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Abstract
Purpose of Review The purpose of this review is to provide a better understanding of ana‑
phylaxis pathophysiology and describe the underlying mechanisms, effector cells, and the 
potential biomarkers involved depending on the anaphylaxis endotypes.
Recent Findings New insight into the potential relevance of pathways others than IgE‑
dependent anaphylaxis has been unraveled, as well as other biomarkers than tryptase, 
such as the role of platelet activation factor, basogranulin, dipeptidyl peptidase I, CCL‑2, 
and other cytokines.
Summary Gaining knowledge of all the mediators and cellular activation/communication 
pathways involved in each endotype of anaphylaxis will allow the application of precision 
medicine in patients with anaphylactic reactions, providing insights to the most appropri‑
ate approach in each case and helping to stratify severity and risk prediction.

Published online: 28 November 2022

Curr Treat Options Allergy (2022) 9:303–322

http://orcid.org/0000-0002-2178-1067
http://crossmark.crossref.org/dialog/?doi=10.1007/s40521-022-00326-1&domain=pdf


Anaphylaxis (R Muñoz Cano, Section Editor)

Introduction

Anaphylaxis is a severe, multisystem syndrome that is 
rapid in onset and potentially lethal, requiring imme-
diate medical intervention. However, the diagnosis of 
anaphylaxis is still based on clinical symptoms after 
exposure to a potential allergen or event, given that 
no biomarker allows an unequivocal diagnosis of ana-
phylaxis [1, 2•]. Therefore, anaphylaxis remains under-
recognized, undertreated, and poorly understood. 
The current gold standard laboratory test involves the 
measurement of serum total mast cell tryptase (MCT) 
during an acute phase followed by a baseline measure-
ment at least 24 h after the reaction. However, even 
when sampling of tryptase is timely, an increase is not 
detectable in all cases [1, 2•].

Phenotypes of anaphylaxis are defined by clinical 
presentation and endotypes are based on cellular and 
molecular mechanisms involved during an anaphylac-
tic reaction [1, 2•]. The activation of different pathways 
during an anaphylaxis will depend on which receptors 
are activated in the underlying effector cells and which 
mechanism and mediators are involved in the reaction.
This review summarizes the most recent knowledge 
of how different effector cells and their mediators are 
involved in anaphylaxis depending on the mechanism 
providing a better understanding of the pathophysiol-
ogy of anaphylaxis and explores and discusses the role 
for new biomarkers of anaphylaxis beyond tryptase.

Endotypes and effector cells involved in anaphylaxis

The type of receptor activated in the different effector cells during an anaphy-
lactic reaction will influence which mediators (tryptase, interleukin [IL]-6, …) 
are released and, subsequently, which can be potential diagnostic biomarkers 
[3••]. Depending on these cellular and molecular mechanisms, anaphylaxis 
is divided in different endotypes, summarized in Table 1.

The major molecular mechanism underlying anaphylaxis is the classic 
allergic IgE-mediated reaction involving mast cells (MC) and basophils. 
Both cell types express the high-affinity IgE receptor (FcεRI) on their sur-
face and are considered the main effector cells in this pathologic event 
[4]. However, a considerable percentage of subjects do not show evidence 
of IgE-dependent immune activation; therefore, other effector cells and 
pathways must be involved in anaphylaxis. Nowadays, there is enough 
evidence to corroborate that IgG antibodies can induce anaphylaxis by 
binding to their different receptors (FcγR) [5••]. Such receptors are found 
in MC, basophils, neutrophils, monocytes, and macrophages conforming 
the major cellular types activated by this alternative pathway [3••]. In fact, 
some studies have shown that human IgG receptors are capable of acti-
vating macrophages and neutrophils to secrete platelet-activating factor 
(PAF), and then PAF can activate mast cells in vitro, reinforcing the role 
of this mediator in human anaphylaxis as described below [6]. Moreover, 
the amount of antibody and antigen seems to be crucial in determining 
IgG- or IgE-dependent anaphylaxis. Thus, to induce a similar response 
in IgG-dependent anaphylaxis, a higher dose of antigen is required com-
pared to IgE-dependent [7]. Complement-mediated anaphylaxis has also 
been described in human anaphylaxis [8]. C3a and C5a, known as ana-
phylatoxins, are potent inflammatory mediators generated upon acti-
vation of the complement cascades. Some substances, such as peanuts, 
have been described to have the ability to rapidly activate complement, 
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Table 1  Main effector cells, receptors, and endotype involved in anaphylaxis (3–14, 19, 21, 23, 27–31, 33, 35–38, 
40, 42, 43, 46, 47, 49, 80, 83)

