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Abstract Large eddy simulation is performed to study

three-dimensional wave–current interaction with a square

cylinder at different Reynolds numbers, ranging from 1,000

to 600,000. The Keulegan–Carpenter number is relevantly

a constant of 0.6 for all cases. The Strouhal number, the

mean and the RMS values of the effective drag coefficient

in the streamwise and transverse directions are computed

for various Reynolds numbers, and the velocity of a rep-

resentative point in the turbulent zone is simulated to find

the turbulent feature. It is found that the wave–current

interaction should be considered as three-dimensional flow

when the Reynolds number is high; under wave–current

effect, there exists a critical Reynolds number, and when

the Reynolds number is smaller than the critical one, cur-

rent effect on wave can be nearly neglected; conversely,

with the Reynolds number increasing, wave–current–

structure interaction is sensitive to the Reynolds number.

Keywords Large eddy simulation (LES) �
Wave–current–structure interaction � Drag coefficient �
Vortex shedding � Reynolds number

1 Introduction

In recent years, the highway and road systems have gone

through a rapid expansion in China, resulting in the con-

struction of many sea bridges. The piers of these bridges

deep into sea must endure large wave forces and tidal

actions. The high ocean waves and turbulent currents often

cause the large vibration or deformation of bridges. The

design for sea bridge piers relies on the accurate prediction

of wave–current forces and vortex-shedding frequency.

Accordingly, wave–current–structure interaction is a focus

in the studies of coastal and offshore bridges.

Park et al. [1] used the linear potential theory to inves-

tigate the fully nonlinear wave–current–body interaction in

terms of three-dimensional numerical tank. His study was

based on weak current and no flow separation. However, in

reality, flow separation will always occur even though the

current is weak. Thus, in order to deal with the physical

problems of wave–current–structure interactions, the tur-

bulence closure model was developed. Deardorff [2]

established a large eddy simulation (LES) model which

solves the large-scale eddy motions and modeled the small-

scale turbulent fluctuations to solve the turbulent flows

with large Reynolds numbers. Sohankar [3] applied a LES

model to studying flow interaction with a bluff body from

moderate-to-high Reynolds numbers by employing two

different sub-grid scale models, namely, the Smagorinsky

and a dynamic one-equation models. Koo and Kim [4]

investigated nonlinear wave–current interactions with fixed

or freely floating bodies using a two-dimensional fully-

nonlinear numerical wave tank (NWT). Li and Lin [5]

developed a two-dimensional numerical tank to simulate

the coaction processes based on the Reynolds-averaged

Navier–Stokes equations. Cheng et al. [6] used the lattice

Boltzmann method to simulate a two-dimensional incom-

pressible linear shear flow over a square cylinder and

investigated the effect of shear rate on the frequency of

vortex shedding as well as the drag force. The complexities

of flow and turbulence patterns as well as the pressure

fields induced by the wave–current attacks require a three-

dimensional model to predict the deformation of piers of

bridge structures. Vengadesan and Nakayama [7] evaluated
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turbulent flow over a square cylinder by employing three

subgrid-scale SGS stress closure LES models. Lin and Li

[8–11] used LES to study wave–current–body interaction,

and obtained lots of significant revelations of nonlinear

wave–current–body interactions. Tan [12, 13] applied an

LES model to simulate three-dimensional wave interaction

with structures and studied wave–current–body interactions.

Based on the Navier–Stokes equation, the wave-gener-

ation method of defining inlet boundary conditions is

applied in this article to build an LES model. The model is

then used to study wave–current interaction with a vertical

square cylinder for various Reynolds numbers. The drag

force and vortex feature caused by the nonlinear wave–

current–structure interaction are, respectively, numerically

simulated with various high Reynolds numbers. The mean,

RMS of drag coefficient and the Strouhal number which

represent the vortex shedding frequency are calculated and

compared.

