=0.23 Hz. As only the fundamental modal

response is considered, the PSDs of base shear and based

bending moments have the same features as the top

displacement.

The building response can be decomposed into the broad

band background and narrow band resonant components. It

is seen that the PSD of the displacement contains signifi-

cant background component which is negligible for the

acceleration. The PSDs of the background and resonant

components of the top displacement are given as

SXb
ðf Þ ¼ SQðf Þ=½M2ð2pf0Þ4�; ð12Þ

SXr
ðf Þ ¼ SQðf Þ

M2ð2pÞ4½ðf 2
0 � f 2Þ2 þ ð2nf0f Þ2�

� SXb
ðf Þ; ð13Þ

where M is the generalized mass. Figure 6 shows the PSDs

of the background and resonant components of the top

displacement.

Based on the response spectrum, the spectral moments

and bandwidth parameter can be calculated. These char-

acteristics of the total response can also be expressed in

terms of those of background and resonant components.

Their upcrossing rate across zero mean level is defined as

m0s ¼ r _Xs
=ð2prXs

Þ (s = b, r), where b and r denote back-

ground and resonant components; rXs
is RMS value of the

background or resonant component; r _Xs
is RMS value of

the derivative of the background or resonant component.

Their corresponding bandwidth parameters can be expressed

as a1s ¼ m1s=ðm0sm2sÞ1=2; where mis ¼
R1

0
ð2pf Þi

SXsðf Þdf

i ¼ 0; 1; 2; s ¼ b; rð Þ:
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Accordingly, the RMS, upcrossing rate across zero

mean level and bandwidth parameter for the total response

can be expressed as

rX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

Xb
þ r2

Xr

q
; ð14Þ

m0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0b þ m2
0rðrXr

=rXb
Þ2

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ ðrXr

=rXb
Þ2

q
; ð15Þ

a1 ¼ m0ba1b þ m0ra1rðrXr
=rXb

Þ2
h i

= m0ð1 þ ðrXr
=rXb

Þ2Þ
h i

;

ð16Þ

where Eqs. (15) and (16) can be derived from the

definitions.

Figure 7 shows the ratio of RMS resonant displacement

to RMS background displacement as a function of damping

ratio. It is seen that the portion of resonant component

increases with the decrease in the damping ratio.

Figure 8 shows the bandwidth parameter a1 as a func-

tion of damping ratio n for the displacement and acceler-

ation. Figure 9 shows the relationship between the

upcrossing rate across zero mean and damping ratio. The

bandwidth parameter a1 and uprcossing rate across zero

mean for the background response are 0.627 and 0.043

respectively which are independent of the damping ratio. It

can be seen that the displacement can be regarded as a

broad band except very low-damping ratios where the

resonant component becomes dominant. As expected, the

acceleration and resonant displacement can be considered

as narrow band for the damping ratio range of 1 %–3 %. It

is noted that the upcrossing rate of the acceleration and

resonant displacement across zero mean can be approxi-

mated as the structural natural frequency, i.e., m0r � f0.

Figure 10 shows the comparison of the peak factors of

alongwind response computed from Davenport’s and

Vanmarcke’s formulations, i.e., without and with consid-

eration of bandwidth parameter. The results illustrates that the bandwidth parameter has a negligible influence on the

displacement. For the acceleration, the consideration of

bandwidth parameter results in 4 % difference at n = 1 %,

and 12 % difference at n = 0.1 %.

In order to validate these formulations, Monte Carlo

simulation of building response is also performed. A total

of 100 samples of the time histories of the generalized

force are generated using spectral representation method

[9]. The building response is then calculated using step-by-

step Newmark’s method. The peak factors of top dis-

placement and acceleration are qualified from the response

time histories as shown in Fig. 10. It is seen that the peak

factors obtained from the time domain simulation is

slightly lower than that from Vanmarcke’s formulation.

Such a slight difference has also been reported in literature

[3].

For the broad band background displacement with a

bandwidth parameter of 0.627, both Davenport’s and
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Vanmarcke’s formulas offer an identical peak factor of

3.22. However, they lead to a slightly different peak factor

for the resonant displacement as shown in Fig. 11. As

expected, the peak factor of the resonant displacement

shows the similar characteristics as that of the acceleration.

In current practice, the mean extreme response is often

estimated by directly combining the mean extreme values

of background and resonant components as

lxmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

br
2
Xb

þ g2
r r

2
Xr

q
; ð17Þ

where gb and gr are the peak factors of background and

resonant components.