Receptor Endotype

Mast cell

Activators FcϵRI IgE mediated

FcϵRII (CD23) IgE mediated

FcγRIIa IgG mediated

Mrgprs IgE independent

Trk Non‑immunological

Kit/CD117 (SCFR) Non‑immunological

μ‑δ‑opioid receptors Non‑immunological

TLR 1–9 IgE independent

NTAL Unknown

C3aR, CD88/C5aR Complement mediated

HR 1–2‑3–4 All

PAFR All

CD200 R1 Non‑immunological

Neurokinin 1‑receptor Non‑immunological

IL‑33R, TSLPR Unknown

IL‑4R Unknown

IL1R Cytokine release syndrome

IL‑6R soluble Cytokine release syndrome

Basophil

Activators FcϵRI IgE mediated

FcγRIIa (CD32) IgG mediated

Mrgprs IgE independent

Trk Non‑immunological

TLR IgE independent

C3aR, CD88/C5aR Complement mediated

CD35/C3b/C4b/CR1 CD11b/CD18/CR3, C3bR, CD11c/CR4 Complement mediated

HR 1–2‑4 All

PAFR All

IL‑33R, IL‑25, TSLPR Unknown
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Table 1  (continued)
Receptor Endotype

Eosinophil

Activators FcϵRI IgE mediated

FcϵRII (CD23) IgE mediated

FcγRIIa (CD32) IgG mediated

Trk Non‑immunological

TLR IgE independent

C3aR, CD88/C5aR Complement mediated

CD35/C3b/C4b/CR1 CD11b/CD18/CR3, C3bR Complement mediated

HR 1–2‑3–4 All

PAFR All

IL‑33R, IL‑25, TSLPR Unknown

IL‑1R Cytokine release syndrome

IL‑6R soluble Cytokine release syndrome

TNFR Cytokine release syndrome

Neutrophil

Activators FcϵRI IgE mediated

FcϵRII (CD23) Proteases

FcγR (I‑IV) IgG mediated

Trk Non‑immunological

TLR IgE independent

C3aR, CD88/C5aR Complement mediated

CD35/C3b/C4b/CR1
CD11b/CD18/CR3

Complement mediated

HR 1–2‑4 All

PAFR All

G‑CSFR, GM‑CSFR All

IL1R Cytokine release syndrome

IL‑6R soluble Cytokine release syndrome

TNFR Cytokine release syndrome

Monocyte/macrophage

Activators FcϵRI IgE mediated

FcγR (I‑III) IgG mediated

Mrgprs IgE independent

Tyr Non‑immunological

TLR IgE‑independent

C3aR, CD88/C5aR Complement activation

CD11b/CD18/CR3, CD35/C3b/C4b/CR1 Complement activation

HR 1–2‑4 All

IL‑6R soluble Cytokine release syndrome

TNFR Cytokine release syndrome
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FcϵRI, high affinity IgE receptor; FcϵRII (CD23), low affinity IgE receptor; FcγRIIa, IgG receptor; Mrgprs, Mas‑related G protein‑coupled 
receptor; Trk, tyrosine kinase receptor; SCFR, stem cell factor receptor; TLR, Toll‑like receptor; NTAL, non‑T cell activation linker; HR, 
histamine receptor; TNFR, tumor necrosis factor receptor; PAFR, plasmin activator factor receptor; TSLPR, thymic stromal lymphopoietin 
receptor; G‑CSFR, granulocyte colony stimulating factor receptor; GM‑CSFR, granulocyte–macrophage colony‑stimulating factor receptor; 
PAR, protease activated receptor; CysLTR, cysteinyl leukotriene receptor; EP, E prostanoid receptor; DP, D prostaglandin receptor