2 Theoretical model

2.1 Model description

The governing equations for spatially averaged mean flow

are as follows, which are obtained by filtering the classical

Navier–Stokes equations [2]:
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where i = j = 1, 2, 3 represent the three directions of three-

dimensional fluid particle, the variables with overbars are

spatially averaged quantities, q is the fluid density, gi is the

gravitational acceleration in the ith component, ui is the

mean velocity in the ith component, �p is the filtered pressure,

and sij is the viscous stress of filtered velocity field. The sub-

grid scale tensors are defined by the difference of uiuj and

uiuj produced from the filtering, which can be described by

means of sub-grid Reynolds stress:

sR
ij ¼ �q uiuj � uiuj

� �
: ð3Þ

The sub-grid model is solved based on the eddy

viscosity model hypothesis; thus, the isotropic residual

stress tensor is defined as follows:

sr
ij ¼ sR

ij �
2

3
krdij; ð4Þ

where kr ¼ 1
2
sR

ij is residual kinetic energy, and dij is

Kronecker delta function. From Eq. (4), the isotropic

residual stress tensor terms can be absorbed into the filtered

pressure terms, i.e.,

P ¼ p þ 2

3
kr ð5Þ

By Substituting Eqs. (3)–(5) into Eq. (2), we transform the

filtered momentum equation into
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The Smagorinsky sub-grid scale model [14] is applied to

calculate sr
ij, that is,

sr
ij ¼ 2qctSij ¼ qct

o�ui

oxj

þ o�uj

oxi

� �
; ð7Þ

where eddy viscosity coefficient ct ¼ L2
s

ffiffiffiffiffiffiffiffiffiffiffiffi
2�Sij

�Sij

p
;

Smagorinsky length scale Ls = CsW, in which Cs is the

Smagorinsky model dimensionless coefficients ranging

from 0.1 to 0.2 due to various calculating fluids. In this

study, Cs is taken to be 0.15, W is the length scale of

minimum vortex, and W ¼ ðDx þ Dy þ DzÞ1=3; where

Dx; Dy; Dz are the grid spacings of x, y, and z directions.

Thus, the LES momentum equations which are obtained by

means of Smagorinsky sub-grid model without the filtered

signs can be described as
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where c is the molecular viscous coefficient.

To trace the three-dimensional free surface transforma-

tion, the so-called r-coordinate transformation [15] is

applied to map the irregular physical domain into a cube

where the free surface and bottom boundary condition can

be set precisely. In this study, operator-splitting method

[16] is used to solve Eqs. (8) and (9).

2.2 Model validation

To validate the numerical model mentioned above, a three-

dimensional model is set up. The square cylinder is verti-

cally located in a numerical wave–current basin with the

dimension of 30 m 9 10 m 9 1 m. The still water depth is

1 m. The side length of square cylinder is 1 m 9 1 m, and

its height is 1 m. The center of the cylinder is located at the

centerline in the y direction and 10 m away from the left

boundary. A uniform and undisturbed current with the

speed of 0.22 m/s is set on the inflow boundary conditions;
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the corresponding Reynolds number is Re ¼ u0 � L=v ¼
2:2 � 104: A nonuniform mesh system is used on the

horizontal plan with the grids of 130 9 80. Near the square

cylinder, the finest grids Dx ¼ Dy ¼ 0:005 m is deployed

and coarser grids father away. In the vertical direction, the

uniform grids are used, 20 grids in total. A timestep of

Dt = 0.001 s is used in the computation. The computation

time t is a dimensionless value by parameter l/u0, and force

is a dimensionless value by parameter qu2
0: Totally 200

dimensionless t are calculated.

The time history curves of drag and lift coefficient are

given in Fig. 1. The mean force coefficients (Cd), mean-

square deviation of drag and lift coefficients (C0
d and C0

l),

and normalized shedding frequencies (Strouhal number St)

are given in Table 1.

The data in Table 1 are analyzed from 100t to

200t (where t = t*u0/l) during which the turbulence has

achieved full development. The corresponding numerical

results are compared with Lyn’s experiment results [17]. It

can be seen from the comparison that the numerical result

agrees with the experiment result well.