As compared to the following equation

lxmax ¼ gX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

Xb
þ r2

Xr

q
; ð18Þ

where gX is the peak factor of total response, Eq. (17) is

equivalent to introduce a peak factor for total response as

g
0

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

br
2
Xb
=r2

X þ g2
r r

2
Xr
=r2

X

q
: ð19Þ

Figure 12 shows the ratio g
0
X=gX for the total

displacement. It can be seen that when Eq. (17) is

applied, Davenport’s formula leads to a better estimation

for the peak factor of total response. The reason is

attributed to following coincidence: on one hand,

approximate combination of Eq. (17) leads to a lower

extreme value of total response when both background and

resonant extreme vales are computed using Vanmarcke’s

formula; on the other hand, the extreme value of resonant

component is overestimated by Davenport’s formula.

As shown in Eq. (10), Cartwright and Longuet-Higgins

[4] introduced a different bandwidth parameter e in esti-

mating the peak factor. Figure 13 shows the bandwidth

parameter e as a function of damping ratio for the top

displacement and acceleration. Figure 14 compares the

influence of this parameter on the responses. It can be seen

that Cartwright and Longuet-Higgins’ formulas gives an
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opposite trend of the peak factor with the influence of the

bandwidth parameter. Hence, the usage of the parameter e
is not effective on the estimation of the peak factor and

extreme response.

4 Acrosswind building response

The PSD of the acrosswind generalized force Q(t) sug-

gested by AIJ recommendations (AIJ 1996) [7] is also used

for estimating the acrosswind response and discussing the

bandwidth parameter on its peak factor and extreme value.

SQðf Þ ¼
XN

j¼1

4jjð1 þ 0:6bjÞbj � ðf=fsjÞ2

p � ½1 � ðf=fsjÞ2�2 þ 4b2
j ðf=fsjÞ2

n o ;

N ¼
1; D=B\3

2; D=B [ 3

�
;

j � 0:85

j � 0:02

�
;

ð20Þ

where bj is related to the band width; fsj represents the peak

frequencies, i.e., vortex-shedding frequencies of the

spectrum; and D is the building depth. They can be

determined by the following empirical formulas as

functions of the side ratio D/B (B is the building width)

fs1 ¼ 0:12

½1 þ 0:38ðD=BÞ2�0:89

UH

B
;

fs2 ¼ 0:56

ðD=BÞ0:85

UH

B
;

ð21Þ

b1 ¼ ðD=BÞ4

1:2ðD=BÞ4 � 1:7ðD=BÞ2 þ 21
þ 0:12

D=B
;

b2 ¼ 0:28ðD=BÞ�0:34:

ð22Þ

Figure 15 shows the PSD of acrosswind generalized force

with H = 200 m, B = 0.2H, D/B = 1, and UH =40 m/s.

Figure 16 shows the PSDs of the building top displacement

and acceleration with damping ratio n = 1 %.

Figure 17 shows the bandwidth parameter a1 for the

displacement and the acceleration as a function of damping

ratio. Figure 18 shows the relationship between the up-

crossing rate across zero and damping ratio. It can be seen
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that the displacement and acceleration can be considered as

narrow band processes, and the upcrossing rate across zero

level can be approximated by the natural frequency.

Figure 19 shows the influence of bandwidth parameter

on the peak factor of acrosswind response. The results

illustrate that the consideration of bandwidth parameter

results in 6 % and 11 % differences at n = 1 % and 0.1 %

for displacement, respectively. The differences are 5 % and

9 % at n = 1 % and 0.1 % for acceleration, respectively. It
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is seen that Vanmarcke’s formula will provide a better

prediction of the peak factor of wind-induced response of

very lightly damped buildings.

5 Vortex-induced response

Consider a vortex-induced vibration of a spring-supported

circular cylinder. A considerable variety of empirical

analytical models have been developed to describe the

vortex-induced vibration of cylinders [10]. In this study,

the equation of vibration of a cylinder with a unit length is

given as [11]

mð€y þ 2nx1 _y þ x2
1yÞ ¼ 1

2
qU2D½Y1ðKÞ � 1 � d

y2

D2

� �
_y

U

þ Y2ðKÞ y

D
þ CLðKÞ sinðxt þ /Þ�;

ð23Þ

where m is the mass per unit length of cylinder; n and x1

are damping ratio and natural circular frequency respec-

tively; q is air density; D is diameter of cylinder; K = xD/U

is reduced frequency; Y1, d, Y2, and CL are parameters and

functions of K and need to be determined through the

observations.