Receptor Endotype

Platelet

Activators FcϵRI IgE mediated

FcϵRII (CD23) Proteases

FcγRIIa IgG mediated

TLR IgE independent

C3b/CD46 Complement mediated

C1qR Complement mediated
Contact system mediated

IL1R Cytokine release syndrome

IL‑6R soluble Cytokine release syndrome

TNFR Cytokine release syndrome

Epithelium

Vasodilation, increased permeability HR 1–2 All

PAFR All

PAR2 (tryptase‑R) All

CysLTR 1–2 All

C3aR, CD88/C5aR Complement activation

Bradykinin 1–2 R Contact system activation

EP1‑2–4, DP All

IL‑4Ra Unknown

IL1R Cytokine release syndrome

IL‑6R soluble Cytokine release syndrome

TNFR Cytokine release syndrome

Table 1  (continued)

with production of large amounts of anaphylatoxins that stimulates mac-
rophages, basophils, and MC which contribute to the induction of ana-
phylaxis [9, 10]. In addition, the contact and coagulation systems can be 
activated in anaphylaxis through immunological and non-immunological 
mechanisms [11].

Different non-immunologic activating paths have been described in 
anaphylaxis. Some drugs (e.g., opioids, neuromuscular blockers, qui-
nolones) are also capable of activating MC and basophils, triggering 
degranulation, through the Mas-related G-protein coupled receptor 
member X2 (MRGPRX2) [12, 13]. This is a highly relevant pathway inde-
pendent of specific immunoglobulins. External factors such as physi-
cal exercise, exposure to cold, or ultraviolet radiation may also act as 
elicitors of MC [14, 15••, 16]. Another endotype discovered due to the 
increasingly common use of monoclonal antibodies and chemothera-
peutic agents is cytokine release reaction. These reactions are suspected 
to be mediated by tumor necrosis factor alpha (TNFα), IL-1β and IL-6 
produced by MC, monocytes, and T cells. In some patients, the endo-
type could be mixed due to co-occurrence of IgE-mediated reactions and 
cytokine release reactions [4].
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Considering all the above, anaphylaxis endotypes can be divided mainly 
in two different groups, immune-mediated anaphylaxis (IgE-dependent and 
non-IgE-dependent such as IgG-dependent, complement system, contact sys-
tem, cytokine release reactions) and non-immunological anaphylaxis.

Mast cell

MC are hematopoietic cells that reside in different tissues (such as connective 
tissue, blood, skin, among others) and have an important role in inflammation. 
MC are the key effector cells in anaphylaxis [16, 17]. They are involved in IgE-
mediated reactions (immediate hypersensitive reactions), due to cross-linking 
by allergens of specific IgE (sIgE) attached to its high-affinity receptor (FCeRI) 
expressed predominantly by MC and basophils [18]. This interaction, allergen-
sIgE-MC, results in intracellular signaling that triggers the release of MC media-
tors. There are two mayor types of MC, MC (T) that are characterized by a large 
content in tryptase and MC (TC) which produce both tryptase and chymase 
[19]. Characteristically, MC express an array of different receptors, the activa-
tion of which may induce activation through diverse pathways, as explained 
above. Figure 1 outlines the different MC activating receptors and mediators.

Basophil

Basophils are the largest and least common granular immune cells, represent-
ing about 0.5 to 1% of circulating leukocytes. Unlike MC, they are blood-
circulating leukocytes and not tissue-resident cells [20, 21] Recent studies 
suggest that basophils activate complementary to MC and they play a key role 
in anaphylaxis, especially in food-induced anaphylaxis [22, 23]. Basophils 
share many mediators and receptors with MC [24] and are more commonly 
used to perform laboratory allergen-specific activation tests (BAT), since they 
are easy to sample from whole blood. BAT has been demonstrated useful to 
confirm IgE-mediated allergy and also to monitor allergen immunotherapy, 
in order to differentiate short-term desensitization versus sustained unrespon-
siveness to the allergen [25, 26].