2.3 Model conditions

In this study, the three-dimensional wave–current inter-

action with a vertical square cylinder at various Reynolds

numbers is investigated. The numerical model is the same

as that of Sect. 2.2 (see Fig. 2a). Inflow boundary con-

dition is generally set on the left side of computational

domain where both free surface and velocities are pro-

vided based on either laboratory measurements or theo-

retical expression. Thus, a linear wave train with a wave

period of 4 s and a wave height of 0.05 m together with

the current is sent from the left boundary. The corre-

sponding Reynolds number ranges from 1.0 9 104 to

6.0 9 105 and the current speeds from 0.001 to 0.6 m/s.

The value of KC = upT/L & 0.6. The right side of

computational domain is set by radiation boundary that

can absorb the wave and flow energy. On free surface,

the zero normal and tangential stresses are enforced with

zero pressure. On bottom or solid wall boundary, no-slip

boundary is applied. A nonuniform mesh system is used

on the horizontal plan with the grids of 130 9 80. Near

the square cylinder, the finest grids Dx = Dy = 0.05 m

are deployed and coarser grids father away. In the ver-

tical direction, the uniform grids are used, 20 grids in

total.
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Fig. 1 The time history of drag and lift coefficients. a Cd, b Cl

Table 1 Calculated mean force coefficient (Cd), mean-square devi-

ation of drag and lift coefficients (C0
l and C0

d), and normalized shed-

ding frequencies (Strouhal number St)

Item C0
l Cd C0

d St

This article 1.2475 2.1094 0.1892 0.139

Ref. [17], Re = 22,000 – 2.05–2.23 0.135

Vickery, 1 [18] 1.32 – 0.17 0.12

Vickery, 2 [18] 1.27 – 0.17 –

Lee, Re = 176,000 [19] 1.22 2.05 0.22 –

(a)

 
(b) 

(1.5L, 0) 

10L 20L

10
L

Fig. 2 Mesh arrangement near the square cylinder on the horizontal

plane. a Computational domain arrangement, b Mesh arrangement

near the square cylinder
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3 Results and discussions

In Fig. 3, the calculated vorticity on the middle elevation at

the same time moment t = 100 s for different Reynolds

numbers is plotted as a gray scale color map. Two extreme

cases of wave-only case (KC = 0.6) and current-only case

(Re = 6.0 9 105) are also discussed.

Figure 3a–c show that the current is so weak that its

effect on wave can be neglected when Re is less than

1.5 9 105. The flow is essentially symmetric about the

(b)(a)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 3 Calculated vorticity on

the middle elevation at

t = 100 s for different Reynolds

numbers. a Wave only,

b KC = 0.6, Re = 10,000,

c KC = 0.6, Re = 100,000,

d KC = 0.6, Re = 150,000,

e KC = 0.6, Re = 200,000,

f KC = 0.6, Re = 300,000,

g KC = 0.6, Re = 400,000,

h KC = 0.6, Re = 500,000,

i KC = 0.6, Re = 600,000,

j KC = 0, Re = 600,000
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centerline in the y direction during all time history under

constant KC number and relatively weak current effect.

Flow separations from corners exist but the vortices are

attached to the structure. Under wave-only effect of wave

height H = 0.05 m as well as wave period T = 4 s, the

value of KC = upT/L & 0.6, where up is the maximum

wave-induced fluid particle velocity, up & 0.15 m/s [10].

Thus, when the Reynolds number magnitude is smaller
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Fig. 4 Effective drag coefficient and corresponding energy spectra for Reynolds numbers (1.0 9 104 to 2.0 9 105). a Wave only, b KC = 0.6,

Re = 10,000, c KC = 0.6, Re = 100,000, d KC = 0.6, Re = 150,000, e KC = 0.6, Re = 200,000, f Wave only, g KC = 0.6, Re = 10,000,

h KC = 0.6, Re = 100,000, i KC = 0.6, Re = 150,000, j KC = 0.6, Re = 200,000, k Wave only, l KC = 0.6, Re = 10,000, m KC = 0.6,

Re = 100,000, n KC = 0.6, Re = 150,000, o KC = 0.6, Re = 200,000
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than Recritical ¼ upL=v ¼ 1:5 � 105; the effect of Reynolds

number on wave is almost very little. The drag force and

vortex form caused by wave–current interaction with

KC = 0.6 as well as weak current are consistent with that

of wave action only. Conversely, when the Reynolds

number magnitude is the same as Recritical, the wave–

current nonlinear interaction is obvious. Although with

the same KC number, the trailing vortex forms differ from

one another. With increasing the Reynolds number from

1.5 9 105 to 6.0 9 105, the vortex form becomes more

complicated; however, the separation point remains at the

upstream corners at all times for different Reynolds

numbers. From Fig. 3i–j, it is expected that the vortex

feature under wave–current effect becomes much more
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Fig. 4 continued
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complicated in comparison to that of the current-only

effect due to the presence of wave oscillating motion.