This model allows the consideration of nonlinear wind-

excited ‘‘negative damping’’. At lock-in, x & x1, Y2 & 0,

and CL & 0, since the last two terms are found to be small

compared to the first term reflecting the aerodynamic

damping effects. Y1 and d are independent parameters; the

former determines the initial negative damping, and the

latter dominates the time to achieve the steady-state

vibration. The steady-state amplitude of vortex-induced

vibration, y0, is given as [11]

y0

D
¼ 2

Y1 � 8pScrSt

dY1

� �1=2

; ð24Þ

where St is Strouhal number; and Scr ¼ nm=ðqD2Þ is

Scruton number.

In this study, the Strouhal and Scruton numbers are

taken as 0.2 and 1.5, respectively. Y1 and d are assumed

to be 26.3 and 2,928.4, respectively. Accordingly,

Y0/D = 0.0312.

Using the normalized displacement y0 ¼ y=D, Eq. (23)

can be can be rewritten as

€y0 þ 2x1 n � U

4Dx1

n
Scr

Y1 1 � dy02
	 
� �

_y0 þ x2
1y0 ¼ 0; ð25Þ

The time history of vortex-induced vibration can be

simulated by solving Eq. (25) through Newmark’s step-by-

step method. Figure 20 shows an example with n = 1 %

and x1 = p rad/s. Using the time history data when vortex-

induced vibration reaches its steady state, the peak factor is

determined to be around 1.42, which is close to that of a

sinusoidal response,
ffiffiffi
2

p
. In this situation, the bandwidth

parameter a1 should be very close to unity. It should be

noted that at the wind speed around lock-in region, vortex-

shedding frequency is close to the natural frequency of

cylinder. The vibration will show the beating phenomena.

The peak factor of vortex-induced vibration will be in the

range of 1.42 to around 3.5. The advanced theory that takes

into account the bandwidth parameter is able to interpret

the trend of extreme value and peak factor in this response.

6 Conclusion

In wind engineering community, Davenport’s closed-form

formula was extensively applied in extreme value estima-

tion of a Gaussian stationary response. Due to the ‘‘Poisson

approximation’’ involving this formulation, it may fall

short for very narrow band processes and lower threshold

levels of practical interest. On the other hand, Vanmarcke’s

formula accounted for the effects of bandwidth and led to

an improved estimation of the extreme value of very nar-

row band processes.

The wind-induced building response was generally

separated into background and resonant components. The

background response was regarded as a broad band pro-

cess, while the resonant response was a narrow band pro-

cess. The bandwidth parameter of the total response was

affected by the ratio of resonant and background compo-

nents. The alongwind displacement usually contained

considerable background component. On the other hand,

the alongwind acceleration, and acrosswind displacement

and acceleration were dominant by the resonant compo-

nent. The bandwidth parameter was strongly affected by

the building damping ratio. Vortex-induced vibration at

steady-state stage had a bandwidth parameter which was
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very close to unity because its vibration was almost a

sinusoidal wave.

The estimation of the extreme value and peak factor

using Davenport’s formulation without considering the

bandwidth parameter served well for both alongwind and

acrosswind responses. It may lead to an around 6 %

overestimation for the acrosswind response of buildings

with very lightly damping ratios, say, 1 %. The time

domain simulations validated those results.

However, Vanmarcke’s formulation with the consider-

ation of bandwidth parameter and the lower level of

crossing was more accurate in describing the probability

distribution of the extreme value of very narrow band

processes. One such an example was vortex-induced

vibration. At the steady-state stage, the peak factor was

around 1.42. Around the lock-in range, the peak factor was

between 1.42 and around 3.5. That was much lower than

that computed by Davenport’s formula. The advanced

theory using Vanmarcke’s formula could explain the

behavior of very narrow band response processes.

In engineering applications, the peak value of wind-

excited response was often estimated by directly combin-

ing the peak values of its background and resonant com-

ponents using square-root-of-sum-of-squares (SRSS) rule.

Such an approximate combination generally led to a

smaller combined peak response when both extremes of the

background and resonant components were accurately

determined following Vanmarcke’s formula. On the other

hand, this approximate combination led to a better result

when the peak factors were given by Davenport’s formula.

However, when the resonant response was dominant, the

combination of SRSS rule and Davenport’s formula may

fall short in predicting the extreme response of very lightly

damped structures.
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