Neutrophil, eosinophil, monocyte/macrophage, and platelet

The most recent studies on anaphylaxis have highlighted the role of other 
immune effector cells such as monocytes, macrophages, neutrophils, eosino-
phils, and platelets. Most of this evidence is based on murine models, so knowl-
edge about their involvement in human anaphylaxis still remains scarce [27].

The implication of both monocytes and macrophages has been dem-
onstrated in passive and active systemic anaphylaxis. They have been more 
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related to IgG-dependent and cytokine release reaction endotypes [27–29]. 
However, especially neutrophils have gained much relevance as key cellular 
player eliciting non-IgE-dependent anaphylactic reactions [4, 30]. Evidence 
in patients has shown elevated circulating serum levels of neutrophil elastase 
and myeloperoxidase, major mediators stored in their granules. These results 
supported the existence of a neutrophil-associated IgG molecular mechanism 
associated with drug-induced anaphylaxis [31–33]. As represented in Table 1, 
neutrophils not only express FcγR, but also FcεRI and MRGPRX2.

MC and eosinophils share several receptors and mediators (Tables 1 and 
2), so suspecting their involvement in anaphylaxis seems reasonable. Accu-
mulation of eosinophils has been detected in passive cutaneous anaphylactic 
reactions in guinea pigs, as well as in spleens and coronary arteries from ana-
phylactic human cadavers [34, 35]. And lastly, but by no means less impor-
tantly, there is evidence of platelet contribution in anaphylactic reactions. The 
release of important mediators (Table 2) has been observed in both IgE- and 
IgG-dependent pathways [6, 36–38].

Fig. 1  The different MC activation receptors and mediators. FcϵRI, high affinity IgE receptor; FcϵRII (CD23), low affinity 
IgE receptor; FcγRIIa, IgG receptor; Mrgprs, Mas‑related G protein‑coupled receptor; Trk, tyrosine kinase receptor; TLR, Toll‑
like receptor; HR, histamine receptor; PAFR, plasmin activator factor receptor; NK‑1R, neurokinin receptor 1; Tryp, tryptase; 
Hist, histamine; PAF, platelet activator factor; Chy, chymase; CPA3, carboxypeptidase A3; DPPI, dipeptidyl peptidase I/
cathepsin C; CAT‑G, cathepsin G; LTE4, lipoxygenase product E4; PGD2, prostaglandin D2; TXA2, thromboxane A2; HEP, hepa‑
rin; FXII, factor XII; FXIIa, activated factor XII; CSF, stem cell factor; HMWK, high molecular weight kininogen; TNF‑alpha, 
necrosis tumoral factor alpha. This image is created with BioRender.com
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Taken together, this data indicate that many myeloid cells have a role in 
the physiopathology of anaphylaxis.

Endothelium

The endothelium consists of a single and extensive layer of endothelial cells 
(ECs). Molecularly, stabilization of the endothelial barrier depends on a series 
of connections, such as tight junctions (TJ) and adherent junctions (AJ). A dys-
functional endothelium is the cause of important cardiovascular diseases such 
as thrombosis, atherosclerosis, or hypertension [39]. A damaged endothelium 
has been observed in patients with mastocytosis [40] and, in acute inflammatory 
situations as in COVID-19 disease, ECs contribute as effector cells to the cytokine 
releases syndrome [41]. Therefore, endothelium is an important organ-cell in 
anaphylaxis playing a role not only in the control of fluids and the vascular 
tone but also as an activation surface for the coagulation, contact system, and 
complement [11, 42, 43]. ECs release relevant anaphylactic mediators such as 
nitric oxide (NO), together with other molecules (presumably cytokines or inter-
leukins) which also released, contribute to the pool of mediators in the reaction 
[3••]. Specifically, anaphylactic shock depending on endothelial Gq/G11 has 
been characterized in mice [43]. However, the exact contribution of these cells 
during anaphylaxis is still not fully understood.