In the presence of wave, there also exists inertial force

caused by the unsteady oscillating motion besides the drag

force. Thus, to simplify the analysis and facilitate the

comparisons among different cases, all forces are normal-

ized by qu2(Ld)/2, in this study u in all cases is taken as

0.6 m/s so that the effective force coefficient in the x and

y directions, e.g., Cdx and Cdy, are obtained. The

time history curve of effective drag coefficient and
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Fig. 5 Effective drag coefficient and corresponding energy spectra for Reynolds numbers(3.0 9 105 to 6.0 9 105). a KC = 0.6, Re = 300,000,

b KC = 0.6, Re = 400,000, c KC = 0.6, Re = 500,000, d KC = 0.6, Re = 600,000, e KC = 0.6, Re = 300,000, f KC = 0.6, Re = 400,000,

g KC = 0.6, Re = 300,000, h KC = 0.6, Re = 600,000 i KC = 0.6, Re = 300,000, j KC = 0.6, Re = 400,000, k KC = 0.6, Re = 500,000,

l KC = 0.6, Re = 600,000
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corresponding energy spectra with different Reynolds

numbers have been presented in Figs. 4 and 5. From Fig. 4,

when Reynolds number is smaller than Recritical, the drag

coefficient, lift coefficient and corresponding energy

spectra are the same as those of wave-only case. This again

proves that the effect of current on wave is so little that it

can be neglected when the corresponding Reynolds number

achieves a critical value. However, when Reynolds number

is bigger than Recritical, it is found that Cdx and Cdy have

been increased with the Reynolds number increasing (see

Fig. 5). The vortex shedding frequency increased as the

Reynolds number increased. This fact can be verified from

Fig. 5i–l which is obtained from the logarithmic spectrum

of Cdy.

The streamwise velocity U, transverse velocity V,

vertical velocity W at one representative point on the

horizontal plane of middle elevation, namely, point I at

x = 1.5 m and y = 0.0 m (as shown in Fig. 1 for its

position) are depicted in Fig. 6. It gives the time histo-

ries of resolved velocity at this point for various Rey-

nolds numbers. Reynolds numbers ranging from

3.0 9 105 to 6.0 9 105 are plotted to discover the pat-

terns obviously in Fig. 6. From Fig. 6a–d, it is found that

in the first ten periods, the turbulent forms of all cases

are complicated. The higher the Reynolds number, the

more significant the velocity fluctuation. From Fig. 6e–h,

it is seen that vortex shedding period is decreased as

Reynolds numbers increased. Another feature is that the

vertical velocity (W) magnitude is increased because of

the increasing of Reynolds number. Thus, vertical

velocity W should be considered to wave–current inter-

action with high corresponding Reynolds numbers. It is

of great importance to consider the wave–current as

three-dimensional flow.

The variations of Strouhal number and effective drag

coefficient under different Reynolds numbers are shown in

Fig. 7 and Table 2. The vortex shedding frequency and the

mean wave–current force are nearly close to zero for the

case of Reynolds number smaller than 1.0 9 105, which is

the same as the wave-only case. As the Reynolds number

increases, the Strouhal number, the mean force coefficient

and the RMS of coefficients increase, and they all show the

same variation tendency. It is expected that the mean ones,

the RMS ones, and Strouhal number are all sensitive to

various Reynolds numbers under wave–current effect.

From Fig. 7d, it is found that the Strouhal number

increases slightly for the higher Reynolds numbers ranging

from 3.0 9 105 to 6.0 9 105.