Mediators release in anaphylaxis

During anaphylaxis there is a rapid release of mediators from different sources, 
but most important, from MC and basophils. These mediators are proteases, 
sulfated polysaccharides, cytokines, chemokines, vasoactive agents (histamine, 
bradykinin) and proinflammatory lipid mediators, among others [44]. They 
are usually divided into three classes: preformed mediators (that are stored in 
cytoplasmic granules), newly generated in minutes (proinflammatory lipid 
mediators), and newly generated over hours (growth factors, cytokines, and 
chemokines). Table 2 summarizes the main mediators, their major cell sources, 
best sampling time, and the availability of commercial assays.

Preformed mediators

Preformed mediators are stored in cytoplasmatic granules of the effector cells 
(mainly MC and basophils) and include proteases (tryptase, chymase), highly 
sulfated polysaccharides (heparin and other proteoglycans), and histamine 
[45].
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Histamine

Plasma histamine is an amine secreted by MC and basophils with vasoac-
tive and pro-inflammatory functions. It is synthetized from the amino acid 
histidine and catalyzed by L-histidine decarboxylase. Histamine is stored 
in cytoplasmic granules and can be released when immunological or non-
immunological activation occurs. There is evidence that neutrophils can also 
synthetize and release histamine under specific circumstances [46]. When 
MC/basophils are activated, histamine is released and it acts through its 
g-protein receptors (H1, H2, H3, and H4), causing arteriolar vasodilation, 
increased capillary permeability, bronchoconstriction, itching, swelling, rhi-
norrhea, urticaria, and rhinitis, among others [47]. The peak of histamine 
is 5–10 min from the onset of the reaction and is rapidly metabolized into 
methyl histamine by the N-methyltransferase or into imidazole acetaldehyde 
by diamine oxidase, and then secreted in urine [48]. In daily practice, his-
tamine is not a good diagnostic biomarker for anaphylaxis due to its short 
half-life [4, 49].

Histamine metabolites

Methyl histamine and imidazole acetaldehyde had longer half-life compared 
to histamine and can be measured in urine or plasma after 30–60 min of the 
onset of the reaction [48]. Normal levels do not exclude a hypersensitivity 
reaction. Some false positive results may occur due to ingestion of foods with 
high concentrations of histamine (in example, in scombroidosis), endog-
enous production by other type of cells such as neurons or enterochromaffin-
like cells in stomach, or by certain bacteria [24].

Tryptase

Tryptase is a neutral serine protease highly specific of MC, stored in large 
amounts in cytoplasmatic granules. It is currently used as a diagnostic bio-
marker in anaphylaxis. Also, basophils produce tryptase but in much lower 
amounts. Tryptase provides information about MC activation, distribution, 
and number so it is useful for diagnosis and follow-up of mast cell diseases 
[50, 51].

There are two biologically important forms of tryptase, alpha-prot-
ryptase and beta-tryptase. The alpha-protryptase is present in serum as 
an inactive proenzyme and is secreted constitutively. Beta-tryptase, on 
the other hand, is the functional tryptase, a mature tetramer stabilized 
by proteoglycans, stored predominantly in MC secretory granules and 
released by active MC. Tryptase acts binding to protease activated recep-
tor type 2 (PAR-2, present in gastrointestinal, cardiovascular, neurons, 
among others). It is responsible of cleaving extracellular substrates, such 
as calcitonin gene-related peptide, kininogens, fibronectin, and vasoactive 
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intestinal peptide; also, it is a potent growth factor for EC, airway smooth 
muscle cells, and fibroblasts [45, 52]. It also has a chemotactic effect on 
neutrophils and eosinophils via IL-8 [53]. During anaphylaxis, tryptase 
is responsible for vascular vasodilation (activating the contact system to 
generate bradykinin) and bronchial hyperresponsiveness [49].

Basal tryptase in healthy individuals ranges from 0 to 11.4 ng/mL. 
Currently, it is accepted that levels of 120% of the baseline plus 2 ng/
mL (1.2 × baseline tryptase + 2 ng/mL) is a significant increase, indicating 
MC activation (54, 55). In MC disorders, a basal tryptase > 20 ng/mL is 
considered as a minor criteria of mastocytosis [51].

During active MC degranulation in allergic reactions, β-tryptase is 
released. Levels of tryptase are increased from 15 min to 3 h after the 
anaphylaxis onset [54•, 56]. Sequential measurement of serum tryptase 
during anaphylaxis and basal serum levels increases sensitivity and spe-
cific of the diagnostic. Higher peak/baseline tryptase correlates with more 
severe symptoms [57]. Nevertheless, it is important to take into account 
that an increase is not detectable in all cases, for example, in food-induced 
anaphylaxis where tryptase does not increase as in drug-induced reactions 
[56, 58], but may still be useful for diagnosis. Current commercial meth-
ods measure immature alpha and beta tryptase, but as a diagnostic marker 
of anaphylaxis, it would be optimal to measure beta-tryptase alone, since 
this is the form released by MC.

Chymase

Chymase is a serine endopeptidase also found in MC (TC). It is usually 
released during MC/basophil activation, and its concentration in serum 
has been seen to be stable. There are no commercialized kits to measure 
chymase, so is not used routinely in anaphylactic reactions [59]. Chymase 
participates in local arterial pressure regulation due to the hydrolysis of 
angiotensin I into angiotensin II [60]; it also activates endothelin-1 and 
2, leading to the production of metalloproteinases and cytokines [24]. It 
has been reported alternative methods to evaluate indirectly Chymase via 
alpha-2-macroglobulin, but is not systematically used [61]. Postmortem 
chymase concentrations in cases of fatal anaphylaxis have been shown to 
correlate with levels of tryptase [62].

Carboxypeptidase A3

Carboxypeptidase A3 is another metalloproteinase contained in MC and baso-
phil granules [63]. Zhou et al. [64] measured levels of carboxypeptidase A3 in 
cases of anaphylaxis, systemic mastocytosis, and control groups. Significantly 
elevated levels were found 8 h after the onset of an allergic reaction compared 
to the control cohort. There are no available commercial methods for its quan-
tification in daily practice.
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Basogranulin

Basogranulin is a basophil granule protein that is released in parallel with his-
tamine. It shares receptors and pathways with histamine [65]. Nowadays, there 
are no available methods for its measurement [66].

Heparin

Highly sulfated proteoglycan heparin is preformed in MC (predominantly) and 
also in basophil granules. It is stored in its active form with a negative charge. It 
has been reported that heparin has an important role in activating the plasma 
contact system [11, 67]. Due to its negative charge, it is capable of activating the 
FXII-dependent pathway and cleaving high molecular weight kininogen into 
bradykinin, leading to increased vascular permeability [11].

Dipeptidyl peptidase I (DPPI)/cathepsin C

Dipeptidyl peptidase I (DPPI)/cathepsin C is a member of the papain family 
proteases that is expressed in numerous cell types, including both MC and 
basophils. Levels of chymase and DDPI have been shown to increase and corre-
lated during anaphylaxis, but do not correlate with tryptase [68, 69]. Its activity 
outside of cells is limited. There are no available measurement methods for its 
quantification currently.

Cathepsin G

Cathepsin G is a protease related to chymase and has similar functions (cleavage 
of angiotensin I to angiotensin II) [69]. It is found in MC granules. There are no 
available techniques to measure it.

Newly generated over minutes

Newly generated mediators are generated over minutes after the onset of 
stimuli by the different types of cells involved in the reactions.