4 FEM simulation

Wave–current interaction with a vertical square cylinder is

investigated numerically in this study. The results show as

follows:
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(1) The vortex shedding frequency has been reduced

because of wave–current nonlinear interaction.

(2) When the corresponding Reynolds number is smaller

than a critical one, current effect on wave can be

nearly neglected.

(3) With the Reynolds number increasing, however,

wave–current–structure interaction is sensitive to the

Reynolds number; in this case, the effect of Reynolds

number on the global quantities, the mean value,
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Fig. 6 Velocity in three directions at point(x = 1.5 m and y = 0.0 m) for different Reynolds numbers. a KC = 0.6, Re = 300,000, b KC = 0.6,

Re = 400,000, c KC = 0.6, Re = 500,000, d KC = 0.6, Re = 600,000, e KC = 0.6, Re = 300,000, f KC = 0.6, Re = 400,000, g KC = 0.6,

Re = 500,000, h KC = 0.6, Re = 600,000 i KC = 0.6, Re = 300,000, j KC = 0.6, Re = 400,000, k KC = 0.6, Re = 500,000, l KC = 0.6,

Re = 600,000
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RMS value of drag force coefficient and turbulent

feature are much more obvious and unignorable.

(4) The vertical velocity is increased with the Reynolds

muber increasing, and the magnitude of it weighs

against the streamwise velocity. Thus, it is of great

importance to consider the wave–current interaction

as three-dimensional flow.

0 50 100 150 200
-0.4

-0.2

0.0

0.2

0.4

W
 /(

m
/s

)

t (s)
0 50 100 150 200

-0.4

-0.2

0.0

0.2

0.4

W
 /(

m
/s

)

t (s)

(k) (l)

0 50 100 150 200
-0.4

-0.2

0.0

0.2

0.4

W
 /(

m
/s

)

t (s)

0 50 100 150 200
-0.4

-0.2

0.0

0.2

0.4

W
 /(

m
/s

)

t (s)

(i) (j)

Fig. 6 continued

(a) (b)

(c) (d)

0 1 2 3 4 5 6
-0.05

0.00

0.05

0.10

0.15

0.20

Wave only

KC=0, Re=600 000

S
tr

ou
ha

l n
um

be
r

Re number /(   105)

0 1 2 3 4 5 6
-0.4

0.0

0.4

0.8

1.2

Wave only

KC=0, Re=600 000

C
dy

, r
m

s

Re number /(   105)

0 1 2 3 4 5 6
-1

0

1

2

KC=0, Re=600 000

Wave only

C
dx

, r
m

s

Re number /(   105)
0 1 2 3 4 5 6

-1

0

1

2

Wave only

KC=0, Re=600 000

C
dx

, m
ea

n

Re number /(   105)

Fig. 7 The mean and RMS drag coefficient as well as Strouhal number (St) versus different Reynolds numbers. a Cdx (mean) , b Cdx (RMS),

c Cdy (RMS), d St number
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Table 2 Calculated mean force coefficients, RMS of fluctuation of coefficients, and normalized shedding frequencies (Strouhal number St) for

various Reynolds numbers

Wave–current parameters �Cdx
�C0

dx
�C0

dy
St

KC = 0.6, Re = 1.0 9 103 -0.0373 1.0877 0.0074 –

KC = 0.6, Re = 1.0 9 104 -0.0374 1.0803 0.0075 –

KC = 0.6, Re = 1.0 9 105 -0.0349 1.0815 0.0084 –

KC = 0.6, Re = 1.0 9 105 -0.0259 1.0551 0.0081 0.019531

KC = 0.6, Re = 1.0 9 105 -0.0014 1.0505 0.0111 0.026042

KC = 0.6, Re = 1.0 9 105 0.0849 1.062 0.0336 0.0685

KC = 0.6, Re = 1.0 9 105 0.338 1.1086 0.1058 0.117333

KC = 0.6, Re = 1.0 9 105 0.687 1.2319 0.2145 0.13175

KC = 0.6, Re = 1.0 9 105 1.1892 1.5709 0.5352 0.131

KC = 0.0, Re = 1.0 9 105 1.8927 0.2568 0.9080 0.1465
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