Bradykinin (BK)

Is a nonapeptide from the kinin family with vasoactive functions that has been 
demonstrated to be released during anaphylaxis by activation of the contact 
system [11, 67]. When the contact system is activated by a negative charge (for 
instance heparin that is released in anaphylaxis), FXII is activated to FXIIa, 
which cleaves prekallikrein to kallikrein, which subsequently hydrolyses the 
high molecular weight kininogen to release BK. BK has a very short half-life, 
less than 1 min, due to its fast metabolism by the specific enzymes (angiotensin 
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converting enzyme, also known as kininase II), dipeptidyl peptidase IV, car-
boxypeptidase N also known as kininase I, and neutral endopeptidase [70]. BK 
acts through its specific receptors, B1 and B2, inducing an increase of vascular 
permeability and plasma extravasation [71]. Currently, it is not possible to 
measure BK in daily practice, due to its short half-life, so indirect methods are 
used to assess it in research setting.

Lipid mediators

Lipid mediators are synthetized de novo in activated MC and basophils. They 
derive from arachidonic acid and have vasoactive and pro-inflammatory 
functions.

Lipoxygenase products: leukotriene E4

Leukotriene E4 (LTE4) is produced by activated MC, neutrophils, eosinophils, 
and macrophages. It is derived from the precursor LTA4, converted to LTD4 
and finally LTE4. LTE4 is the most stable metabolite of the lipoxygenase 
products and binds to three different receptors (CysLTR1, CysLTR2, CysLTR3). 
Its activation causes airway constriction, smooth muscle contraction, and 
increased vascular permeability [24]. LTE4 can be measured in urine, but due 
to their rapid metabolism, LTC4 and LTD4 cannot be measured [72].

Cyclooxygenase products: prostaglandins and thromboxanes

Generation of metabolites of arachidonic acid (thromboxane A2, throm-
boxane B2, prostaglandin (PG) D2, PGE2, PGF2) in anaphylaxis has been 
demonstrated in several studies with animals and humans [73, 74]. PGD2 is 
the main cyclooxygenase product formed in activated MC, also produced by 
neutrophils, monocytes, macrophages, and platelets, but not by basophils. 
PGD2 binds to its receptors DP1 and/or DP2 and increases vascular perme-
ability and induces bronchoconstriction. PGD2 has a rapid degradation to 
more stable metabolites such D-prostaglandin (PGD), F-prostaglandin (PGF), 
and J-prostaglandin (PGJ), which are excreted in urine [75]. Nassiri et al. 
[76] suggest that serum levels of 9α,11β-PGF2 could be useful biomarkers of 
anaphylaxis. The urinary metabolite 2,3-dinor-11β-PGF2α can be measured 
in urine [75].

Platelet-activating factor (PAF)

PAF is a potent phospholipid derived mediator produced by activated MC, 
endothelial cells, polymorphonuclear (PMN) leukocytes, eosinophils, 

316



New Biomarkers in Anaphylaxis (Beyond Tryptase) Galvan‑Blasco et al. 

macrophages, monocytes, and platelets. It is rapidly metabolized into its 
inactive metabolite lyso-PAF (by the enzyme PAF acetylhydrolase—PAF-AH). 
During anaphylaxis, PAF binds to its receptor on monocytes, platelets, mac-
rophages, and neutrophil. It induces a potent bronchoconstriction and vaso-
dilation with edema. Also is involved in platelet aggregation, activation of 
eosinophils, and PMN–leucocytes. Elevated levels of PAF correlate with the 
severity of anaphylaxis [77, 78]. Also, there is an inverse correlation between 
PAF and PAF-AH activity. Vadas et al. (79) showed that PAF correlates better 
to MC anaphylaxis compared to histamine and tryptase. PAF is common in 
both, IgE and IgG anaphylaxis, due to that it is released by all myeloid cell 
subsets. In mouse models, it had been demonstrated a synergistic effect with 
histamine [27]. One of the challenges of measuring PAF and PAF-AH in a 
daily practice is its short half-life and the transport precautions it requires.

C3a and C5a

Activation of complement by immune complexes can lead to the genera-
tion of anaphylatoxins (AT), such as C3a and C5a, which can then bind to 
complement receptors on MC. C3a and C5a regulate vasodilation, increase 
the permeability of small blood vessels, and induce contraction of smooth 
muscles. Basophils and MC react upon AT stimulation with release of hista-
mine [80]. In macrophages, neutrophils, and eosinophils, C3a and C5a can 
trigger oxidative burst [81, 84].

Newly generated over hours

Newly generated over hours mediators are mainly growth factors, cytokines, 
and chemokines. Specific mediators released by MC may have autocrine, 
paracrine, and endocrine effects of interest to the pathogenesis of anaphy-
laxis. The cytokines IL-8 and GM-CSF have paracrine effects on other cells 
of leukocyte lineage, including eosinophils, neutrophils, and macrophages 
[83]. Similarly, the expression of stem cell factor by MC can have facilitatory 
autocrine effects on mast cell survival, chemotaxis, growth, and proliferation 
[84, 85]. Another paracrine loop is mast cell-derived histamine binding to 
endothelial H1-receptors and leading to the elaboration of NO which con-
tributes to vasodilation [86].

Stone et al. [87] analyzed the peak concentrations of different mediators 
including histamine, tryptase, cytokines [IL-2, IL-4, IL-5, IL-6, IL-10, IL-13, 
interferon (IFN)-gamma and tumor necrosis factor (TNF)-alpha and TNFRI] 
and chemokines in a prospective study in patients who suffered anaphylaxis. 
All these mediators were higher in anaphylactic patients compared to control 
group. In this study, only tryptase, histamine, IL-2, IL-6, IL-10, and TNFRI 
correlated with hypotension, a finding similar to that found by Brown et al. 
[88]. Moreover, IL-6 and other inflammatory cytokines such as IL-8, TNF-a, 
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interferon gamma (IFN-g), and IL-1b induce the inactivation of cadherin, 
which mediate cell adhesion, leading to vascular leakage by increased capil-
lary permeability. It has been postulated that IL-1 released from monocytes 
and macrophages activates endothelial expression of NO leading to this cap-
illary permeability. On the other hand, recently, the role of IL-6 has been 
described as an excellent biomarker of cytokine release reactions because 
of its correlation with the severity of the reactions and its longevity in a 
blood serum. In addition, it has been demonstrated the role of IL-6 in the 
systemic inflammatory response syndrome (SIRS) [89]. There are promising 
data regarding major basophil chemotactic factor, chemokine (C–C motif) 
ligand 2, or CCL-2. Concentration of CCL-2 has been found to be significantly 
higher in anaphylaxis compared to healthy control cohort, and potentially 
identified severe anaphylaxis cases [65]. Latest studies, including human and 
murine models, have detailed several novel mediators that may participate 
in anaphylaxis reaction [3••, 83, 90], as it has been summarized in Table 2.

Conclusions

Pathophysiology of anaphylaxis involves the activation of multiple pathways 
beyond IgE, different cell types, and a wide range of mediators. Therefore, meas-
uring only one mediator may not be enough to diagnose anaphylaxis. This could 
partly explain the current lack of optimal biomarkers to confirm the diagnosis.

Given that anaphylaxis remains a clinical diagnosis, there is still exist a 
challenge in the laboratory diagnosis of anaphylaxis. Biomarkers are useful 
to reinforce the diagnosis and distinguish anaphylaxis from similar clinical 
scenarios. New biomarkers are pointing their interest such as chymase, car-
boxypeptidaseA3, PAF, PAF-AH, IL-2, IL-6, IL-10, and CCL-2, providing sam-
ple requirements, assay platform, process, and costs. However, a consensus 
on a reference range about sample handling and processing requirements for 
different biomarkers is needed.

Further studies applying these approaches are needed and they might 
provide greater insight into factors determining severity, clinical risk stratifica-
tion, identification of mast cell disorders, and improving our understanding 
of this relatively complex acute condition.
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